JPH0354805B2 - - Google Patents

Info

Publication number
JPH0354805B2
JPH0354805B2 JP13194883A JP13194883A JPH0354805B2 JP H0354805 B2 JPH0354805 B2 JP H0354805B2 JP 13194883 A JP13194883 A JP 13194883A JP 13194883 A JP13194883 A JP 13194883A JP H0354805 B2 JPH0354805 B2 JP H0354805B2
Authority
JP
Japan
Prior art keywords
conductor
insulating
insulating layer
resin
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13194883A
Other languages
Japanese (ja)
Other versions
JPS6025108A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13194883A priority Critical patent/JPS6025108A/en
Publication of JPS6025108A publication Critical patent/JPS6025108A/en
Publication of JPH0354805B2 publication Critical patent/JPH0354805B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は絶縁層内に樹脂未含浸部を残さない含
浸方式の絶縁導体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing an insulated conductor using an impregnation method that leaves no resin-unimpregnated portion in an insulating layer.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来から含浸方式による絶縁導体の製造方法は
行なわれている。しかし、含浸方式は樹脂によ
り、絶縁テープを複数層巻回した絶縁層の空隙を
埋める方式であるため、万一、この空隙部まで樹
脂が到達しないと、空隙を含んだ絶縁導体とな
り、この絶縁導体で電気機器の巻線を形成し運転
する場合、前記空隙のために放電劣化、吸湿によ
る劣化、熱劣化、応力集中に基く機械的ストレス
による劣化などが起き易い欠点があつた。従つ
て、含浸方式の場合、絶縁層内のあらゆる空隙に
樹脂を到達させ、樹脂で埋めることが、高性能の
絶縁導体ひいては絶縁コイルを得る上で不可欠で
ある。特に高電圧コイルでは、主にマイカテープ
からなる絶縁テープが多数層巻回されるため、絶
縁層中に空隙を残さないように、あらかじめ真空
含浸タンク内で真空脱気した後、低粘度の樹脂を
前記タンク内に送り込んでコイルを樹脂中に浸漬
し、長時間樹脂に圧力をかけた後、コイルを樹脂
中から取出し、加熱して絶縁層中に含浸された樹
脂を硬化する真空加圧含浸方式が行なわれてい
る。しかし、このような製造方法でも、絶縁テー
プの巻上りがきつかつたり、絶縁テープ中の接着
剤が幾分べとついていた絶縁テープ巻回間がくつ
ついていたりすると、絶縁層中に未含浸部分が残
り、空隙のある特性不良の絶縁コイルが出来上る
場合がある。このような特性不良の絶縁導体(コ
イルも含む)は、第1図に示すように表面に凹凸
のない導体1に絶縁テープを巻回した絶縁層2を
設ける場合のものとか、第2図に示すように、心
線3に絶縁被覆4を設けた素線5を複数本束ねて
導体1を形成する際、絶縁層2と素線5,5相互
の角部間にできる空隙6が、素線を束ねる際に使
用した接着剤によつて埋つたり、あるいは、導体
1の端部の心線3,3同士を結合するために使わ
れるはんだや銀ろうにより埋つたりした場合のも
のに多く見られることを本発明者は発見した。
Conventionally, an impregnation method has been used to manufacture insulated conductors. However, since the impregnation method uses resin to fill in the gaps in an insulating layer made by winding multiple layers of insulating tape, if the resin does not reach the gaps, it will become an insulated conductor with gaps, and this insulation When windings of electrical equipment are formed using a conductor and operated, the voids tend to cause discharge deterioration, deterioration due to moisture absorption, thermal deterioration, and deterioration due to mechanical stress due to stress concentration. Therefore, in the case of the impregnation method, it is essential to reach and fill every void in the insulating layer with the resin in order to obtain a high-performance insulated conductor and ultimately an insulated coil. In particular, for high voltage coils, many layers of insulating tape, mainly made of mica tape, are wound, so in order to avoid leaving any voids in the insulating layer, it is first degassed in a vacuum impregnation tank, and then a low viscosity resin is used. Vacuum pressure impregnation involves sending the coil into the tank, immersing the coil in the resin, applying pressure to the resin for a long time, taking the coil out of the resin, and heating it to harden the resin impregnated into the insulating layer. The method is being carried out. However, even with this manufacturing method, if the insulating tape is rolled up tightly or if the adhesive in the insulating tape is somewhat sticky and the gaps between the turns of the insulating tape are stuck, unimpregnated areas may appear in the insulating layer. may remain, resulting in an insulated coil with voids and poor characteristics. Insulated conductors (including coils) with such poor characteristics are those in which an insulating layer 2 is formed by wrapping an insulating tape around a conductor 1 with a smooth surface as shown in Fig. As shown, when a conductor 1 is formed by bundling a plurality of wires 5 each having an insulation coating 4 on a core wire 3, a gap 6 is formed between the corner portions of the insulating layer 2 and the wires 5, 5. It is buried by the adhesive used to bundle the wires, or by the solder or silver solder used to connect the core wires 3 and 3 at the end of the conductor 1. The present inventor discovered that this is often seen.

一般に電気導体1の絶縁層2への樹脂の含浸
は、絶縁層2が第3図に示すように絶縁テープ7
を1/2重巻したものを多数層重ねて形成されてい
る層間8をぬつて、絶縁表面側から矢印Aのよう
に進む。しかし絶縁層2が厚い場合は、導体1へ
屈く迄の含浸所要距離が長いため、経済的に見合
う時間内では含浸が完了しない場合がある。また
絶縁層2の端部では矢印Bのようにも絶縁層2の
各層間8へ含浸する。しかし、この場合も導体の
長さが長いと、前記と同じように経済的に見合う
時間には含浸が完了できない。
Generally, the insulating layer 2 of the electrical conductor 1 is impregnated with a resin by attaching the insulating tape 7 to the insulating layer 2 as shown in FIG.
It passes through the interlayer 8, which is formed by stacking many layers of 1/2-fold wraps, and advances in the direction of arrow A from the insulating surface side. However, if the insulating layer 2 is thick, the distance required for impregnation until bending to the conductor 1 is long, and therefore the impregnation may not be completed within an economically reasonable time. Further, at the end of the insulating layer 2, the interlayers 8 of the insulating layer 2 are also impregnated as shown by arrow B. However, in this case too, if the length of the conductor is long, the impregnation cannot be completed in an economically reasonable time as before.

一般に第2図に示した絶縁層2と素線5,5相
互の角部間にできる空隙6は、絶縁層2の各層間
にできる隙間8より広いので、この空隙6を通つ
て第3図の矢印Cに示すように素線5に沿つて樹
脂が浸透し、素線5側からも絶縁層2間をぬつて
樹脂が含浸する。この空隙6が接着剤、はんだや
銀ろうなどで埋つてしまうと、素線5に沿つて含
浸する矢印Cの通路が断たれ、矢印A、矢印Bの
通路でしか含浸できない。第1図に示す凹凸のな
い導体1を使つた場合には最初から矢印Cの通路
は出来る見込みがない。従つて凹凸のない導体を
使つたり、素線角部相互と絶縁層との間にできる
空隙が接着剤、はんだや銀ろうなどで埋つている
場合に特性不良の絶縁導体が出来易い。絶縁導体
の中でも特に高電圧コイルは一般に極めて高価な
ものであり、このような不良絶縁導体の発生率を
零にすることが必要である。
In general, the gap 6 formed between the corners of the insulating layer 2 and the wires 5, 5 shown in FIG. As shown by arrow C, the resin permeates along the wire 5, and the resin also penetrates through the insulating layer 2 from the wire 5 side. If this void 6 is filled with adhesive, solder, silver solder, etc., the path of impregnation along the wire 5 as indicated by arrow C is cut off, and impregnation can only occur along the paths of arrows A and B. If the conductor 1 shown in FIG. 1 without unevenness is used, there is no possibility that the path indicated by arrow C will be formed from the beginning. Therefore, insulated conductors with poor characteristics are likely to be produced when a smooth conductor is used, or when the gaps between the corners of the strands and the insulating layer are filled with adhesive, solder, silver solder, etc. Among insulated conductors, high voltage coils in particular are generally extremely expensive, and it is necessary to reduce the incidence of such defective insulated conductors to zero.

〔発明の目的〕[Purpose of the invention]

本発明は樹脂含浸が経済的に良好に出来る絶縁
導体の製造方法を提供することを目的とする。
An object of the present invention is to provide a method for producing an insulated conductor that can be economically impregnated with resin.

〔発明の概要〕[Summary of the invention]

本発明においては、電気導体に絶縁テープ巻回
による複数層の絶縁層を形成し、この絶縁層に樹
脂を含浸硬化する絶縁導体の製造方法において、
全絶縁層数をNとしたとき、その全絶縁層数を1
以上で2N/7未満の整数の内側絶縁層と残りの
数の外側絶縁層とに分割し、両絶縁層間にて導体
のほぼ中央部に位置し、導体に並行で長手方向全
長にわたると共に更に両端部が少なくとも外側絶
縁層端部よりはみ出るように絶縁スペーサを介在
させて、樹脂を含浸硬化させることに特徴を有す
るもので、絶縁スペーサによつて作られる隙間か
らも樹脂を含浸することによつて短時間に未含浸
部の無い良好な絶縁導体を得られるようにするも
のである。そして絶縁スペーサの位置を、上記位
置に定めたのは、実験結果により、内側絶縁層お
よび外側絶縁層に平均的に樹脂含浸が良好に行な
われることと、導体に直かに絶縁スペーサを配置
すると絶縁層が導体から剥離し易く、また電界が
最も高い導体直上で剥離を生じると劣化が進み易
いので、これを避けるためである。
In the present invention, a method for producing an insulated conductor includes forming a plurality of insulating layers on an electrical conductor by winding an insulating tape, and impregnating and curing the insulating layer with a resin.
When the total number of insulation layers is N, the total number of insulation layers is 1
The conductor is divided into an integer number of inner insulating layers less than 2N/7 and an outer insulating layer of the remaining number, and is located approximately in the center of the conductor between both insulating layers, extending parallel to the conductor over the entire length in the longitudinal direction, and furthermore at both ends. The method is characterized in that the resin is impregnated and hardened by interposing an insulating spacer so that the outer insulating layer protrudes at least from the end of the outer insulating layer, and by impregnating and curing the resin from the gap created by the insulating spacer. This makes it possible to obtain a good insulated conductor without any unimpregnated parts in a short time. The reason why the insulating spacer was positioned at the above position was that the results of experiments showed that the inner and outer insulating layers were well impregnated with resin on average, and that placing the insulating spacer directly on the conductor This is to avoid the fact that the insulating layer is likely to peel off from the conductor, and if peeling occurs directly above the conductor where the electric field is highest, deterioration is likely to progress.

〔発明の実施例〕[Embodiments of the invention]

実施例 1 以下、本発明の第1の実施例について、第4図
および第5図を参照して説明する。この実施例は
回転電機の絶縁コイル接続用の絶縁導体を示す。
表面に凹凸のない矩形断面の電気導体1に、厚さ
0.24mm、幅32mmで7〜15重量%のエポキシ樹脂を
接着剤として有するガラス織布補強マイカテープ
から成る絶縁テープを1/2重巻5回巻回して、即
ち5層の内側絶縁層9を形成する。その内側絶縁
層9の外側にて導体1の広幅(130)面に並ぶ両
側のほぼ中央部に位置するように、厚さ1mm、幅
40mmのガラス織布テープをスペーサ10として接
着剤で接着し、そのスペーサ10の両端は内側絶
縁層9の端部よりはみ出させる。その外周に内側
絶縁層9に用いたと同じ絶縁テープを1/2重巻で
25回巻回して、即ち25層の外側絶縁層11を形成
した。従つて全絶縁層2の層数Nは N=5+25=30 で30層となる。この場合、スペーサ10の両端を
外側絶縁層11の端部よりはみ出させておくこと
は勿論である。この後、前記絶縁を施した導体を
真空含浸タンクに入れ、0.5Torr以下に減圧した
後、1ポアズのエポキシ樹脂を前記タンク内に送
り込み、前記導体を樹脂に浸漬し、7Kg/cm2Gの
圧力で樹脂を所定時間加圧した。ちなみにこの所
定時間は、前記絶縁を施した導体の絶縁層2の最
外周の中央部に金網テープ(図示せず)に巻回
し、導体1と金網間の静電容量の変化を樹脂加圧
時間に対して測定し、第6図の曲線aのように飽
和する迄の時間としたものである。このようにし
て絶縁層2に樹脂を含浸した導体を真空含浸タン
クから取出し、周囲に鉄板を当て、その上から熱
収縮チユーブを巻回し、加熱硬化して絶縁導体を
得る。
Example 1 A first example of the present invention will be described below with reference to FIGS. 4 and 5. This example shows an insulated conductor for connecting an insulated coil of a rotating electric machine.
The electrical conductor 1 has a rectangular cross section with no irregularities on its surface, and has a thickness of
An insulating tape of 0.24 mm and width 32 mm consisting of a glass woven reinforced mica tape having 7 to 15% by weight of epoxy resin as an adhesive is wound five times in a 1/2 fold, that is, five inner insulating layers 9 are formed. Form. A 1 mm thick, wide
A 40 mm glass woven tape is bonded with an adhesive as a spacer 10, and both ends of the spacer 10 are made to protrude from the ends of the inner insulating layer 9. The same insulating tape used for the inner insulating layer 9 is wrapped 1/2 times around its outer circumference.
The outer insulating layer 11 was wound 25 times, that is, 25 layers of the outer insulating layer 11 were formed. Therefore, the total number of layers N of the insulating layer 2 is 30 (N=5+25=30). In this case, it goes without saying that both ends of the spacer 10 should protrude from the ends of the outer insulating layer 11. Thereafter, the insulated conductor is placed in a vacuum impregnation tank, the pressure is reduced to 0.5 Torr or less, and 1 poise epoxy resin is fed into the tank, the conductor is immersed in the resin, and 7Kg/cm 2 G is applied. The resin was pressurized for a predetermined period of time. Incidentally, this predetermined time is determined by wrapping a wire mesh tape (not shown) around the center of the outermost periphery of the insulating layer 2 of the insulated conductor, and measuring the change in capacitance between the conductor 1 and the wire mesh using the resin pressurization time. It is measured as the time taken to reach saturation as shown by curve a in FIG. 6. The conductor whose insulating layer 2 has been impregnated with resin in this manner is taken out from the vacuum impregnation tank, a steel plate is placed around it, a heat shrink tube is wound around it, and the insulated conductor is cured by heating.

次に作用について説明する。 Next, the effect will be explained.

絶縁スペーサ10を用いない場合は、絶縁層2
の最外周の中央部に金網テープを巻回し、導体1
と金網間の静電容量の変化を樹脂加圧時間に対し
て測定し、飽和する迄の時間を求めると第6図の
曲線bに示すように、本実施例の曲線aの場合の
数倍の時間を要する。従つて本実施例の製造方法
によれば、短かい時間で確実に樹脂が含浸され、
経済的に見合うことが明らかである。そして内側
絶縁層9を5層とし、外側絶縁11を25層とした
のは次の理由による。
When the insulating spacer 10 is not used, the insulating layer 2
Wrap wire mesh tape around the center of the outermost circumference of conductor 1.
The change in capacitance between the wire mesh and the wire mesh was measured with respect to the resin pressurization time, and the time required to reach saturation was found to be several times that of curve a in this example, as shown in curve b in Figure 6. It takes time. Therefore, according to the manufacturing method of this example, the resin can be reliably impregnated in a short period of time.
The economic value is clear. The reason why the inner insulating layer 9 has 5 layers and the outer insulating layer 11 has 25 layers is as follows.

即ち、スペーサ10の位置と絶縁テープ巻回層
数を種々に変えて、含浸試験を繰返したところ、
第7図において、矢印A方向からの含浸到達可能
層数に対する矢印D方向からの含浸到達可能層数
の比が、4:3であつた。従つて全層数Nを10と
するならば、同一時間に最外周から矢印Aの方向
に4層含浸し、スペーサ10の側面の通路12
(第5図参照)から外側と内側へ矢印Dの方向に
3層ずつ含浸することになる。従つてスペーサ1
0の位置は内側から3N/10層以下にすれば内側
絶縁層9、および外側絶縁層11の内側部分の樹
脂含浸は確実に行なわれることが分つた。しかし
全体の絶縁層2を含浸する場合、外側の方よりも
内側の方が確実に含浸されていることが、内側が
高い電界による劣化防止上必要条件であるので、
3N/10よりやや小さい2N/7以下であることを
条件としたものである。また、スペーサ10を導
体1に直かに設けると、導体1との熱膨張率の差
に基づく熱応力により、絶縁層2が導体1から剥
離し易く、そして、電界が最も高い導体直上で剥
離を生じると絶縁層2の劣化が進み易いので必ら
ず少なくとも1層だけは内側絶縁層9を設けなけ
ればならない。
That is, when the impregnation test was repeated by varying the position of the spacer 10 and the number of layers of insulating tape,
In FIG. 7, the ratio of the number of layers accessible by impregnation from the direction of arrow D to the number of layers accessible from the direction of arrow D was 4:3. Therefore, if the total number of layers N is 10, four layers are impregnated from the outermost periphery in the direction of arrow A at the same time, and the passage 12 on the side surface of the spacer 10 is impregnated in the direction of arrow A.
(See Fig. 5) Three layers are impregnated from the outside and inside in the direction of arrow D. Therefore, spacer 1
It has been found that the resin impregnation of the inner portions of the inner insulating layer 9 and the outer insulating layer 11 can be reliably carried out if the number 0 is set to 3N/10 layers or less from the inside. However, when impregnating the entire insulating layer 2, it is necessary to ensure that the inside is more impregnated than the outside in order to prevent deterioration due to high electric fields on the inside.
The condition is that it is 2N/7 or less, which is slightly smaller than 3N/10. Furthermore, if the spacer 10 is provided directly on the conductor 1, the insulating layer 2 will easily peel off from the conductor 1 due to thermal stress due to the difference in thermal expansion coefficient with the conductor 1, and the insulation layer 2 will peel off directly above the conductor where the electric field is highest. If this occurs, the insulating layer 2 is likely to deteriorate, so at least one inner insulating layer 9 must be provided.

上記実施例1では全絶縁層数N=30であるから 2N/7=2×30/7≒8.6 となり、整数を採つて8層ないし1層を内側絶縁
層9とすることが必要であり、5層としたのは適
当である。
In Example 1 above, the total number of insulating layers N=30, so 2N/7=2×30/7≒8.6, and it is necessary to take an integer and make 8 layers or 1 layer the inner insulating layer 9. It is appropriate to have five layers.

また絶縁スペーサ10を導体1の幅方向のほぼ
中央に配置するのは、導体角部は電界が最も高
く、劣化し易いためである。そして、一般には絶
縁スペーサ10の幅は導体1の幅の3/5以下、好
ましくは半分程度が、含浸性および耐劣化性から
みて良好である。
Further, the reason why the insulating spacer 10 is arranged approximately at the center of the conductor 1 in the width direction is that the electric field is highest at the corners of the conductor and is easily deteriorated. In general, the width of the insulating spacer 10 is 3/5 or less of the width of the conductor 1, preferably about half, which is good in terms of impregnability and deterioration resistance.

なお、第5図では絶縁スペーサ10の配置は、
導体1の広幅側の2面のみに設けたものを示した
が、狭幅の2面も含めて4面に設けてもよい。
又、絶縁スペーサ10は内側絶縁層9端からはみ
出さなくても、少なくとも外側絶縁層11端より
はみ出していればよい。
In addition, in FIG. 5, the arrangement of the insulating spacers 10 is as follows.
Although the conductor 1 is shown as being provided only on the two wide sides, it may be provided on four sides including the two narrow sides.
Further, the insulating spacer 10 does not need to protrude from the end of the inner insulating layer 9, but only needs to protrude from at least the end of the outer insulating layer 11.

実施例 2 第8図および第9図に示す第2の実施例はター
ビン発電機用のハーフコイルとしての絶縁導体で
ある。心線3に通水孔13を有し絶縁被覆4を設
けた素線5を8本束ねて導体1を形成するが、内
側絶縁層9と素線5,5相互の角部間にできる空
隙6が、導体1の両端付近H部において、通水管
のクリツプ14と心線3との銀ろう付けの際の流
れ銀ろうによつて埋まつている。そこで実施例1
と同じ絶縁テープを1/2重巻4回によつて4層の
内側絶縁層9を形成し、端部の一部の層はクリツ
プ14の上まで巻き上げる。導体1の広幅(68
mm)面側に導体1のほぼ中央部に位置するよう
に、実施例1に述べた絶縁テープと同じ厚さ0.24
mm、幅32mmのマイカテープを4枚積重ねて絶縁ス
ペーサ10として配設し、この両端はクリツプ1
4の上まではみ出させる。外周に内側絶縁層9と
同じ絶縁テープを1/2重巻20回によつて20層の外
側絶縁層11を形成した。絶縁スペーサ10の両
端部が、外側絶縁層11の両端部よりはみ出てい
ることも実施例1と同様である。次にエポキシ樹
脂を真空加圧含浸し、加熱硬化してハーフコイル
用絶縁導体を得ることも実施例1と同様である。
そして更にクリツプ14の上に絶縁テープを巻回
して保護絶縁15を形成する。
Example 2 The second example shown in FIGS. 8 and 9 is an insulated conductor as a half coil for a turbine generator. A conductor 1 is formed by bundling eight strands 5 each having a water passage hole 13 in the core wire 3 and an insulating coating 4 provided thereon. 6 are buried in H portions near both ends of the conductor 1 by flowing silver solder during silver soldering between the clip 14 of the water pipe and the core wire 3. Therefore, Example 1
Four layers of inner insulating layer 9 are formed by wrapping the same insulating tape 1/2 times four times, and part of the layer at the end is wound up to above the clip 14. Wide width of conductor 1 (68
mm) The same thickness as the insulating tape described in Example 1 is 0.24mm so that it is located approximately in the center of the conductor 1 on the surface side.
Four pieces of mica tape with a width of 32 mm and a width of 32 mm are stacked and arranged as an insulating spacer 10, and both ends of the mica tape are
Let it extend to the top of 4. Twenty layers of the outer insulating layer 11 were formed around the outer periphery by wrapping the same insulating tape as the inner insulating layer 9 1/2 times 20 times. Similarly to the first embodiment, both ends of the insulating spacer 10 protrude from both ends of the outer insulating layer 11. Next, in the same manner as in Example 1, an epoxy resin is impregnated with vacuum pressure and cured by heating to obtain an insulated conductor for a half coil.
Then, an insulating tape is further wound over the clip 14 to form a protective insulation 15.

次に作用について説明する。 Next, the effect will be explained.

全絶縁層数NはN=4+20=24である。従つ
て、 2N/7=2×24/7≒6.85 であるから、内側絶縁層9を4層としたことは1
と6の間の値であつて適当である。このようにし
て得た絶縁導体と絶縁スペーサのない従来の方法
によつて製造した絶縁導体のΔtanδ累積頻度分布
特性を比較して第10図に示す。Δtanδとは定格
電圧におけるΔtanδと、(定格電圧−2kV)にお
けるtanδの差である。本実施例のものを示す曲線
aは従来のものを示す曲線bに比べ、Δtanδは小
さく、はらつきも少ないことが分つた。これは絶
縁スペーサ10により樹脂の含浸する通路12が
形成され、この通路12を通り、樹脂が含浸する
ため、経済的に見合う程度の短かい所要時間内
に、完全に樹脂が含浸できるからである。
The total number of insulating layers N is N=4+20=24. Therefore, since 2N/7=2×24/7≒6.85, the fact that the inner insulating layer 9 has four layers is 1
and 6, which is appropriate. FIG. 10 shows a comparison of the Δtanδ cumulative frequency distribution characteristics of the thus obtained insulated conductor and the insulated conductor manufactured by the conventional method without an insulated spacer. Δtanδ is the difference between Δtanδ at the rated voltage and tanδ at (rated voltage −2 kV). It was found that the curve a representing the present example had a smaller Δtanδ and less fluctuation than the curve b representing the conventional one. This is because the insulating spacer 10 forms a passage 12 in which the resin is impregnated, and the resin passes through this passage 12 and is impregnated with the resin, so that the resin can be completely impregnated within an economically reasonable amount of time. .

尚、本発明は、絶縁スペーサ10としてマイカ
テープの他に、ポリエステルやアラミツドの不織
布フエルト、ガラス織布のテープ、ガラスロー
プ、ガラスアラミツドボード(GAボードと称す
る日本アロマ社商品名のものあり)積層板などを
使用してもよく、特に樹脂含浸後の成形硬化時に
圧縮され、絶縁テープ7による内外の絶縁層9,
11と一体化するマイカテープや不織布フエルト
などは好適である。又、絶縁テープ7としては、
マイカテープ、ポリエステルやポリアミドなどの
フイルム、ポリエステルやアラミツドなどの不織
布テープ、アラミツド紙などが使える。高電圧絶
縁には絶縁スペーサ10、絶縁テープ7ともに耐
部分放電性が優れているマイカテープが好まし
い。樹脂としては、エポキシ、ポリイミド、ポリ
エステルなどの無溶剤の熱硬化性樹脂が好まし
い。
In the present invention, in addition to mica tape, the insulating spacer 10 may be made of polyester or aramid nonwoven felt, glass woven tape, glass rope, or glass aramid board (there is also a product named GA board by Nippon Aroma Co., Ltd.). A laminate plate or the like may be used, which is compressed during molding and curing after being impregnated with resin, and is covered with an inner and outer insulating layer 9 by insulating tape 7.
Mica tape, non-woven felt, etc. that are integrated with 11 are suitable. Moreover, as the insulating tape 7,
Mica tape, films such as polyester and polyamide, non-woven tapes such as polyester and aramid, and aramid paper can be used. For high voltage insulation, both the insulating spacer 10 and the insulating tape 7 are preferably mica tapes, which have excellent partial discharge resistance. As the resin, solvent-free thermosetting resins such as epoxy, polyimide, and polyester are preferred.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、全絶縁層
数Nを1以上で2N/7未満の整数の内側絶縁層
と残りの数の外側絶縁層とに分割し、両絶縁層間
にて導体のほぼ中央部に位置し、導体に並行で長
手方向全長にわたると共に更に両端部が少なくと
も外側絶縁層端部よりはみ出るように絶縁スペー
サを介在させて、樹脂を含浸硬化させるようにし
たので、最外周面のみならず、絶縁スペーサの両
側にできた通路を通つて樹脂が内外の絶縁層へ含
浸するため、経済的に見合う時間で絶縁層に完全
に樹脂を含浸させることができる。又、絶縁スペ
ーサの位置は導体直上でなく、内外の両絶縁層の
間で、かつ導体幅のほぼ中央部であるため、絶縁
スペーサの介在が絶縁層に電気的劣化、機械的応
力による劣化等の悪影響を及ぼさずにすむ優透な
絶縁導体の製造方法となる。
As explained above, according to the present invention, the total number of insulating layers N is divided into an integer number of 1 or more but less than 2N/7 inner insulating layers and the remaining number of outer insulating layers, and a conductor is formed between the two insulating layers. An insulating spacer is placed almost in the center, parallel to the conductor, extending over the entire length in the longitudinal direction, and further protruding from at least the ends of the outer insulating layer, so that the resin can be impregnated and hardened. In addition, since the resin impregnates the inner and outer insulation layers through the passages formed on both sides of the insulation spacer, the insulation layer can be completely impregnated with the resin in an economically reasonable time. In addition, since the insulating spacer is located not directly above the conductor, but between the inner and outer insulating layers, and approximately at the center of the conductor width, the presence of the insulating spacer may cause electrical deterioration, mechanical stress deterioration, etc. to the insulating layer. This is a method of manufacturing highly transparent insulated conductors that does not have any adverse effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ異なる従来の方
法で製造した絶縁導体の横断面図、第3図は第2
図の絶縁層における樹脂の含浸経路を示す説明
図、第4図は本発明の方法の第1の実施例で製造
途中の状態を示す絶縁導体の平面図、第5図は第
4図の−線に沿う矢視拡大断面図、第6図は
第1の実施例の方法と従来の方法とで製造する絶
縁導体の樹脂含浸時間に対する静電容量の変化を
比較して示す曲線図、第7図は第1の実施例の絶
縁層における樹脂含浸進路を示す説明図、第8図
は第2の実施例で製造途中の状態を示す絶縁導体
の平面図、第9図は第8図の−線に沿う矢視
拡大断面図、第10図は第2の実施例の方法と従
来の方法とで製造した絶縁導体のΔtanδの累積頻
度分布を比較して示す曲線図である。 1…導体、2…絶縁層、7…絶縁テープ、9…
内側絶縁層、10…絶縁スペーサ、11…外側絶
縁層。
Figures 1 and 2 are cross-sectional views of insulated conductors manufactured using different conventional methods, and Figure 3 is a cross-sectional view of an insulated conductor manufactured using different conventional methods.
FIG. 4 is a plan view of an insulated conductor showing a state in the middle of manufacture in the first embodiment of the method of the present invention, and FIG. FIG. 6 is an enlarged sectional view taken along the line, FIG. 6 is a curve diagram showing a comparison of changes in capacitance with respect to resin impregnation time of insulated conductors manufactured by the method of the first embodiment and the conventional method, and FIG. The figure is an explanatory diagram showing the path of resin impregnation in the insulating layer of the first embodiment, FIG. 8 is a plan view of the insulated conductor of the second embodiment showing a state in the middle of manufacturing, and FIG. 9 is the − of FIG. 8. FIG. 10, which is an enlarged cross-sectional view taken along the line, is a curve diagram showing a comparison of the cumulative frequency distribution of Δtanδ of insulated conductors manufactured by the method of the second embodiment and the conventional method. DESCRIPTION OF SYMBOLS 1...Conductor, 2...Insulating layer, 7...Insulating tape, 9...
Inner insulating layer, 10... Insulating spacer, 11... Outer insulating layer.

Claims (1)

【特許請求の範囲】 1 電気導体に絶縁テープ巻回による複数層の絶
縁層を形成し、この絶縁層に樹脂を含浸硬化する
絶縁導体の製造方法において、全絶縁層数をNと
したとき、その全絶縁層数を1以上で2N/7未
満の整数の内側絶縁層と残りの数の外側絶縁層と
に分割し、両絶縁層間にて導体のほぼ中央部に位
置し、導体に並行で長手方向全長にわたると共に
更に両端部が少なくとも外側絶縁層端部よりはみ
出るように絶縁スペーサを介在させて、樹脂を含
浸硬化させることを特徴とする絶縁導体の製造方
法。 2 絶縁スペーサの幅は導体の幅の3/5以下とし
たことを特徴とする特許請求の範囲第1項記載の
絶縁導体の製造方法。 3 絶縁スペーサはマイカテープを使用したこと
を特徴とする特許請求の範囲第1項又は第2項記
載の絶縁導体の製造方法。
[Scope of Claims] 1. A method for manufacturing an insulated conductor in which a plurality of insulating layers are formed on an electrical conductor by winding an insulating tape, and the insulating layer is impregnated with a resin and cured, when the total number of insulating layers is N, The total number of insulation layers is divided into an integer number of 1 or more and less than 2N/7 inner insulation layers and the remaining number of outer insulation layers, and the layer is located approximately in the center of the conductor between the two insulation layers, and is parallel to the conductor. A method for manufacturing an insulated conductor, which comprises impregnating and curing a resin with an insulating spacer interposed so that it spans the entire length in the longitudinal direction and further protrudes from at least the ends of the outer insulating layer. 2. The method for manufacturing an insulated conductor according to claim 1, wherein the width of the insulating spacer is 3/5 or less of the width of the conductor. 3. The method for manufacturing an insulated conductor according to claim 1 or 2, wherein the insulating spacer uses mica tape.
JP13194883A 1983-07-21 1983-07-21 Method of producing insulated conductor Granted JPS6025108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13194883A JPS6025108A (en) 1983-07-21 1983-07-21 Method of producing insulated conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13194883A JPS6025108A (en) 1983-07-21 1983-07-21 Method of producing insulated conductor

Publications (2)

Publication Number Publication Date
JPS6025108A JPS6025108A (en) 1985-02-07
JPH0354805B2 true JPH0354805B2 (en) 1991-08-21

Family

ID=15069949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13194883A Granted JPS6025108A (en) 1983-07-21 1983-07-21 Method of producing insulated conductor

Country Status (1)

Country Link
JP (1) JPS6025108A (en)

Also Published As

Publication number Publication date
JPS6025108A (en) 1985-02-07

Similar Documents

Publication Publication Date Title
CN1020225C (en) High-voltage insulating system for electric machines
US6750400B2 (en) Graded electric field insulation system for dynamoelectric machine
US4038741A (en) Method of making electrical coils for dynamo-electric machines having band-formed insulation material
KR100897651B1 (en) High temperature superconducting racetrack coil
US6228494B1 (en) Method to reduce partial discharge in high voltage stator coil's roebel filler
JPS5937660B2 (en) Winding insulators for electrical machine coil windings
JP2007282410A (en) Rotating electric machine, stator coil thereof, its manufacturing method, and semiconductive sheet, semiconductive tape
CN101556841A (en) Membrane-packaged rectangular stranded conductor and manufacture method
JPH0354805B2 (en)
US20220270809A1 (en) Method and conductor structure for manufacturing an electric winding of an electromagnetic induction apparatus
JPH02240901A (en) Coil insulation of electric apparatus
JPH1169687A (en) Electromagnetic coil and its manufacture
JPH0193107A (en) Molded coil
JPS6158963B2 (en)
JPH0723003Y2 (en) coil
JP2604063B2 (en) Manufacturing method of coil for electromagnet
JPS642528Y2 (en)
JPS5818724B2 (en) Insulated conductor for winding
JPH0568184B2 (en)
JPS6015305Y2 (en) dry transformer winding
JPS58144563A (en) Manufacture of coil conductor
JPS59156141A (en) Manufacture of electromagnetic coil
JPS60213237A (en) Coil of rotary electric machine
JPH01147813A (en) Manufacture of superconducting coil
JPS6214565Y2 (en)