JPH0354440A - Ionizing radiation analyzing apparatus - Google Patents

Ionizing radiation analyzing apparatus

Info

Publication number
JPH0354440A
JPH0354440A JP19111589A JP19111589A JPH0354440A JP H0354440 A JPH0354440 A JP H0354440A JP 19111589 A JP19111589 A JP 19111589A JP 19111589 A JP19111589 A JP 19111589A JP H0354440 A JPH0354440 A JP H0354440A
Authority
JP
Japan
Prior art keywords
sample
radiation
rays
window
sample cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19111589A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ayukawa
鮎川 保弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP19111589A priority Critical patent/JPH0354440A/en
Publication of JPH0354440A publication Critical patent/JPH0354440A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to expand the range for analyzing elements and to improve analyzing accuracy by forming the radiation emitting windows of devices constituting an analyzing apparatus such as the irradiation window of a sample cell with thin films comprising boron nitride and the like wherein the content of impurity elements is less and toxicity is not present. CONSTITUTION:A sample cell 1 is filled with a liquid sample. An X-ray tube 10 projects X rays are emitted from the liquid sample by the irradiation of the X rays. The fluorescent rays are split with a spectroscope 20. The fluores cent X rays which are split with the spectroscope 20 are detected with a detec tor 30. This apparatus is composed of said parts. The cell 1 is provided at the halfway of a sample pickup pipe 2 which is connected to the required part of the sample pickup pipe for the liquid sample. The cell 1 is provided in a sample measuring chamber. The radiation projecting window of the cell 1, the radiation projecting window of the detector 30 are formed with thin films comprising boron nitride. Therefore, the minute concentration can be analyzed, and the analyzing range of elements can be expanded.

Description

【発明の詳細な説明】 4東上立且皿ユj 本発明は,X線などの電離放射線を使用して試料中の目
的元素を分析する電離放射線分析装置に関し、詳しくは
分析元素範囲を拡大することを可能とし、且つ試料セル
などの取扱いが安全、容易な電離放射線分析装置に関す
るものである。
[Detailed Description of the Invention] 4. The present invention relates to an ionizing radiation analyzer that analyzes target elements in a sample using ionizing radiation such as X-rays, and more specifically, to an ionizing radiation analyzer that uses ionizing radiation such as The present invention relates to an ionizing radiation analyzer that enables safe and easy handling of sample cells and the like.

藍象立韮I 例えば石油の精製プラントでC重油中のイオウ分をオン
ライン分析するのに用いられる電離放射線分析装置(例
えばX線を励起源に用いた波長分散型ケイ光X線分析装
置)は、液体試料が満たされるフロー型の試料セルと、
試料セル内に満たされた液体試料に電離放射線を照射す
る放射線源と、電離放射線の照射によって液体試料から
発射されたケイ光x!!を検出する検出器とがらなって
いる。
For example, an ionizing radiation analyzer (for example, a wavelength-dispersive fluorescent X-ray analyzer that uses X-rays as an excitation source) is used for online analysis of the sulfur content in heavy oil C at oil refinery plants. , a flow-type sample cell filled with a liquid sample;
A radiation source that irradiates a liquid sample filled in a sample cell with ionizing radiation, and fluorescence x! emitted from the liquid sample by irradiation with ionizing radiation. ! It has a detector that detects it.

試料セルは、石油清製プラントの所要箇所に接続された
C重油試料採取管の途中に介挿して設置される.C重油
からなる液体試料は、試料採取管を通って連続的に採取
し、試料セル中を満たしながら流される。
The sample cell is installed by being inserted in the middle of a heavy oil C sample collection pipe connected to the required location of the oil refining plant. A liquid sample consisting of C heavy oil is continuously collected through a sample collection tube, and flows while filling the sample cell.

放射線源としてのX線管球は、フィラメントから発射さ
れた熱電子をターゲットに加速、衝突させてX XIを
発生させる二極の真空管からなっている。発生したX線
は、X線管球の放射線発射窓を通って外部に取り出し、
試料セルに向けて発射される。
An X-ray tube as a radiation source consists of a bipolar vacuum tube that accelerates thermoelectrons emitted from a filament and collides with a target to generate X XI. The generated X-rays are taken out to the outside through the radiation emission window of the X-ray tube.
Fired towards the sample cell.

試料セルに向けて発射されたX線は、試料セルの放射線
照射窓を通って受光して、試料セル内を満たして流され
る液体試料に照射される。
The X-rays emitted toward the sample cell are received through the radiation irradiation window of the sample cell, and are irradiated onto the liquid sample flowing inside the sample cell.

試料セル内の液体試料にX線が照射されると、X線が原
子の軌道上の電子に衝突することによる電子の空または
欠乏した軌道の発生、その軌道への外側の軌道からの電
子の移動によって、ケイ光X線(特性X線)を発生して
、発射する。この発射されたケイ光X !itの強度は
、そのl夜体試料中の元素の濃度に対応する。
When a liquid sample in a sample cell is irradiated with X-rays, the X-rays collide with electrons in the orbits of atoms, creating empty or deficient orbits of electrons, and introducing electrons from outer orbits into those orbits. As it moves, it generates and emits fluorescent X-rays (characteristic X-rays). This emitted light X! The intensity of it corresponds to the concentration of the element in the night body sample.

試料セル内の液体試料から発射されたケイ光X線は、試
料セルの前記照射窓を通って外部に放射される。分光器
は、ケイ光X線の波長領域に応じて回折するのに適した
単結晶からなっており、前記の発射されたケイ光X線を
ブラッグの反射条件を満たす波長に対応する反射角度(
θ)で回折して、分光する。
Fluorescent X-rays emitted from the liquid sample within the sample cell are emitted to the outside through the irradiation window of the sample cell. The spectrometer is made of a single crystal suitable for diffraction according to the wavelength range of fluorescent X-rays, and reflects the emitted fluorescent X-rays at a reflection angle (
θ) and spectroscopy.

分光器で分光されたケイ光線は、検出器によって放射線
受光窓を通って受光され、検出される。
The fluorescent rays separated by the spectrometer are received by a detector through a radiation receiving window and detected.

検出器は、ブラッグの反射条件を満たしながら走査して
、ケイ光X線を検出する。例えばC重油中のイオウ分を
分析する場合、イオウの特性X線がブラッグ反射条件を
満足する位置に設定することにより、イオウの測定が可
能になる。
The detector scans while satisfying the Bragg reflection condition to detect fluorescent X-rays. For example, when analyzing the sulfur content in C heavy oil, sulfur can be measured by setting the position at a position where the characteristic X-ray of sulfur satisfies the Bragg reflection condition.

が  しよ と る ところで、上記従来の電離放射線分析装置では、分析装
置を構成する機器の放射線が通過する窓、即ちX線管球
の発射窓、試料セルの照射窓および検出器の受光窓には
、ベリリウム(Be)および表面酸化を施したベリリア
(Bed)の薄膜が窓材として使用されていた。これは
、ベリリウム(ペリリアを含む)がX線など電離放射線
の吸収が少なく、電離放射線の強度の点で測定精度を劣
化させないこと、ベリリウムが機械的強度が大きい等の
優れた点を持つからである。
However, in the conventional ionizing radiation analyzer mentioned above, there are no windows through which the radiation of the equipment that makes up the analyzer passes, namely the emission window of the X-ray tube, the irradiation window of the sample cell, and the light reception window of the detector. In the past, thin films of beryllium (Be) and surface-oxidized beryllium (Bed) were used as window materials. This is because beryllium (including perilia) has excellent features such as low absorption of ionizing radiation such as X-rays and no deterioration of measurement accuracy in terms of the intensity of ionizing radiation, and beryllium has high mechanical strength. be.

しかしながら、ベリリウムの純度は98〜99%程度し
か得られず、不純物元素としてFed.18%、Afl
0.16%、CO.l5%、Nip.10%、Mg0.
08%、Si0.08%、Tie.05%等が存在する
However, the purity of beryllium is only about 98-99%, and it is classified as an impurity element by Fed. 18%, Afl.
0.16%, CO. l5%, Nip. 10%, Mg0.
08%, Si0.08%, Tie. 05% etc. exist.

このため、電離放射線分析装置によって分析可能な元素
が限られ、また仮に分析可能だとしても、微量濃度の測
定は不可能であり測定精度が悪い欠点があった。またベ
リリウムは毒性を持ち、人体に悪影響があることから、
安全性に欠け、取扱いが容易でない欠点もあった。特に
試料セルの場合は,照射窓の定期的な交換を要し、その
交換を作業員が手作業で行なわねばならないので、著し
く危険であった。
For this reason, the elements that can be analyzed by the ionizing radiation analyzer are limited, and even if they can be analyzed, it is impossible to measure trace concentrations, which has the disadvantage of poor measurement accuracy. In addition, beryllium is toxic and has negative effects on the human body.
It also lacked safety and was not easy to handle. Particularly in the case of a sample cell, the irradiation window must be replaced periodically, and this must be done manually by a worker, which is extremely dangerous.

以上の問題は、液体試料をバッチで分析するバッチ型の
電離放射線分析装置の場合も基本的に同様である。取分
けバッチ型の試料セルの場合は、手作業によるセル内へ
の液体試料の挿入作業を要することから、照射窓がベリ
リウム製であると、危険性が一層増す。
The above problems are basically the same in the case of batch-type ionizing radiation analyzers that analyze liquid samples in batches. In the case of a batch-type sample cell, it is necessary to manually insert the liquid sample into the cell, so if the irradiation window is made of beryllium, the risk increases further.

従って、本発明の目的は、上述の現状に鑑み、試料セル
の放射線照射窓など分析装置を構成する機器の放射線通
過窓を、不純物元素の含有量が少なく且つ毒性がない窓
材で形成することによって、分析元素範囲を拡大するこ
とを可能とし、且つ取扱いが安全、容易な電離放射線分
析装置を提供することである。
Therefore, in view of the above-mentioned current situation, it is an object of the present invention to form a radiation passing window of a device constituting an analysis device, such as a radiation irradiation window of a sample cell, with a window material that has a low content of impurity elements and is non-toxic. Therefore, it is an object of the present invention to provide an ionizing radiation analyzer that can expand the range of elements to be analyzed and is safe and easy to handle.

; を ゛ るための 上記目的は本発明の電離放射線分析装置にて達成される
。要約すれば本発明は、測定試料を保持する試料セルと
、前記試料セル内に保持された測定試料に電離放射線を
照射する放射線源と、前記電離放射線の照射によって前
記測定試料から発射されたケイ光XI!を検出する検出
器とからなる電離放射線分析装置において、前記試料セ
ルの放射線照射窓、前記放射線源の放射線発射窓または
前記検出器の放射線受光窓のいずれか一つ以上の窓を、
ホウ素化合物の薄膜で形成したことを特徴とする電離放
射線分析装置である。前記ホウ素化合物には窒化ホウ素
、炭化ホウ素、ホウ素が挙げられ、本発明の一態様によ
れば、前記ホウ素化合物が窒化ホウ素または炭化ホウ素
とされる。
The above-mentioned object of the present invention is achieved by the ionizing radiation analyzer of the present invention. In summary, the present invention includes a sample cell that holds a measurement sample, a radiation source that irradiates the measurement sample held in the sample cell with ionizing radiation, and a radiation source that emits radiation from the measurement sample by irradiating the ionizing radiation. Light XI! In an ionizing radiation analyzer comprising a detector for detecting the
This is an ionizing radiation analysis device characterized by being formed of a thin film of a boron compound. Examples of the boron compound include boron nitride, boron carbide, and boron. According to one aspect of the present invention, the boron compound is boron nitride or boron carbide.

以下、本発明について詳述する。The present invention will be explained in detail below.

本発明者は、上述した観点から、試料セルの放射線照射
窓など分析装置を構或する機器の放射線通過窓を、不純
物元素の含有量が少なく且つ毒性がない窓材で形成する
ことによって、分析元素範囲を拡大することを可能とし
、且つ取扱いが安全、容易な電離放射線分析装置を得る
べく鋭意研究を重ねた。その結果、次のことを見い出し
た。
From the above-mentioned viewpoint, the present inventor has made it possible to improve analysis efficiency by forming the radiation passing window of the equipment that constitutes the analysis device, such as the radiation irradiation window of the sample cell, with a non-toxic window material with a low content of impurity elements. We have conducted extensive research in order to develop an ionizing radiation analyzer that is safe and easy to handle, and which makes it possible to expand the range of elements. As a result, we found the following.

即ち、窒化ホウ素、炭化ホウ素等のホウ素化合物は、セ
ラミック材料で毒性がなく機械的強度、耐熱性に優れる
ものの、従来、X線を初めとする放射線の透過性は悪い
と見られていたが、本発明者が調べたところによると、
これら窒化ホウ素、炭化ホウ素等の薄膜は放射線の透過
性がかなりあり、500μm以下のある程度薄い薄膜に
して試料セルの放射線照射窓などに使用すれば、電離放
射線の減衰を小さくでき、測定精度を十分に維持できる
。これら窒化ホウ素、炭化ホウ素等の薄膜の厚みは、1
0〜500μm、好しくは10〜300μm、より好し
くは10〜200μmとされるが、使用箇所の圧力、測
定元素、温度等の条件によって適宜選択すればよい。ま
たこれら窒化ホウ素や炭化ホウ素等の純度は、例えば9
9.9%以上の高純度が容易に得られ不純物元素が少な
いので、試料セルの放射線照射窓などに使用しても不純
物元素の影響がほとんどない。そのため微量分析ができ
又分析可能な元素が拡大する。更に毒性がなく、取扱い
に容易な電離放射線分析装置を得ることができる。
In other words, boron compounds such as boron nitride and boron carbide are ceramic materials that are non-toxic and have excellent mechanical strength and heat resistance, but were conventionally considered to have poor transparency to radiation including X-rays. According to research conducted by the inventor,
These thin films of boron nitride, boron carbide, etc. are highly transparent to radiation, and if they are made into a somewhat thin film of 500 μm or less and used for the radiation irradiation window of the sample cell, the attenuation of ionizing radiation can be reduced and the measurement accuracy can be sufficiently increased. can be maintained. The thickness of these thin films of boron nitride, boron carbide, etc. is 1
The thickness is 0 to 500 μm, preferably 10 to 300 μm, more preferably 10 to 200 μm, and may be appropriately selected depending on the conditions such as the pressure at the location of use, the element to be measured, and the temperature. In addition, the purity of these boron nitrides, boron carbides, etc. is, for example, 9
Since a high purity of 9.9% or more is easily obtained and there are few impurity elements, there is almost no effect of impurity elements even when used in a radiation irradiation window of a sample cell. Therefore, trace analysis is possible and the range of elements that can be analyzed is expanded. Furthermore, an ionizing radiation analyzer that is non-toxic and easy to handle can be obtained.

本発明は、上記知見に基ずき得られたものである。The present invention has been achieved based on the above findings.

第1図に、本発明の電離放射線分析装置の一実施例を模
式的に示す構成図を掲げる。本電離放射線分析装置は、
例えば石油精製プラントのC重油中のイオウ分をオンラ
インで分析するのに使用される。本分析装置は波長分散
型ケイ光X線分析装置である。
FIG. 1 is a block diagram schematically showing an embodiment of the ionizing radiation analyzer of the present invention. This ionizing radiation analyzer is
For example, it is used for online analysis of sulfur content in C heavy oil in petroleum refinery plants. This analyzer is a wavelength dispersive fluorescent X-ray analyzer.

第l図において、lはフロー型の試料セルで、本発明の
電離放射線分析装置は、従来と同様、液体試料が満たさ
れるフロー型の試料セルlと、試料セルl内に満たされ
た液体試料に電離放射線としてのX線を照射するX線管
球10と、X線の照射によって液体試料から発射された
ケイ光X線を分光する分光器20と、分光器20によっ
て分光されたケイ光X線を検出する検出器30とからな
っている。
In FIG. 1, l is a flow-type sample cell, and the ionizing radiation analyzer of the present invention has a flow-type sample cell l filled with a liquid sample, and a liquid sample filled in the sample cell l, as in the conventional case. an X-ray tube 10 that irradiates X-rays as ionizing radiation; a spectrometer 20 that spectrally spectra fluorescent X-rays emitted from a liquid sample by irradiation with X-rays; It consists of a detector 30 that detects the line.

試料セルlは、目的とする液体試料の試料採取管、例え
ば石油精製プラントの所要箇所に接続されたC重油試料
採取管2の途中に介挿して、図示しない試料測定室内に
設置されている。
The sample cell 1 is installed in a sample measurement chamber (not shown) by being inserted in the middle of a sample collection tube for a target liquid sample, for example, a C heavy oil sample collection tube 2 connected to a required location in an oil refinery plant.

試料セル1は、第2図に示すように、一方の側に円形の
開口部3を有する環状の容器からなっており、開口部3
には放射線照射窓4が設けられている。試料セル1の開
口部3と反対側の内面は、試料セルlの窓4内部に異物
を付着させないために、開口部3方向へ膨出されている
。照射窓4は、開口部3のフランジ部5、5間に挿入し
てボルト6で固定することにより、開口部3に装着され
ている。
As shown in FIG. 2, the sample cell 1 consists of an annular container with a circular opening 3 on one side.
is provided with a radiation exposure window 4. The inner surface of the sample cell 1 opposite to the opening 3 is bulged toward the opening 3 in order to prevent foreign matter from adhering to the inside of the window 4 of the sample cell 1. The irradiation window 4 is attached to the opening 3 by being inserted between the flanges 5 of the opening 3 and fixed with bolts 6.

本発明に従えば、上記放射線胆射窓4は、純度99、9
%以上の窒化ホウ素の薄膜からなっており、本実施例で
は、純度99.999%の窒化ホウ素の薄膜とされてい
る。この窒化ホウ素の薄膜の純度が99.9%未満では
、不純物元素が多すぎてその影響が大きいために、微量
分析することができず又分析可能な元素範囲を拡大する
ことができない。
According to the present invention, the radiobiliary window 4 has a purity of 99.9.
% or more, and in this example, it is a thin film of boron nitride with a purity of 99.999%. If the purity of the boron nitride thin film is less than 99.9%, there are too many impurity elements and their influence is large, making it impossible to perform trace analysis or to expand the range of elements that can be analyzed.

このような高純度の窒化ホウ素の薄膜を得るには、例え
ば三塩化ホウ素とアンモニアを月いたCVD法(化学的
気相成長法)を用いればよく、これによれば99.99
9%以上の高純度の薄膜が容易に得られる。薄収の厚み
は研摩によって調整される。
In order to obtain such a thin film of high purity boron nitride, for example, the CVD method (chemical vapor deposition method) using boron trichloride and ammonia can be used;
A thin film with high purity of 9% or more can be easily obtained. The thickness of the thin layer is adjusted by polishing.

照射窓4の厚みは、500μm以下とされる。The thickness of the irradiation window 4 is 500 μm or less.

照射窓4の厚みが500μmを超えると、厚みによる放
射線の減衰が無視し得なくなり、放射線の強度の点で測
定精度の低下を招くようになる。逆に照射窓4の厚みが
薄すぎると、プラント等からオンラインで採取した圧力
がかかった液体試料によって照射窓4が破壊し易くなる
。液体試料力SC重油の場合、通常2〜10kg/ct
rl程度の圧力が加えられているので、その場合は照射
窓4の厚みは100μm程度あればよい。照射窓4の大
きさは、通常、直径30mmφ程度とされる。
When the thickness of the irradiation window 4 exceeds 500 μm, the attenuation of radiation due to the thickness cannot be ignored, leading to a decrease in measurement accuracy in terms of radiation intensity. On the other hand, if the thickness of the irradiation window 4 is too thin, the irradiation window 4 will be easily destroyed by a liquid sample collected online from a plant or the like and subjected to pressure. Liquid sample force In case of SC heavy oil, usually 2 to 10 kg/ct
Since a pressure of about rl is applied, in that case, the thickness of the irradiation window 4 only needs to be about 100 μm. The size of the irradiation window 4 is usually about 30 mmφ in diameter.

C重油からなる液体試料は、試料採取管を通って連続的
に採取し、試料セル1中を満たしながら流される。
A liquid sample consisting of C heavy oil is continuously collected through a sample collection tube and flows while filling the sample cell 1.

X線管球10は、試料セル1の放射線照射窓4側に設置
され、その先端を斜め上方から図示しない照射室内に望
ませて、試料セル1の放射線照射窓4に向けている。
The X-ray tube 10 is installed on the side of the radiation irradiation window 4 of the sample cell 1, and its tip is directed toward the radiation irradiation window 4 of the sample cell 1, with its tip facing diagonally upward into an irradiation chamber (not shown).

X線管球10は、第3図に示すように、管球11内に熱
電子を発生させる陰極としてのフィラメント12と、発
生した熱電子を加電圧で加速して衝突させることにより
X線を発生する陽極としてのターゲット13とを設けた
二極の真空管からなっている。発生したX線を外部に取
り出す放射線発射窓14が、縦型の管球では図に示すよ
うに管球lOの先端面に設けらている。
As shown in FIG. 3, the X-ray tube 10 generates X-rays by accelerating the generated thermoelectrons with an applied voltage and colliding with a filament 12 as a cathode that generates thermoelectrons in the tube 11. It consists of a bipolar vacuum tube provided with a target 13 as a generating anode. In the case of a vertical tube, a radiation emitting window 14 for taking out generated X-rays to the outside is provided on the distal end surface of the tube 1O, as shown in the figure.

本発明に従えば、上記放射線発射窓14は、試料セル1
の放射線照射窓4のときと同様、純度99.9%以上、
本実施例では99.999%の高純度の窒化ホウ素の薄
膜からなっている。この窒化ホウ素の薄膜からなる発射
窓14の厚みは、X線管球10の真空に耐えればよく、
例えば100〜200μm程度とされる. X線管球10で発生したX線は、発射窓14を通って試
料セルlに向けて発射され、試料セル1の放射線照射窓
4を通って受光して、試料セルl内を満たして流される
液体試料に照射される。
According to the invention, the radiation emitting window 14 is provided in the sample cell 1.
As with the radiation irradiation window 4, the purity is 99.9% or more,
In this embodiment, it is made of a thin film of boron nitride with a high purity of 99.999%. The thickness of the emission window 14 made of this thin film of boron nitride is sufficient as long as it can withstand the vacuum of the X-ray tube 10.
For example, it is about 100 to 200 μm. X-rays generated in the X-ray tube 10 are emitted toward the sample cell l through the emission window 14, are received through the radiation irradiation window 4 of the sample cell 1, and are caused to flow, filling the sample cell l. The liquid sample is irradiated.

試料セル1内の液体試料は、X IIが照射されると、
元素がケイ光X線(特性X線)を発生して、発射する.
発射されたケイ光X線は、試料セル1の照射窓4を通っ
て外部に放射され、図示しないスリット等で分光器20
に導かれる。
When the liquid sample in the sample cell 1 is irradiated with X II,
The element generates and emits fluorescent X-rays (characteristic X-rays).
The emitted fluorescent X-rays are emitted to the outside through the irradiation window 4 of the sample cell 1, and are passed through the spectrometer 20 through a slit (not shown) or the like.
guided by.

分光器20は、ケイ光X線の波長に応じてブラッグ回折
するのに適した単結晶からなっており、図示しない分光
室内に複数個設置されてレ)る。分光器20は、前記の
導かれたケイ光X IIをブラッグの反射条件を満たす
波長に対応する反射角度(θ)で回折して、分光する。
The spectrometers 20 are made of a single crystal suitable for Bragg diffraction depending on the wavelength of fluorescent X-rays, and a plurality of them are installed in a spectroscopy chamber (not shown). The spectrometer 20 diffracts the guided fluorescence X II at a reflection angle (θ) corresponding to a wavelength that satisfies Bragg's reflection condition and spectrally spectra it.

分光器20で分光されたケイ光X線は、図示しないスリ
ットで分光室外の検出器30に導かれる。
Fluorescent X-rays separated by the spectroscope 20 are guided to a detector 30 outside the spectroscopic chamber through a slit (not shown).

検出器30は、ガス封入型の検出器で、第3図に示すよ
うに、Xe等の希ガスを封入した容器31内に、外部の
検出回路(図示せず)に接続された白金芯線32を張り
渡してなっている。検出器30の分光器20に向けた面
には、分光器20で分光されたケイ光X線を受光する放
射線受光窓33が設けられている。検出器30は、図示
しない回転装置によってブラッグの反射角度を満たしな
がら受光走査し、受光したケイ光X線による稀ガスのイ
オン化作用を利用して、白金芯線32を流れる電流を検
出回路で検出することにより、ケイ光X線を検出する。
The detector 30 is a gas-filled type detector, and as shown in FIG. 3, a platinum core wire 32 connected to an external detection circuit (not shown) is placed inside a container 31 filled with a rare gas such as Xe. It is stretched out. A radiation receiving window 33 for receiving fluorescent X-rays separated by the spectroscope 20 is provided on the surface of the detector 30 facing the spectrometer 20 . The detector 30 receives and scans the light while satisfying the Bragg reflection angle using a rotating device (not shown), and detects the current flowing through the platinum core wire 32 using a detection circuit using the ionization effect of the rare gas caused by the received fluorescent X-rays. By this, fluorescent X-rays are detected.

本発明に従えば、上記放射線受光窓33は、試料セルl
の放射線照射窓4等のときと同様、純度99.9%以上
、本実施例では99.999%の高純度の窒化ホウ素の
薄膜からなっている。この窒化ホウ素の薄膜からな受光
窓43の厚みは、検出器30の低圧に耐えれば良く、1
0〜20μm程度あれば良い. 本発明の電離放射線分析装置は、以上のように構成され
る。これによれば、試料セ・ルlの放射線照射窓4、x
I!!管球10の放射線照射窓l4および検出器30の
放射線受光窓33を、窒化ホウ素の薄膜で形成すること
によって、不純物元素の含有量が少ないものにしている
ので、微量濃度の分析ができ且つ分析元素範囲を拡大す
ることができる.また窒化ホウ素は毒性がなく、これら
試料セル1やX線管球10、検出器30が安全で且つ取
扱いが容易になる.特に試料セル1の場合は、放射線照
射窓4の定期的な交換を要し、その交換を作業員が手作
業で行なわねばならないので、従来は著しく危険であっ
たが、本発明によれば、危険性なく照射窓4の交換作業
を行なうことができる。
According to the present invention, the radiation receiving window 33 is provided in the sample cell l.
As with the radiation irradiation window 4 and the like, it is made of a thin film of boron nitride with a purity of 99.9% or more, in this embodiment 99.999%. The thickness of the light receiving window 43 made of a thin film of boron nitride is sufficient as long as it can withstand the low pressure of the detector 30.
Approximately 0 to 20 μm is sufficient. The ionizing radiation analyzer of the present invention is configured as described above. According to this, the radiation irradiation window 4, x of the sample cell l
I! ! By forming the radiation emitting window l4 of the tube 10 and the radiation receiving window 33 of the detector 30 with a thin film of boron nitride, the content of impurity elements is reduced, making it possible to analyze trace concentrations. The range of elements can be expanded. Further, boron nitride is non-toxic, making the sample cell 1, the X-ray tube 10, and the detector 30 safe and easy to handle. Particularly in the case of the sample cell 1, the radiation irradiation window 4 needs to be replaced periodically, and this has to be done manually by a worker, which was extremely dangerous in the past, but according to the present invention, The irradiation window 4 can be replaced without any danger.

以上の実施例では、電離放射線分析装置の試料セルlの
照射窓4、X線管球10の発射窓14および検出器30
の受光窓33を全てを窒化ホウ素の薄膜で形成したが、
必ずしもこれに限られず,安全性の必要度の高いもの、
例えば試料セル1の照射窓4だけであっても良い。また
窒化ホウ素の薄膜に代えて炭化ホウ素の薄膜で形成する
こともでき、同様な効果が得られる。更にホウ素を用い
ることも可能である。また電離放射線源としてはX線管
球10を例に採って説明したが、RIなと他の放射線源
を用いることもできる。検出器についてら、検出器30
のような比例計数管のみならず、シンチレーションカウ
ンターや半導体検出器等の検出器も用いることができる
。更にまた試料セル1にフロー型のセルを用いたオンラ
イン式の電離放射線分析装置を示したが、本発明はこれ
に限定されず、バッチ型のセルを用いたバッチ式の電離
放射線分析装置にも等しく適用できる。
In the above embodiment, the irradiation window 4 of the sample cell l of the ionizing radiation analyzer, the emission window 14 of the X-ray tube 10, and the detector 30
The light receiving window 33 was entirely formed of a thin film of boron nitride, but
This is not necessarily limited to items with a high degree of safety requirement,
For example, only the irradiation window 4 of the sample cell 1 may be used. Further, a thin film of boron carbide can be used instead of a thin film of boron nitride, and the same effect can be obtained. Furthermore, it is also possible to use boron. Further, although the X-ray tube 10 has been described as an example of the ionizing radiation source, other radiation sources such as RI can also be used. About the detector, detector 30
Detectors such as scintillation counters and semiconductor detectors as well as proportional counters can be used. Furthermore, although an online type ionizing radiation analyzer using a flow type cell as the sample cell 1 has been shown, the present invention is not limited thereto, and can also be applied to a batch type ionizing radiation analyzer using a batch type cell. Equally applicable.

実」L例 本発明の実施例について説明する。Fruit”L example Examples of the present invention will be described.

本発明の電離放射線分析装置および従来の電離放射線分
析装置を用いて、バッチで重質軽油留分中に含まれるニ
ケッル(Ni)およびバナジウム(V)の分析を行なっ
た。
Using the ionizing radiation analyzer of the present invention and the conventional ionizing radiation analyzer, nickel (Ni) and vanadium (V) contained in a heavy gas oil fraction were analyzed in batches.

本発明の分析装置は、試料セルの放射線照射窓にのみ窒
化ホウ素の薄膜を用い、その窒化ホウ素の薄膜は純度9
9.999%の高純度で、厚み200μm、照射面積(
試料セルの開口部面積)30mmφであった。従来の分
析装置の試料セルの放射線照射窓に用いたべリリウムの
薄膜は厚み150μmで、照射面積は同様30mmφの
6のを使用した。
The analyzer of the present invention uses a boron nitride thin film only in the radiation irradiation window of the sample cell, and the boron nitride thin film has a purity of 9.
High purity of 9.999%, thickness 200μm, irradiation area (
The opening area of the sample cell was 30 mmφ. The beryllium thin film used for the radiation irradiation window of the sample cell of the conventional analyzer had a thickness of 150 μm, and the irradiation area was similarly 30 mmφ.

その他は、本発明、従来共に同じで、X線管球の放射線
発射窓は厚み120μmのべリリウムで、ターゲットは
ロジウムを用い、X線の発生電圧は50kV、発生電流
は50mAであった。分光結晶はLiF (200)を
用い、X線通路は空気雰囲気とした.また検出器はXe
ガスフロー型の検出器で、そのケイ光X !!受光窓に
は厚み1μmのボリブロビレンを用いた。
Other aspects were the same for both the present invention and the conventional X-ray tube: the radiation emitting window of the X-ray tube was made of beryllium with a thickness of 120 μm, the target was rhodium, the X-ray generation voltage was 50 kV, and the generated current was 50 mA. The spectroscopic crystal used was LiF (200), and the X-ray path was in an air atmosphere. Also, the detector is Xe
With a gas flow type detector, that fluorescent X! ! Polypropylene with a thickness of 1 μm was used for the light receiving window.

測定結果を第1表に示す。The measurement results are shown in Table 1.

第1表において、変動係数(CV%)=標準偏差/平均
値xlOOで、変動係数(CV%)が小さいもの程、分
析精度が高精度で良好であることを示す。第1表中、高
濃度試料の化学分析値は、Ni : 15ppm.V:
56ppm、低濃度試料の化学分析値は、Ni:3.l
ppm、■二8.5ppmであった。
In Table 1, the coefficient of variation (CV%)=standard deviation/average value xlOO, and the smaller the coefficient of variation (CV%), the higher the accuracy of the analysis. In Table 1, the chemical analysis value of the high concentration sample is Ni: 15 ppm. V:
The chemical analysis value of the 56 ppm low concentration sample was Ni: 3. l
ppm, ■2 8.5 ppm.

第1表 (単位 p  pm) 第1表に示されるように、試料セルの放射線照射窓にベ
リリウムを用いた場合に比べ、窒化ホウ素を用いた方が
変動係数(CV%)が小さな値を示しており、本発明に
従った分析装置によれば、高精度の分析が可能であるこ
とが判る。また化学分析値と測定値との差異も窒化ホウ
素を用いた方が少ないことから、本発明に従った分析装
置によれば、信頼性の高い測定結果が得られる。
Table 1 (unit: p pm) As shown in Table 1, the coefficient of variation (CV%) is smaller when boron nitride is used than when beryllium is used for the radiation irradiation window of the sample cell. It can be seen that highly accurate analysis is possible with the analyzer according to the present invention. Further, since the difference between chemical analysis values and measured values is smaller when boron nitride is used, highly reliable measurement results can be obtained with the analyzer according to the present invention.

4艶夏匁1 以上説明したように、本発明の電離放射線分析装置では
、試料セルの照射窓など分析装置を構成する機器の放射
線通過窓を、不純物元素の含有量が少なく且つ毒性がな
い窒化ホウ素、炭化ホウ素またはホウ素の薄膜で形成し
たので、分析精度が向上し、分析元素範囲が拡大すると
共に、試料セルなどの取扱いが安全、容易になる。
4. As explained above, in the ionizing radiation analyzer of the present invention, the radiation passing window of the equipment constituting the analyzer, such as the irradiation window of the sample cell, is made of nitrided material that has a low content of impurity elements and is non-toxic. Since it is formed from a thin film of boron, boron carbide, or boron, the analysis precision is improved, the range of elements to be analyzed is expanded, and handling of the sample cell etc. becomes safe and easy.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は、本発明の電離放射線分析装置の一実施例を模
式的に示す構成図である。 第2図は、第1図の分析装置の試料セルを示す断面図で
ある。 第3図は、同じ<Xi!管球を示す断面図である。 第4図は、同じく検出器を示す断面図である。 l 2 3 1 0 1 4 20 3 0 33 :試料セル :液体試料採取管 :照射窓 :X線管球 :発射窓 二分光器 :検出器 :受光窓
FIG. 1 is a block diagram schematically showing an embodiment of the ionizing radiation analyzer of the present invention. FIG. 2 is a sectional view showing a sample cell of the analyzer of FIG. 1. Figure 3 shows the same <Xi! It is a sectional view showing a tube. FIG. 4 is a cross-sectional view of the detector. l 2 3 1 0 1 4 20 3 0 33 : Sample cell: Liquid sample collection tube: Irradiation window: X-ray tube: Emission window 2 Spectrometer: Detector: Light receiving window

Claims (1)

【特許請求の範囲】 1)測定試料を保持する試料セルと、前記試料セル内に
保持された測定試料に電離放射線を照射する放射線源と
、前記電離放射線の照射によって前記測定試料から発射
されたケイ光X線を検出する検出器とからなる電離放射
線分析装置において、前記試料セルの放射線照射窓、前
記放射線源の放射線発射窓または前記検出器のケイ光X
線受光窓のいずれか一つ以上の窓を、ホウ素化合物の薄
膜で形成したことを特徴とする電離放射線分析装置。 2)前記ホウ素化合物が窒化ホウ素または炭化ホウ素か
らなる請求項1記載の電離放射線分析装置。
[Claims] 1) a sample cell that holds a measurement sample; a radiation source that irradiates the measurement sample held in the sample cell with ionizing radiation; and a radiation source that irradiates the measurement sample with the ionizing radiation. An ionizing radiation analyzer comprising: a radiation irradiation window of the sample cell, a radiation emission window of the radiation source, or a fluorescence X-ray detector of the detector;
An ionizing radiation analyzer characterized in that at least one of the line-receiving windows is formed of a thin film of a boron compound. 2) The ionizing radiation analyzer according to claim 1, wherein the boron compound comprises boron nitride or boron carbide.
JP19111589A 1989-07-24 1989-07-24 Ionizing radiation analyzing apparatus Pending JPH0354440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19111589A JPH0354440A (en) 1989-07-24 1989-07-24 Ionizing radiation analyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19111589A JPH0354440A (en) 1989-07-24 1989-07-24 Ionizing radiation analyzing apparatus

Publications (1)

Publication Number Publication Date
JPH0354440A true JPH0354440A (en) 1991-03-08

Family

ID=16269116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19111589A Pending JPH0354440A (en) 1989-07-24 1989-07-24 Ionizing radiation analyzing apparatus

Country Status (1)

Country Link
JP (1) JPH0354440A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162506A (en) * 2004-12-09 2006-06-22 Hokkaido Univ X-ray transmitting window, x-ray absorption fine structure measuring cell, and reaction system
JP2014527635A (en) * 2011-08-15 2014-10-16 エックス−レイ オプティカル システムズ インコーポレーテッド Sample viscosity / flow rate control for heavy samples and its X-ray analysis application

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162506A (en) * 2004-12-09 2006-06-22 Hokkaido Univ X-ray transmitting window, x-ray absorption fine structure measuring cell, and reaction system
JP4587290B2 (en) * 2004-12-09 2010-11-24 国立大学法人北海道大学 X-ray transmission window, X-ray absorption fine structure measurement cell and reaction system
JP2014527635A (en) * 2011-08-15 2014-10-16 エックス−レイ オプティカル システムズ インコーポレーテッド Sample viscosity / flow rate control for heavy samples and its X-ray analysis application
US9435757B2 (en) 2011-08-15 2016-09-06 X-Ray Optical Systems, Inc. Sample viscosity and flow control for heavy samples, and X-ray analysis applications thereof

Similar Documents

Publication Publication Date Title
Egerton Formulae for light-element micro analysis by electron energy-loss spectrometry
JPH09170988A (en) Device for solution analysis by fluorescent x-ray
US4697080A (en) Analysis with electron microscope of multielement samples using pure element standards
Wobrauschek et al. X-ray fluorescence analysis in the ng region using total reflection of the primary beam
Marshall et al. Electron-probe X-ray microanalysis of thin films
Imhof et al. Measured lifetimes of the C 3 Π u state of N2 and the a 3 Σ g+ state of H2
Mandelstam et al. On the sensitivity of emission spectrochemical analysis
Potts et al. Energy-dispersive X-ray fluorescence analysis of silicate rocks: comparisons with wavelength-dispersive performance
Olivier et al. The use of the nuclear microprobe for the examination of nitrogen distributions in metal samples
JPH0354440A (en) Ionizing radiation analyzing apparatus
Corallo et al. The X-ray calibration of silicon pin diodes between 1.5 and 17.4 keV
US3370167A (en) Proton-excited soft x-ray analyzer having a rotatable target for selectively directing the x-rays to different detectors
EP0766083A2 (en) X-ray fluorescence inspection apparatus and method
Lincoln et al. Quantitative determination of platinum in alumina base reforming catalyst by X-ray spectroscopy
Chaudhri et al. A simple method for elimination of charging, and for current integration in PIXE analysis of thick insulating samples
Hardy et al. Time of flight analysis of metastable products from a gas discharge
US3126479A (en) X-ray analyzer system with ionization
US3398582A (en) Method for measurement of vacuum pressure
Sullivan et al. Determination of Tetraethyllead in Gasoline by X-Ray Absorption
Stone et al. Electron‐impact excitation of nitric oxide
Clark et al. Radiative Lifetimes of Some 3 p and 3 p′ Levels of O ii
Kasztovszky et al. Investigation of impurities in thermoluminescent Al 2 O 3 materials by prompt-gamma activation analysis
Kosuch et al. A spectrometer for the investigation of ultra-soft X-ray emission spectra excited with synchrotron radiation
Mahrok et al. Proton induced X-ray fluorescence analysis and its application to the measurement of trace elements in hair
Gladney et al. Determination of silicon in National Institute of Standards and Technology biological standard reference materials by instrumental epithermal neutron activation and x-ray fluorescence spectrometry