JPH0354432B2 - - Google Patents
Info
- Publication number
- JPH0354432B2 JPH0354432B2 JP4507883A JP4507883A JPH0354432B2 JP H0354432 B2 JPH0354432 B2 JP H0354432B2 JP 4507883 A JP4507883 A JP 4507883A JP 4507883 A JP4507883 A JP 4507883A JP H0354432 B2 JPH0354432 B2 JP H0354432B2
- Authority
- JP
- Japan
- Prior art keywords
- unit cell
- layer
- electrode layer
- negative electrode
- reinforcing body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003792 electrolyte Substances 0.000 claims description 20
- 230000003014 reinforcing effect Effects 0.000 claims description 14
- 239000000843 powder Substances 0.000 claims description 7
- 239000002994 raw material Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 229910001369 Brass Inorganic materials 0.000 claims description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- 239000010951 brass Substances 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims 1
- 229910052721 tungsten Inorganic materials 0.000 claims 1
- 239000010937 tungsten Substances 0.000 claims 1
- 230000002787 reinforcement Effects 0.000 description 6
- 238000000465 moulding Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- ZVLDJSZFKQJMKD-UHFFFAOYSA-N [Li].[Si] Chemical compound [Li].[Si] ZVLDJSZFKQJMKD-UHFFFAOYSA-N 0.000 description 2
- NFMAZVUSKIJEIH-UHFFFAOYSA-N bis(sulfanylidene)iron Chemical compound S=[Fe]=S NFMAZVUSKIJEIH-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910000339 iron disulfide Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/30—Deferred-action cells
- H01M6/36—Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Primary Cells (AREA)
Description
【発明の詳細な説明】
本発明は溶融塩を電解質とする熱電池の改良に
関するもので、薄型の素電池を用いた熱電池の製
造を可能にするものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a thermal battery using a molten salt as an electrolyte, and makes it possible to manufacture a thermal battery using a thin unit cell.
熱電池は、常温においてはその電解質が非導電
性の固体であるために自己放電がほとんどない
が、使用時に内蔵の発熱剤に点火して熱電池内部
を高温に加熱することにより、電解質が溶融して
極めて高い導電性を示すようになり、大電流の放
電が可能となる。このため熱電池は長時間の保存
が可能であり、信頼性の高い緊急用高出力電源と
して優れた特徴を有している。 Since the electrolyte in a thermal battery is a non-conductive solid at room temperature, there is almost no self-discharge, but when used, the internal heating agent is ignited to heat the inside of the thermal battery to a high temperature, causing the electrolyte to melt. As a result, it exhibits extremely high conductivity, making it possible to discharge large currents. For this reason, thermal batteries can be stored for a long time and have excellent characteristics as highly reliable, high-output power sources for emergency use.
一般に熱電池は高電圧を得るために複数個の素
電池を積層して使用している。素電池は負極層と
電解質層と正極層との三層より構成されている
が、各構成層は極めて脆弱で取扱が困難であり、
厚さ1mm以下のような薄型の素電池を作ることが
できなかつた。特に負極にリチウム−アルミニウ
ム合金やリチウム−シリコン合金のようなリチウ
ム合金を用い、正極に硫化鉄や二硫化鉄などの硫
化物を用いた電池は高エネルギー密度が期待され
るが、成形された素電池が脆いために薄型化が困
難であり、その特徴を充分発揮することができな
かつた。 Generally, thermal batteries are used by stacking multiple unit cells in order to obtain high voltage. A unit cell is composed of three layers: a negative electrode layer, an electrolyte layer, and a positive electrode layer, but each of the constituent layers is extremely fragile and difficult to handle.
It was not possible to make thin unit cells with a thickness of less than 1 mm. In particular, batteries that use lithium alloys such as lithium-aluminum alloys or lithium-silicon alloys for the negative electrode and sulfides such as iron sulfide or iron disulfide for the positive electrode are expected to have high energy density. Because the battery is fragile, it is difficult to make it thinner, and its characteristics cannot be fully demonstrated.
本発明はこのような欠点を改良するものであ
り、負極原料粉末と電解質原料粉末と正極原料粉
末とを三層一体に加圧成型して構成される電池に
おいて、負極層と電解質層との間に電極補強体を
備えることを特徴とするものである。 The present invention aims to improve such drawbacks, and in a battery configured by pressure-molding a negative electrode raw material powder, an electrolyte raw material powder, and a positive electrode raw material powder into a three-layer integral body, there is a gap between the negative electrode layer and the electrolyte layer. It is characterized in that it is equipped with an electrode reinforcement body.
従来、熱電池の素電池は負極層と電解質層と正
極層との三層に別々に成形して組み合わせるか、
正極層と電解質層とを一体化したものと、別に作
成した負極とを組み合わせて構成されている。し
たがつて各構成層を1mm以下の厚みに成形して
も、素電池の厚さは1mm以上となつてしまつた。
本発明は負極と電解質層と正極層との三層を一体
に成形することにより、成形された素電池の厚さ
を薄くし、さらに負極層と電解質層との間に電極
補強体を備えることにより素電池の機械的強度を
上げ、電池組立時の取り扱いを容易にしたもので
ある。 Conventionally, a unit cell for a thermal battery is made up of three layers: a negative electrode layer, an electrolyte layer, and a positive electrode layer, which are formed separately and assembled together.
It is constructed by combining an integrated positive electrode layer and an electrolyte layer with a separately prepared negative electrode. Therefore, even if each constituent layer is molded to a thickness of 1 mm or less, the thickness of the unit cell is 1 mm or more.
The present invention reduces the thickness of the molded unit cell by integrally molding the three layers of the negative electrode, electrolyte layer, and positive electrode layer, and further provides an electrode reinforcement between the negative electrode layer and the electrolyte layer. This increases the mechanical strength of the unit cell and makes it easier to handle when assembling the battery.
以下その実施例について説明する。 Examples thereof will be described below.
第1図は本発明に使用した素電池の断面図であ
る。図において1は負極層、2は電解質層、3は
正極層であり、4は電極補強体である。電極補強
体4は負極層1と電解質層2との間に介在させね
ばならない。電極補強の目的のためには、補強体
の位置は負極側あるいは正極側の表面でも良い
が、電極補強体が負極側あるいは正極側の表面に
存在すると加圧により一体に成形された素電池に
反りを生じるという欠点が認められた。これは加
圧工程における補強体と素電池構成体との形状変
化に差があり、機械的ひずみを生ずるためと思わ
れる。反りを生じた素電池は積層化が困難てあ
り、組立時に割れて電池短絡の原因となつたりし
た。この欠点は電極補強体を負極層1と電解質層
2との間に介在させ、素電池内に埋設した構成と
することにより改善することができた。素電池内
部に電極補強体を埋設することにより機械的なひ
ずみは素電池内で吸収されほとんど反りを生じな
くなつた。 FIG. 1 is a sectional view of a unit cell used in the present invention. In the figure, 1 is a negative electrode layer, 2 is an electrolyte layer, 3 is a positive electrode layer, and 4 is an electrode reinforcing body. The electrode reinforcement 4 must be interposed between the negative electrode layer 1 and the electrolyte layer 2. For the purpose of reinforcing the electrode, the reinforcing body may be placed on the surface of the negative or positive electrode side, but if the reinforcing body is located on the surface of the negative or positive electrode side, it may cause damage to the unit cell formed by pressure. The drawback of warping was recognized. This seems to be because there is a difference in shape change between the reinforcing body and the unit cell structure during the pressurization process, which causes mechanical strain. Warped unit cells were difficult to stack, and could crack during assembly, causing short circuits. This drawback could be improved by interposing the electrode reinforcement between the negative electrode layer 1 and the electrolyte layer 2 and embedding it within the unit cell. By embedding the electrode reinforcing body inside the unit cell, mechanical strain was absorbed within the unit cell and almost no warping occurred.
本発明に使用した素電池は次のようにして成形
した。負極原料粉末として0.2gのリチウム−シ
リコン合金を直径24mmのプレス成形型に充填し、
平らにならしたあと、電極補強体として200メツ
シユのステンレス鋼の網をその上に裁置し、750
Kg/cm2の圧力で加圧して予備成形する。予備成形
された負極の上に、LiC1−KC1の共晶塩と酸化
マグネシウムの混合物よりなる電解質原料粉末
0.3gを平らに充填し、さらにその上に正極原料
粉末として二硫化鉄を主成分とする正極混合物
0.1gを各層が混合しないように平に充填した後
2t/cm2の圧力で加圧成形した。このようにして得
られた素電池は直径24mm、厚さ0.8mmと薄く、反
りはなく、負極層と電解質層との間に電極補強体
を備えている。 The unit cell used in the present invention was molded as follows. Fill a 24 mm diameter press mold with 0.2 g of lithium-silicon alloy as negative electrode raw material powder.
After leveling, a 200 mesh stainless steel mesh was placed on top of it as an electrode reinforcement, and 750 mesh
Preform by applying pressure of Kg/ cm2 . Electrolyte raw material powder made of a mixture of LiC1-KC1 eutectic salt and magnesium oxide is placed on the preformed negative electrode.
0.3g is filled flat, and on top of that is a positive electrode mixture whose main component is iron disulfide as a positive electrode raw material powder.
After filling 0.1g flatly so that each layer does not mix.
Pressure molding was performed at a pressure of 2t/cm 2 . The unit cell thus obtained is thin with a diameter of 24 mm and a thickness of 0.8 mm, has no warpage, and is provided with an electrode reinforcement between the negative electrode layer and the electrolyte layer.
第2図は素電池を積層した熱電池の断面図であ
る。図において5は積層された各素電池であり、
6は素電池5と交互に積層された発熱剤である。
7は負極端子、8は正極端子である。9は点火具
であり、点火用端子10に瞬間電流を流すと点火
具9が発火し、発熱剤6に着火し、熱電池が活性
化される。11は熱電池内部を保温するための断
熱体であり、12は電池容器である。 FIG. 2 is a cross-sectional view of a thermal battery in which unit cells are stacked. In the figure, 5 is each stacked unit cell,
Reference numeral 6 denotes a heat generating agent which is alternately stacked with the unit cells 5.
7 is a negative terminal, and 8 is a positive terminal. Reference numeral 9 denotes an igniter, and when an instantaneous current is passed through the ignition terminal 10, the igniter 9 ignites, ignites the exothermic agent 6, and activates the thermal battery. 11 is a heat insulator for keeping the inside of the thermal battery warm, and 12 is a battery container.
本発明に用いる電極補強体は負極活物質や電解
質に耐食性があり、素電池成形時の加圧力で破損
しないことが要求される。この要求を満たす材質
として鉄、ニツケル、銅、クロム、ニオブ、モリ
ブデン、黄銅およびステンレス鋼等の耐食性金属
が好ましい。また電極補強体はイオン透過のため
に開孔していることが必要で、電池の内部抵抗に
悪影響を与えないよう、できるだけ開孔度は大き
いものが好ましい。例えば網、エキスパンド網、
発泡メタル、パンチングメタルもしくは多孔質焼
結体等の開孔体や多孔体はいずれも使用可能であ
る。 The electrode reinforcing body used in the present invention is required to have corrosion resistance in the negative electrode active material and electrolyte, and not to be damaged by the pressure applied during unit cell molding. Corrosion-resistant metals such as iron, nickel, copper, chromium, niobium, molybdenum, brass, and stainless steel are preferred as materials that meet this requirement. Further, the electrode reinforcing body must have pores for ion permeation, and the pores are preferably as large as possible so as not to adversely affect the internal resistance of the battery. For example, net, expanded net,
Any open or porous body such as foamed metal, punched metal or porous sintered body can be used.
本発明により製造された素電池は内部に電極補
強体を備えるために機械的強度が高く、取扱が容
易である。従来、素電池の機械的強度が低いため
に極めて割れやすく、積層化するために素電池の
厚さを1.5mm以上にしないと組立が困難であつた。
本発明によれば電極補強体を含めても素電池の厚
さを1mm以下とすることが可能であり、同一体積
でより高電圧の熱電池の製造が可能となつた。 Since the unit cell manufactured according to the present invention includes an electrode reinforcing body inside, it has high mechanical strength and is easy to handle. Conventionally, unit cells had low mechanical strength, making them extremely susceptible to breakage, and it was difficult to assemble the unit cells unless they were stacked to a thickness of 1.5 mm or more.
According to the present invention, it is possible to reduce the thickness of the unit cell to 1 mm or less even including the electrode reinforcing body, and it has become possible to manufacture a higher voltage thermal battery with the same volume.
第1図は本発明に使用する素電池の断面図、第
2図は素電池を積層した熱電池の断面図である。
1……負極層、2……電解質層、3……正極
層、4……電極補強体。
FIG. 1 is a sectional view of a unit cell used in the present invention, and FIG. 2 is a sectional view of a thermal battery in which unit cells are stacked. 1... Negative electrode layer, 2... Electrolyte layer, 3... Positive electrode layer, 4... Electrode reinforcing body.
Claims (1)
極補強体4とを有する熱電池用素電池であつて、 負極層1と、電解質層2と、正極層3とは、そ
れぞれ原料粉末が層状に積層され、電極補強体4
が負極層1と電解質層2間に配設されて一体に加
圧成形されたものであり、 電極補強体4は鉄、ニツケル、銅、クロム、ニ
オブ、モリブデン、タングステン、黄銅及びステ
ンレス鋼等の耐食性金属からなる網、エキスパン
ド網、発泡メタル、パンチングメタルもしくは多
孔質焼結体である ことを特徴とする熱電池用素電池。[Claims] 1. A unit cell for a thermal battery comprising a negative electrode layer 1, an electrolyte layer 2, a positive electrode layer 3, and an electrode reinforcing body 4, the negative electrode layer 1, the electrolyte layer 2, and the positive electrode layer 3 means that the raw material powder is laminated in layers, and the electrode reinforcing body 4
is placed between the negative electrode layer 1 and the electrolyte layer 2 and is integrally press-formed, and the electrode reinforcing body 4 is made of iron, nickel, copper, chromium, niobium, molybdenum, tungsten, brass, stainless steel, etc. A unit cell for a thermal battery, characterized in that it is a mesh made of a corrosion-resistant metal, an expanded mesh, a foamed metal, a punched metal, or a porous sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4507883A JPS59169074A (en) | 1983-03-16 | 1983-03-16 | Thermal cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4507883A JPS59169074A (en) | 1983-03-16 | 1983-03-16 | Thermal cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59169074A JPS59169074A (en) | 1984-09-22 |
JPH0354432B2 true JPH0354432B2 (en) | 1991-08-20 |
Family
ID=12709295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4507883A Granted JPS59169074A (en) | 1983-03-16 | 1983-03-16 | Thermal cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59169074A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0815072B2 (en) * | 1984-11-30 | 1996-02-14 | 日本電池株式会社 | Method for manufacturing thermal battery electrodes |
JPH0815073B2 (en) * | 1984-11-30 | 1996-02-14 | 日本電池株式会社 | Method for manufacturing thermal battery electrodes |
IT1297213B1 (en) * | 1991-03-12 | 1999-08-03 | Ginatta Spa | HERMETIC ACCUMULATOR OF THE LITHIUM ALLOY / METALLIC SULFIDE TYPE, WITH BIPOLAR ELECTRODES |
RU2607471C1 (en) * | 2015-07-03 | 2017-01-10 | Акционерное общество АО "Энергия" | Electrolyte mixture for thermal chemical current source |
US11784299B2 (en) | 2019-05-07 | 2023-10-10 | Agency For Defense Development | Anode for thermal battery, apparatus for manufacturing the anode for thermal battery, and method of manufacturing the anode for thermal battery |
KR102050003B1 (en) * | 2019-05-07 | 2019-11-28 | 국방과학연구소 | Lithium anode comprising metal alloy foam, thermal battery comprising thereof and method for producing thereof |
-
1983
- 1983-03-16 JP JP4507883A patent/JPS59169074A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59169074A (en) | 1984-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3287166A (en) | Battery electrode and battery, and process for preparing said electrode | |
KR101993756B1 (en) | Liquid lithium electrode of double layer and method for producing thereof | |
JP2017506411A (en) | Method for manufacturing negative electrode of thermal activation type reserve battery using thin film metal foam and cup | |
JP7183529B2 (en) | LAMINATED GREEN SHEET, ALL-SOLID SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF | |
JP2019040759A (en) | Method for manufacturing all-solid battery | |
US4119771A (en) | Negative cobalt electrode for an alkaline storage battery | |
JPH0354432B2 (en) | ||
US4163173A (en) | Porous electrode body for electrical accumulators | |
US3446668A (en) | Inorganic battery separator and battery | |
WO2019241493A1 (en) | Bi-plate grids for batteries, and single process to cast the same | |
JPH0328783B2 (en) | ||
KR100294468B1 (en) | Sodium-sulfur battery having multi-layered sulfur electrode | |
JPH0320023B2 (en) | ||
JPS6318125Y2 (en) | ||
JP2608561B2 (en) | Stacked battery | |
JPS5942949B2 (en) | nickel electrode | |
JPS6231789B2 (en) | ||
JPH0745885Y2 (en) | Thermal battery | |
JP2001243977A (en) | Sodium sulfur battery, battery assembly and its module | |
KR101998792B1 (en) | Pure lithium electrode and method for producing thereof | |
JPH07134997A (en) | Thermal battery | |
JPS58121565A (en) | Layer-built type thermobattery | |
US5114432A (en) | Electrode for use in a high temperature rechargeable molten salt battery and method of making said electrode | |
JPS5825560Y2 (en) | Hydrogen storage electrode | |
JPH0542780B2 (en) |