JPH0354417B2 - - Google Patents

Info

Publication number
JPH0354417B2
JPH0354417B2 JP21570182A JP21570182A JPH0354417B2 JP H0354417 B2 JPH0354417 B2 JP H0354417B2 JP 21570182 A JP21570182 A JP 21570182A JP 21570182 A JP21570182 A JP 21570182A JP H0354417 B2 JPH0354417 B2 JP H0354417B2
Authority
JP
Japan
Prior art keywords
optical fiber
fiber bundle
bundle plate
glass
phosphor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21570182A
Other languages
Japanese (ja)
Other versions
JPS59105246A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP21570182A priority Critical patent/JPS59105246A/en
Publication of JPS59105246A publication Critical patent/JPS59105246A/en
Priority to US06/817,164 priority patent/US4654558A/en
Publication of JPH0354417B2 publication Critical patent/JPH0354417B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/24Supports for luminescent material

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は基板に光学繊維束板を用いその面上
に螢光体層を形成した螢光スクリーンの改良に関
する。 〔発明の技術的背景及び問題点〕 一般に螢光スクリーンを内蔵するイメージ管例
えばX線螢光増倍管は、医療用を主に工業用非破
壊検査などX線工業テレビを併用して広範囲に応
用されている。この種のX線螢光増倍管は第1図
に示すように構成され、主としてガラスよりなる
真空外囲器1の入力側内部に入力面が配設され
ている。一方、真空外囲器1の出力側内部には、
陽極3が配設されると共に出力面が設けられ、
更に真空外囲器1内部の側壁に沿つて集束電極5
が配置されている。前記入力面は球面状のAl
からなる基板6の出力側(凹面側)にCSIの入力
螢光体層7が形成され、この入力螢光体層7の上
に更に光電面8が形成されている。又、出力面
は基板9に出力螢光体層10を形成してなつてい
る。そして動作時には、X線(図示せず)は被写
体(図示せず)を通過する際、被写体のX線透過
率によつて変調されて、入力螢光体層7を励起す
る。入力螢光体層7の励起光は入力螢光体層7の
内面に形成されている光電面8にエネルギーを与
え、光電面8より電子を放出させる。この、電子
は陽極3、集束電極5で構成される電子レンズ作
用により出力螢光体層10上に加速集束し、出力
螢光体層10を発光させる。このような過程で電
子の増倍が行なわれ、入力螢光体層7で得られる
光像より格段に明るい像が出力螢光体層10に得
られる。 ところで、上記のようなX線螢光増倍管の出力
螢光体層の保持基盤として光学繊維束板を用いる
例の1つとして、特開昭53−34770号公報に開示
されたように光学繊維束板に出力螢光体層を形成
してコントラストを改善する提案がある。この提
案の概略を第2図に示すが基板である光学繊維束
板17出力螢光体層10を形成してなる出力面
6を真空外囲器1の出力側に配置したものであ
る。この提案は、従来良く知られている光学繊維
束板を真空外囲器の一部として用い、直接信号を
真空外囲器の外へ引き出せず、レンズ系を必要と
するが、加速電圧の印加は第1図に示す従来のX
線螢光増倍管と同じにできる利点がある。しか
し、光学繊維束17上に単に螢光体を形成しただ
けでは、コントラストの向上に限界があり、以下
にその理由を説明する。 即ち、第3図に光学繊維の説明図を示すが、
今、説明の都合上、光学繊維の芯部101のガラ
ス屈折率n1を1.8、被覆部102のガラス屈折率
n2を1.49とする。又、真空の屈折率をn0、光学繊
維への入射角をθ0とするとθ0は次の式で表わされ
る。 n0sinθ0=√1 22 2 この式よりθ0は90°となる。一方、90°で入射し
た光は、芯部101のガラスでの屈折角θ1が33.7°
となる。他方、芯部101のガラスと被覆部10
2のガラスとの境界面での全反射角は55.9°とな
る。ところで、θ1が33.7°の光は、芯部101のガ
ラスと被覆部102のガラスの境界面への入射角
φ1が56.3°となり、臨界角より大きいため、全反
射しながら維持の中を伝播し、反対面に伝わる。
ここで注目すべきことは、芯部101のガラスの
中心軸と光の角度θ1は0〜33.7°の範囲にあり、
33.7°を越えた光は存在しない。従つて理論的に
は、光は単繊維から外の維持に洩れることがなく
伝達される。実際には、被覆部102に直接入射
する光もあるが、この影響は非常に少ない。 ところが光学繊維束板に螢光膜を形成したとき
は、光の伝達の状況が大巾に異なる。第4図にこ
の説明を示すが、通常、螢光体層を形成する際、
ガラス質の接着剤を用いて螢光体粒子201を接
着するために、螢光体粒子201と光学繊維束板
17とは光学的な接触度合が強くなる。従つて、
第3図で示したように、芯部101のガラスの中
心軸と螢光膜で発光した光の角度が33.7°〜90°の
ものも混在することになる。従つて、芯部101
のガラスと被覆部102のガラスの屈折率で決定
される全反射角より小さい角度φ1が存在するこ
とになり、この光は隣の光学繊維に伝播してしま
う。第4図に示すように、例えば(a),(b)の方向に
出た光は単繊維を伝播するが、(c)の光のように芯
部101のガラスと被覆部102のガラスの境界
面に全反射角より小さい角度で入射したものは、
どんどん隣へ伝播し、光学繊維束板17の蛍光膜
10と反射の面で反射し、これが螢光体層10の
別の位置を光らせるため、コントラストを悪くす
る。 実際の光学繊維束板は、被覆部102のガラス
の外側に吸収層103を設けて隣へ伝播する光を
軽減する工夫がなされているものの、光学繊維束
板17の厚みが薄くなると、隣へ伝播する光の吸
収層103を通過する回数が少なくなるため、コ
ントラストの低下が大きくなる。特に光学繊維束
板17の厚みが1mm以下になると、コントラスト
の位置が非常に大きくなり、光学繊維束板17を
使用する利点がなくなる。 尚、光学繊維束板に螢光膜を形成する別の例と
して、実公昭40−19855号公報、或いは
USP4264408の明細書に開示された技術がある。
これらは、光学繊維束板に凹みを設け、この中に
螢光体を埋め込む内容である。しかし、これは螢
光体と光学繊維束板の接触度合が大きいため、コ
ントラストが悪い。又、螢光体を均一に埋め込む
技術が困難で、輝度も低い。 〔発明の目的〕 この発明の目的は、基板に光学繊維束板を用い
て、コントラスト及び輝度の優れた高品位の画像
が得られる螢光スクリーンを提供することであ
る。 〔発明の概略〕 この発明は、光学繊維束板の各単繊維芯部ガラ
スの端面に凹みを設け、螢光体粒子を上記凹み中
に充填しないでこの凹みを空間として残し、上記
光学繊維束板の単繊維被覆部ガラスの端面上に螢
光体層を形成してなり、螢光体層と光学繊維束板
との光学的な接触面積を減らし、コントラスト及
び輝度を向上させた螢光スクリーンである。 〔発明の実施例〕 この発明を前述の如きイメージ管の出力面に適
用した例を説明する。即ち、光学繊維束板上に直
接螢光膜を形成すると、螢光体層との光学的接触
が大きくなり、コントラストの低下をきたす。一
般に光学繊維束板には光学的な欠陥が存在し、例
えば黒点、繊維の失透、繊維束の乱れがある。こ
の光学的な失陥は、光学繊維束板を薄く研磨する
ことにより改善されるが、反面、前述のコントラ
ストの低下は一層大きくなる。 そこで、その発明の実施例は第5図に示すよう
に構成され、従来例と同一個所は同一符号を付す
と、光学繊維束板17各単繊維の芯部ガラス10
1の表面つまり螢光体層形成側には、各々凹み1
8が設けられている。この場合、光学繊維束板1
7に凹み18を形成するには、酸による腐食で行
なう。一般に、高い屈折率のガラスの主成分の珪
素以外に金属成分が多く、低い屈折率のガラスに
比べて酸に弱い。そこで、例えば塩酸、又は硝酸
等の酸の溶液に光学繊維束板17を入れると、高
い屈折率を有する芯部101のガラスが、低い屈
折率の被覆部102のガラスより早く腐食されて
凹み18を生じる。この凹み18の程度は少な過
ぎるとコントラストの向上が見られず、又多過ぎ
ると被覆部102のガラスも腐食されてしまい、
好効果が得られず、深さは1〜20μmの範囲で良
い結果が得られた。 このようにして凹み18を設けた光学繊維束板
17上に、螢光体粒子201を凹み18中にほと
んど充填しないように各単繊維の被覆部ガラス1
02の端面でできる面上に披着して出力螢光体層
10を形成する。この場合、ブラウン管等で一般
に実施されている懸濁液中で螢光体粒子を沈降被
着させる方法、又は遠心機で強制的に被着させる
いずれの方法でもよい。これらの方法は、特に大
きな粒子から沈降するので、凹み18に螢光体粒
子201が充填されてしまう不都合がほとんど生
じ難いので望ましい。 但し、螢光体粒子201の粒径の選択は重要で
ある。即ち、細か過ぎると光学繊維束板17の凹
み18の中へ入つてしまい良い結果が得られず、
逆に荒ら過ぎると粒状性が悪くなつてしまう。最
適な螢光体粒子201の粒径は、光学繊維束板1
7の芯部101のガラスの径にも関係するが、平
均2〜10μmで良好な結果が得られた。勿論、各
凹みに充分大きな空間すなわち深さが螢光体層の
発光波長より充分大きい1〜20μmの範囲で空間
が残る程度に螢光体粒子が凹み内へ幾分入り込ん
でも差し支えないことはいうまでもない。 又、上記光学繊維束板17は、解像度の点から
単繊維の径についても規定する必要がある。即
ち、端繊維径をDmm、空間周波数はflp/mmとし、
光学繊維束板の像伝達能力を正弦波入力に対する
変調度としてF(f)で表わすと、F(f)は下記のよう
になる。 F(f)=〔2J1(2πfD)/2πfD〕2×100(%) ここでJ1は1次のベツセル関数である。通常、
イメージ管では、高い品位の画像を得るために
は、30lp/mmで変調度は50%以上が好ましい。こ
の点から光学繊維束板17のF(f)を計算すると、
D即ち単繊維径は10μm以下であることが必要で
ある。又、イメージ管の出力像径は大きくなると
輝度が低下し、更に像伝達に大口のレンズを必要
とするため、この発明における化学繊維束板17
の有効径は50mm以下で良好な効果が得られた。 〔発明の効果〕 この発明によれば、光学繊維束板の性能を一層
発揮させることができ、而もコントラスト特性が
非常に優れ高品位の画像を得ることができる。 非常に優れたコントラスト特性が得られる理由
を説明すると、第5図に示すように螢光体粒子2
01は光学繊維束板17の芯部101とは殆ど接
触していない。電子ビームによつて螢光体粒子2
01が発光するが、この光の方向性は殆ど完全拡
散面に近い。今、(a),(b),(c)3方向の光を考えて
みる。(a)の方向の光は芯部101のガラスを通過
する。(b)の方向の光は光学繊維の中で全反射しな
がら伝播して、反対側の面から取り出される。最
後に(c)の光は被覆部102のガラスと吸収層10
3を通過して隣の光学繊維に入るが、これは隣の
光学繊維に捉えられてその中を伝播する。即ち、
第4図の(c)で示したような動作はなくなり、この
結果、ソントラストが著しく向上する。具体的な
コントラストの値としては、板厚0.5mmの光学繊
維束板を用い、螢光体層の発光径を20.mmとし、
発光径の中心に面積比で10%の電子ビームと遮光
を置く。そして、遮光板を置かないときと、置い
たときの輝度比でコントラストを定義すると、従
来は約50:1であるのに対し、この発明では約
100:1と著しく向上した。 尚、上記実施例ではイメージ管出力面について
述べたが、こと発明は出力面に限定されるもので
はなく、光学繊維束板の面上に螢光体層を形成す
る構造のスクリーンに広く適用できる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a fluorescent screen in which an optical fiber bundle plate is used as a substrate and a fluorescent layer is formed on the surface thereof. [Technical background and problems of the invention] In general, image tubes with a built-in fluorescent screen, such as X-ray fluorescence multiplier tubes, are widely used for medical purposes, mainly for industrial non-destructive testing, in conjunction with X-ray industrial televisions. It is applied. This type of X-ray fluorescence multiplier tube is constructed as shown in FIG. 1, and has an input surface 2 disposed inside the input side of a vacuum envelope 1 mainly made of glass. On the other hand, inside the output side of the vacuum envelope 1,
An anode 3 is provided and an output surface 4 is provided,
Furthermore, a focusing electrode 5 is provided along the side wall inside the vacuum envelope 1.
is located. The input surface 2 is made of spherical Al
An input phosphor layer 7 of CSI is formed on the output side (concave side) of the substrate 6, and a photocathode 8 is further formed on the input phosphor layer 7. Also, output surface 4
The output phosphor layer 10 is formed on a substrate 9. In operation, the X-rays (not shown) are modulated by the X-ray transmittance of the object as they pass through the object (not shown) to excite the input phosphor layer 7. The excitation light of the input phosphor layer 7 gives energy to the photocathode 8 formed on the inner surface of the input phosphor layer 7, causing the photocathode 8 to emit electrons. These electrons are accelerated and focused onto the output phosphor layer 10 by the action of an electron lens constituted by the anode 3 and the focusing electrode 5, causing the output phosphor layer 10 to emit light. In this process, electrons are multiplied, and an image much brighter than the light image obtained in the input phosphor layer 7 is obtained in the output phosphor layer 10. By the way, as one example of using an optical fiber bundle board as a holding base for the output phosphor layer of the X-ray fluorophore multiplier tube as described above, an optical There have been proposals to improve contrast by forming an output phosphor layer on the fiber bundle plate. The outline of this proposal is shown in FIG .
6 is placed on the output side of the vacuum envelope 1. This proposal uses a conventionally well-known optical fiber bundle plate as part of the vacuum envelope, and the signal cannot be directly extracted outside the vacuum envelope, requiring a lens system. is the conventional X shown in Figure 1.
It has the advantage of being able to be used in the same way as a linear fluorescent multiplier tube. However, simply forming a phosphor on the optical fiber bundle 17 has a limit in contrast improvement, and the reason for this will be explained below. That is, although FIG. 3 shows an explanatory diagram of the optical fiber,
Now, for convenience of explanation, the glass refractive index n 1 of the core portion 101 of the optical fiber is 1.8, and the glass refractive index of the coating portion 102 is 1.8.
Let n 2 be 1.49. Further, when the refractive index of vacuum is n 0 and the angle of incidence on the optical fiber is θ 0 , θ 0 is expressed by the following equation. n 0 sinθ 0 = √ 1 22 2From this formula, θ 0 is 90°. On the other hand, for light incident at 90°, the refraction angle θ 1 at the glass core 101 is 33.7°.
becomes. On the other hand, the glass of the core part 101 and the covering part 10
The angle of total reflection at the interface with glass No. 2 is 55.9°. By the way, for light whose θ 1 is 33.7°, the angle of incidence φ 1 on the interface between the glass of the core part 101 and the glass of the covering part 102 is 56.3°, which is larger than the critical angle, so it passes through the main body while being totally reflected. It propagates and is transmitted to the other side.
What should be noted here is that the angle θ 1 between the central axis of the glass of the core part 101 and the light is in the range of 0 to 33.7 degrees,
There is no light beyond 33.7°. Theoretically, therefore, light can be transmitted from the single fiber without leakage to the outside maintenance. In reality, some light directly enters the covering portion 102, but the effect of this is very small. However, when a fluorescent film is formed on an optical fiber bundle plate, the light transmission situation is drastically different. This explanation is shown in FIG. 4. Usually, when forming a phosphor layer,
Since the phosphor particles 201 are bonded using a glassy adhesive, the degree of optical contact between the phosphor particles 201 and the optical fiber bundle plate 17 is increased. Therefore,
As shown in FIG. 3, there are also cases where the angle between the central axis of the glass of the core portion 101 and the light emitted from the fluorescent film is 33.7° to 90°. Therefore, the core portion 101
There is an angle φ 1 smaller than the total reflection angle determined by the refractive index of the glass and the glass of the coating 102, and this light propagates to the adjacent optical fiber. As shown in FIG. 4, for example, the light emitted in the directions (a) and (b) propagates through a single fiber, but as in the light (c), the glass of the core 101 and the glass of the coating 102 are separated. When incident on the boundary surface at an angle smaller than the total internal reflection angle,
The light propagates to the next neighbor and is reflected by the fluorescent film 10 of the optical fiber bundle plate 17 and the reflective surface, which illuminates another position of the fluorescent layer 10, thereby worsening the contrast. In actual optical fiber bundle plates, an absorption layer 103 is provided on the outside of the glass of the covering portion 102 to reduce the light propagating to the neighboring area. Since the number of times that the propagating light passes through the absorption layer 103 decreases, the contrast decreases significantly. In particular, when the thickness of the optical fiber bundle plate 17 becomes 1 mm or less, the contrast position becomes very large, and the advantage of using the optical fiber bundle plate 17 is lost. In addition, as another example of forming a fluorescent film on an optical fiber bundle board, see Utility Model Publication No. 40-19855, or
There is a technique disclosed in the specification of USP4264408.
These methods involve providing a recess in an optical fiber bundle plate and embedding a phosphor in the recess. However, this has poor contrast because the degree of contact between the phosphor and the optical fiber bundle plate is large. Furthermore, the technique for uniformly embedding the phosphor is difficult, and the brightness is low. [Object of the Invention] An object of the present invention is to provide a fluorescent screen that uses an optical fiber bundle plate as a substrate and can provide high-quality images with excellent contrast and brightness. [Summary of the Invention] This invention provides a recess in the end face of each single fiber core glass of an optical fiber bundle plate, and leaves the recess as a space without filling the recess with phosphor particles. A phosphor screen in which a phosphor layer is formed on the end surface of the single fiber coating glass of the plate, reducing the optical contact area between the phosphor layer and the optical fiber bundle plate and improving contrast and brightness. It is. [Embodiments of the Invention] An example in which the present invention is applied to the output surface of the image tube as described above will be described. That is, if a phosphor film is formed directly on an optical fiber bundle plate, optical contact with the phosphor layer increases, resulting in a decrease in contrast. Optical fiber bundle plates generally have optical defects, such as black spots, fiber devitrification, and disordered fiber bundles. This optical defect can be improved by polishing the optical fiber bundle plate to a thinner thickness, but on the other hand, the aforementioned decrease in contrast becomes even greater. Therefore, the embodiment of the invention is constructed as shown in FIG.
On the surface of 1, that is, on the side where the phosphor layer is formed, there is a recess 1, respectively.
8 is provided. In this case, the optical fiber bundle plate 1
The formation of the recess 18 in 7 is carried out by etching with acid. In general, glasses with high refractive indexes contain many metal components in addition to silicon, which is the main component, and are more susceptible to acids than glasses with low refractive indexes. Therefore, when the optical fiber bundle plate 17 is placed in an acid solution such as hydrochloric acid or nitric acid, the glass of the core portion 101 having a high refractive index corrodes faster than the glass of the coating portion 102 having a low refractive index, causing the dents 18. occurs. If the degree of this depression 18 is too small, no improvement in contrast will be seen, and if it is too large, the glass of the covering portion 102 will also be corroded.
No good effect was obtained, and good results were obtained at a depth of 1 to 20 μm. On the optical fiber bundle plate 17 provided with the recesses 18 in this way, the covering glass 1 of each single fiber is placed so that the phosphor particles 201 are hardly filled into the recesses 18.
The output phosphor layer 10 is formed by depositing it on the surface formed by the end surface of 02. In this case, either a method of depositing the phosphor particles by precipitation in a suspension, which is generally practiced in cathode ray tubes, or a method of forcibly depositing the phosphor particles using a centrifuge may be used. These methods are preferable because the inconvenience of the phosphor particles 201 being filled in the recesses 18 is hardly caused because the large particles are settled first. However, the selection of the particle size of the phosphor particles 201 is important. That is, if it is too thin, it will enter the recess 18 of the optical fiber bundle plate 17 and good results will not be obtained.
On the other hand, if it is too rough, the graininess will deteriorate. The optimum particle size of the phosphor particles 201 is determined by the optical fiber bundle plate 1.
Although it is also related to the diameter of the glass of the core portion 101 of No. 7, good results were obtained with an average diameter of 2 to 10 μm. Of course, it is acceptable for the phosphor particles to penetrate into the recesses to the extent that a sufficiently large space remains in each recess, that is, a space with a depth in the range of 1 to 20 μm, which is sufficiently larger than the emission wavelength of the phosphor layer. Not even. Further, in the optical fiber bundle plate 17, it is necessary to specify the diameter of the single fibers from the viewpoint of resolution. That is, the end fiber diameter is Dmm, the spatial frequency is flp/mm,
When the image transmission ability of the optical fiber bundle plate is expressed as F(f) as the degree of modulation for a sine wave input, F(f) is as follows. F(f)=[2J 1 (2πfD)/2πfD] 2 ×100 (%) Here, J 1 is a first-order Betzel function. usually,
For image tubes, in order to obtain high-quality images, it is preferable that the modulation rate is 30lp/mm and the modulation depth is 50% or more. Calculating F(f) of the optical fiber bundle plate 17 from this point,
D, that is, the single fiber diameter needs to be 10 μm or less. Furthermore, as the output image diameter of the image tube increases, the brightness decreases and a large lens is required for image transmission.
Good effects were obtained with an effective diameter of 50 mm or less. [Effects of the Invention] According to the present invention, the performance of the optical fiber bundle plate can be further exhibited, and high-quality images with extremely excellent contrast characteristics can be obtained. To explain the reason why extremely excellent contrast characteristics are obtained, as shown in FIG.
01 is hardly in contact with the core portion 101 of the optical fiber bundle plate 17. Fluorescent particles 2 by electron beam
01 emits light, but the directionality of this light is almost close to that of a completely diffusing surface. Now, consider light in three directions (a), (b), and (c). The light in the direction of (a) passes through the glass of the core 101. The light in the direction (b) propagates through the optical fiber while being totally reflected, and is extracted from the opposite surface. Finally, the light in (c) is transmitted to the glass of the covering part 102 and the absorption layer 10.
3 and enters the adjacent optical fiber, but this is caught by the adjacent optical fiber and propagates therein. That is,
The operation shown in FIG. 4(c) is eliminated, and as a result, the song trust is significantly improved. For specific contrast values, an optical fiber bundle plate with a thickness of 0.5 mm was used, the emission diameter of the phosphor layer was 20 mm,
Place an electron beam and a light shield with an area ratio of 10% at the center of the emission diameter. When contrast is defined as the brightness ratio between when the light shielding plate is not placed and when it is placed, it is approximately 50:1 in the conventional method, but in this invention, it is approximately 50:1.
This was a remarkable improvement of 100:1. In the above embodiment, the image tube output surface was described, but the invention is not limited to the output surface, but can be widely applied to screens having a structure in which a phosphor layer is formed on the surface of an optical fiber bundle plate. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的なイメージ管(X線螢光増倍
管)を示す概略構成図、第2図は過去に提案され
ているイメージ管の要部を示す断面図、第3図は
光学繊維の光伝達を示す説明図、第4図は第2図
のイメージ管の欠点を説明するために用いる断面
図、第5図はこの発明の一実施例に係る螢光スク
リーンの要部を示す断面図である。 1……真空外囲器、……入力面、3……陽
極、5……集中電極、10……螢光体層、16
…出力面、17……光学繊維束板、18……凹
み、101……光学繊維の芯部ガラス、102…
…光学繊維の被覆部ガラス、103……吸収層、
201……螢光体粒子。
Figure 1 is a schematic configuration diagram showing a general image tube (X-ray fluorescence multiplier tube), Figure 2 is a sectional view showing the main parts of an image tube proposed in the past, and Figure 3 is an optical fiber FIG. 4 is a sectional view used to explain the drawbacks of the image tube shown in FIG. 2, and FIG. 5 is a sectional view showing essential parts of a fluorescent screen according to an embodiment of the present invention. It is a diagram. DESCRIPTION OF SYMBOLS 1... Vacuum envelope, 2 ... Input surface, 3... Anode, 5... Concentrating electrode, 10... Fluorescent layer, 16 ...
... Output surface, 17 ... Optical fiber bundle plate, 18 ... Recess, 101 ... Core glass of optical fiber, 102 ...
... optical fiber coating glass, 103 ... absorption layer,
201...fluorescent particles.

Claims (1)

【特許請求の範囲】 1 光学繊維束板の面上に螢光体層を形成してな
る螢光スクリーンにおいて、上記光学繊維束板の
単繊維の芯部ガラスの上記螢光体層側端面部分に
凹みが形成され、この凹みを空間として残し上記
光学繊維束板の単繊維被覆ガラス端面上に前記螢
光体層を形成してなることを特徴とする螢光スク
リーン。 2 光学繊維束板は、その単繊維の直径が10μm
以下であり、凹みの深さが1〜20μmである特許
請求の範囲第1項記載の螢光スクリーン。 3 螢光体粒子は平均粒径が2〜10μmである特
許請求の範囲第1項又は第2項記載の螢光スクリ
ーン。
[Scope of Claims] 1. In a fluorescent screen formed by forming a phosphor layer on the surface of an optical fiber bundle plate, an end surface portion of the single fiber core glass of the optical fiber bundle plate on the side of the phosphor layer. A fluorescent screen characterized in that a recess is formed in the optical fiber bundle plate, and the phosphor layer is formed on the end face of the monofilament-coated glass of the optical fiber bundle plate, leaving the recess as a space. 2 The optical fiber bundle plate has a single fiber diameter of 10 μm.
2. The fluorescent screen according to claim 1, wherein the depth of the recess is 1 to 20 μm. 3. The fluorescent screen according to claim 1 or 2, wherein the fluorescent particles have an average particle size of 2 to 10 μm.
JP21570182A 1982-12-09 1982-12-09 Fluorescent screen Granted JPS59105246A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21570182A JPS59105246A (en) 1982-12-09 1982-12-09 Fluorescent screen
US06/817,164 US4654558A (en) 1982-12-09 1986-01-08 Fiber optic phosphor screen and a method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21570182A JPS59105246A (en) 1982-12-09 1982-12-09 Fluorescent screen

Publications (2)

Publication Number Publication Date
JPS59105246A JPS59105246A (en) 1984-06-18
JPH0354417B2 true JPH0354417B2 (en) 1991-08-20

Family

ID=16676724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21570182A Granted JPS59105246A (en) 1982-12-09 1982-12-09 Fluorescent screen

Country Status (1)

Country Link
JP (1) JPS59105246A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2961627B1 (en) * 2010-06-18 2012-07-27 Photonis France OPTICAL FIBER PHOSPHORUS SCREEN HAVING AN ANGULAR FILTER.

Also Published As

Publication number Publication date
JPS59105246A (en) 1984-06-18

Similar Documents

Publication Publication Date Title
US6570164B2 (en) Resolution enhancement device for an optically-coupled image sensor using high extra-mural absorbent fiber
GB2149203A (en) Projection cathode-ray tube
JPS61185843A (en) Cathode ray tube
US8933419B2 (en) Fibre optic phosphor screen comprising an angular filter
US4739172A (en) Fiber optic phosphor screen and a method of manufacturing the same
US5047624A (en) Method of manufacturing and X-ray image intensifier
JPH0460296B2 (en)
US4654558A (en) Fiber optic phosphor screen and a method of manufacturing the same
JPH0354417B2 (en)
JPH0426092B2 (en)
JPS58916Y2 (en) X-ray fluorescence multiplier tube
KR930001851B1 (en) X-ray image tube
JPH0472346B2 (en)
JPS59201349A (en) Fluorescent screen and its production method
JPH0429998B2 (en)
JPH0322325A (en) X-ray image tube
JPS62252043A (en) Output fluorescent screen applying optical fiber plate
JPS6030040A (en) X-ray fluorescent multiplier tube
SU918994A1 (en) High resolution cathode ray tube
JP2798867B2 (en) X-ray image tube
JPS6030039A (en) Manufacture of fluorescent screen
JPS58223250A (en) Reflected electron diffraction unit
JPH0487242A (en) X-ray image intensifier
JPH01276544A (en) X-ray fluorescence multiplier tube
JPS6355838A (en) Input screen radiant ray multiplier tube