JPH0354130A - Raw material gas feed device - Google Patents

Raw material gas feed device

Info

Publication number
JPH0354130A
JPH0354130A JP18845489A JP18845489A JPH0354130A JP H0354130 A JPH0354130 A JP H0354130A JP 18845489 A JP18845489 A JP 18845489A JP 18845489 A JP18845489 A JP 18845489A JP H0354130 A JPH0354130 A JP H0354130A
Authority
JP
Japan
Prior art keywords
raw material
material gas
connecting tube
reaction section
material liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18845489A
Other languages
Japanese (ja)
Inventor
Hiroshi Hatasawa
畑佐和 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP18845489A priority Critical patent/JPH0354130A/en
Publication of JPH0354130A publication Critical patent/JPH0354130A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/85Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To improve the reliability of the subject device by discharging raw material liquid from a raw material tank into an evaporation means by a definite amount discharging means, evaporating the raw material liquid and subsequently blowing out the evaporated raw material gas from a nozzle of a connecting tube into a reaction section with the inner vapor pressure. CONSTITUTION:A SiCl4 raw material liquid in a raw material tank 1 is accurately fed in a constant amount into a closed container 10 forming an evaporation means 3 with a definite amount discharging means (gear pump) 2. The fed raw material liquid is immediately evaporated in the closed container 10 heated to a temperature of approximately 70-100 deg.C and conditioned in a prescribed maximum vapor pressure atmosphere to form a raw material gas 7. The raw material gas 7 filled in the closed container 10 is fed into a connecting tube 11 with a high pressure force, insulated with a heat-insulating means 4 to prevent the formation of dew drops, and mixed with an inert gas such as Ar for depressing the dew point at a connecting tube 15 and with a low refractive material such as B or F at a connecting tube 17, followed by blowing out the mixed gases in a reaction section 5 from a nozzle 11a.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 ?の発明は、各種物質を形成するときの原料となるガス
を一定量ずつ反応部に供給させることができる原料ガス
供給装置に関するものである。
[Detailed description of the invention] [Industrial application field] ? The invention relates to a raw material gas supply device that can supply a constant amount of gas serving as a raw material for forming various substances to a reaction section.

〔従来の技術〕[Conventional technology]

可視光或いは近赤外光を用いて情報を伝送させる際に使
用する低損失で、良好な伝送材料として石英ガラス(シ
リカ)、即ちガラス状の純粋な二酸化硅素(3.02)
が多く使用されている。
Silica glass (silica), i.e., glass-like pure silicon dioxide (3.02), is a low-loss, good transmission material used when transmitting information using visible light or near-infrared light.
is often used.

この石英ガラスは、屈折率が約1.45であり、光学ガ
ラスの中では最も低いものに属しているため、これを利
用して光ファイバを製造する場合、例えばこの石英ガラ
スをロッド状に形成しコアとするには、このコアの外側
にほう素(B)やふっ素(F)等の低屈折材料を含んだ
二酸化硅素(S102)を或長させてクラッドを形戊し
たり(外付け法)、またチューブ状に形成した石英ガラ
スの外側をクラッドとして利用するには、その内側に燐
(P)やゲルマニウム(G8)等の高屈折材料を含んだ
二酸化硅素(S10■)を或長させてコアを形成したり
(内付け法)する方法等が知ら?ている。
This quartz glass has a refractive index of approximately 1.45, which is the lowest among optical glasses, so when manufacturing optical fibers using it, for example, this quartz glass is formed into a rod shape. To make a core, a cladding is formed by forming a certain length of silicon dioxide (S102) containing a low refractive material such as boron (B) or fluorine (F) on the outside of this core (external attachment method). ), and in order to use the outside of the silica glass formed in a tube shape as a cladding, silicon dioxide (S10) containing a high refractive material such as phosphorus (P) or germanium (G8) is coated on the inside to a certain extent. Do you know how to form a core (inner attachment method)? ing.

ところで、このような方法によりコアやクラッドを形戒
する場合、特にその二酸化硅素(S,0■)は次のよう
な反応式によって形戊されるようになっているが、 2H2 +02     −   2820SiCL 
+2H20   −  StOz +4802原料とな
る四塩化硅素は、常温、常圧で液体であり、反応部にお
いて効率的に水と反応させるため、例えば第2図に示す
ような装置(以下これを原料ガス供給装置とよぶ)を使
用して気化させるようになっている。即ち、この原料ガ
ス供給装置は、液体状の原料である四塩化硅素(S,Q
2.>100を発生部の容器101内に収め、この容器
101に設けたヒータ102によってその原料を加熱し
てガス化(以下これを原料ガスとよぶ)させ、この原料
ガスを流量コントローラ(MFC)103によって定量
的に反応部104側に送り込むようになっている。
By the way, when forming the core and cladding by such a method, silicon dioxide (S, 0) is formed according to the following reaction formula, 2H2 +02 - 2820SiCL
+2H20 - StOz +4802Silicon tetrachloride, which is a raw material, is a liquid at normal temperature and pressure, and in order to react efficiently with water in the reaction section, a device such as the one shown in Fig. 2 (hereinafter referred to as a raw material gas supply device) is used. ) is used to vaporize it. That is, this raw material gas supply device supplies silicon tetrachloride (S, Q), which is a liquid raw material.
2. >100 is placed in a container 101 of the generating section, the raw material is heated and gasified by a heater 102 provided in this container 101 (hereinafter referred to as raw material gas), and this raw material gas is passed to a flow rate controller (MFC) 103. It is designed to quantitatively feed into the reaction section 104 side.

〔解決しようとする課題〕[Problem to be solved]

ところで、このような構戊の原料ガス供給装置にあって
は、大量に原料ガスを発生させることができるため、同
時に複数系統の反応部に原料ガスを供給し多系統での原
料ガス送りが可能であり、その点では都合がいいが、発
生部側が故障すると全系統での原料ガス供給が同時にス
トップしてしまうため、大きな問題になっている。また
、このような構戊の原料ガス供給装置にあっては、原料
ガスの定量供給を行う流量コントローラ(MFC)にゴ
ミ等が付着すると計量が不正確になり易い。
By the way, since the raw material gas supply device with such a structure can generate a large amount of raw material gas, it is possible to simultaneously supply raw material gas to reaction parts of multiple systems and feed raw material gas in multiple systems. This is convenient in that respect, but it is a big problem because if the generation part fails, the raw material gas supply to the entire system will stop at the same time. Furthermore, in a raw material gas supply device having such a structure, if dust or the like adheres to a flow rate controller (MFC) that supplies a fixed amount of raw material gas, metering tends to be inaccurate.

またその流量コントローラは構造的に複雑で故障を起こ
し易く、しかも高価なものであるため、問題になってい
る。
Further, the flow rate controller is structurally complex, prone to failure, and expensive, which is problematic.

そこで、この発明は、上記した従来の決定に鑑み、構戊
が単純で故障が少なく、しかも高信頼度で、かつコスト
的にも安い原料ガス供給装置を提供することを目的とす
るものである。
Therefore, in view of the above-mentioned conventional decisions, it is an object of the present invention to provide a raw material gas supply device that is simple in structure, has few failures, is highly reliable, and is inexpensive. .

〔課題を解決するための手段〕[Means to solve the problem]

即ち、この発明は、原料液を蒸発・気化させて原料ガス
を形成し、この形戊された原料ガスを定量ずつ反応部に
向けて供給し、その反応部にて他の物質と共に化学的に
反応させて所定の物質を形成させるために使用する原料
ガス供給装置であって、原料タンク側に蓄えられている
原料液を定量・吐出させる定量吐出手段と、この定量吐
出手段に連結されていると共に前記反応部側に開口され
た連結管と連結され、定量吐出手段から吐出される原料
液を蒸発して前記原料ガスを形成させ、かつ内部の蒸気
圧によって連結管のノズルからその原料ガスを噴出させ
る蒸発手段とを備えたものである。
That is, this invention evaporates and vaporizes a raw material liquid to form a raw material gas, supplies the formed raw material gas in fixed amounts to a reaction section, and chemically reacts with other substances in the reaction section. A raw material gas supply device used to cause a reaction to form a predetermined substance, which is connected to a quantitative discharge means for quantitatively discharging a raw material liquid stored in a raw material tank, and to this quantitative discharge means. The raw material liquid discharged from the quantitative discharge means is evaporated to form the raw material gas, and the raw material gas is discharged from the nozzle of the connecting pipe by internal vapor pressure. It is equipped with evaporation means for ejecting water.

〔作用〕[Effect]

この発明の原料ガス供給装置は、定量吐出手段によって
液体状の原料を正確に一定量ずつ吐出して蒸発手段側に
供給し、この蒸発手段によって液体状の原料を瞬時に蒸
発気化し、この蒸発手段に連結された単一の反応部に向
けて原料ガスを高精度に供給させることができる。
The raw material gas supply device of the present invention accurately discharges a fixed amount of liquid raw material by the quantitative discharge means and supplies it to the evaporation means side, the liquid raw material is instantaneously evaporated and vaporized by the evaporation means, and the liquid raw material is evaporated by the evaporation means. The raw material gas can be supplied with high accuracy to a single reaction section connected to the means.

〔実施例〕〔Example〕

以下この発明の一実施例について添付図面を参照しなが
ら説明する。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図はこの発明に係る原料ガス供給装置を示すもので
あり、この原料ガス供給装置は、原料タンク1と,定量
吐出手段2と,蒸発手段3と,保温手段4とから構戊さ
れており、単一に設けた反応85側の母材、即ちロツド
状石英ガラス6に向けて原料ガス7を供給させるように
なっている。
FIG. 1 shows a raw material gas supply device according to the present invention, and this raw material gas supply device is composed of a raw material tank 1, quantitative discharge means 2, evaporation means 3, and heat retention means 4. The raw material gas 7 is supplied toward the base material on the reaction 85 side, that is, the rod-shaped quartz glass 6 provided in a single manner.

原料タンク1は、内部が常温常圧に保持されており、こ
こに液体状の四塩化硅* (Sicj2.4)が密閉状
態で収容されており、連結管8を介して定量吐出手段2
側と連結されている。なお、この原料タンク1内に収容
された四塩化硅素(S .Q2.)は、沸点が57.6
℃であり、蒸発気化させたのち永蒸気と反応さけて二酸
化硅素(5.0,)を形成させるようになっている。
The inside of the raw material tank 1 is maintained at normal temperature and pressure, and liquid silicate tetrachloride* (Sicj2.4) is stored in the tank in a sealed state.
connected to the side. Note that the silicon tetrachloride (S.Q2.) contained in this raw material tank 1 has a boiling point of 57.6.
℃, and after evaporation, silicon dioxide (5.0,) is formed by avoiding reaction with permanent vapor.

定量吐出手段2は、原料タンク1内の原料液である四塩
化硅素(S.ff4)を吸入し、連続的に、しかも正確
に一定量ずつ蒸発手段3側に吐出し送り出すためのもの
であり、この実施例では吐出精度が高く、かつコスト的
に安い、しかも頑丈で故障しにくいギアポンプが使用さ
れている。なお、この定量吐出手段としては、特にこの
実施例のものに限定されるものではなく、高精度での吐
出が可能なものであって、しかも低廉であり、かつ丈夫
なものであればそれでもよい。
The quantitative discharge means 2 is for sucking silicon tetrachloride (S.ff4), which is a raw material liquid in the raw material tank 1, and continuously and accurately discharges it in fixed amounts to the evaporation means 3 side. In this embodiment, a gear pump is used that has high discharge accuracy, is inexpensive, and is sturdy and difficult to break down. Note that this quantitative dispensing means is not particularly limited to the one in this example, and any device may be used as long as it is capable of dispensing with high precision, is inexpensive, and is durable. .

蒸発手段3は、連結管9を介して定量吐出手段2から供
給される原料液、即ち液体状の四塩化硅素を瞬時に蒸発
気化させて原料ガス7を形戊すると共に、器内の高い蒸
気圧によりこの蒸発手段3と連結された連結管2を介し
てノズルILaから反応部5側にその原料ガス7を供給
させるためのものであり、ステンレス(SUS316.
316L)等の耐食性の大きな材質のものによって形戊
された密閉容器IOから形成されている。そして、この
密閉容器の外周面側には内部に送り出された原料液を素
早く蒸発気化させるため、所定温度、例えば70℃〜1
00℃好ましくは後の連結管11内で結露をおこさない
よう、少なくとも沸点以上であって、かつ外気温との差
を極力抑えた70℃前後に密閉容器10内で保持するた
め、サ一モスタット付のヒータ12が備え付けられてい
る。
The evaporation means 3 instantaneously evaporates and vaporizes the raw material liquid, that is, liquid silicon tetrachloride, supplied from the metered discharge means 2 via the connecting pipe 9 to form the raw material gas 7, and also removes the high vapor in the vessel. This is for supplying the raw material gas 7 from the nozzle ILa to the reaction section 5 side via the connecting pipe 2 connected to the evaporation means 3 under pressure, and is made of stainless steel (SUS316.
It is formed from a sealed container IO formed of a material with high corrosion resistance such as 316L). In order to quickly evaporate the raw material liquid sent inside, the outer peripheral surface of this airtight container is heated to a predetermined temperature, for example, 70°C to 1°C.
In order to maintain the temperature in the airtight container 10 at around 70°C, which is at least above the boiling point and with as little difference from the outside temperature as possible, in order to prevent dew condensation in the subsequent connecting pipe 11, the thermostat is preferably used. A heater 12 is provided.

保温手段4は、密閉容器10内に充満する気化した四塩
化硅素(S./U.)が連結管l1内を通過する際に外
気温により冷却されて露が形成されぬよう、その連結管
11を所定温度に保温させるものであり、その連結管1
1の外周面側に配設されたサーモスタ7}付のヒータ■
3で構戊されている。なお、この連結管11には、露点
温度降下用の不活性ガス、例えば常温で気体のアルゴン
(Ar)ガスを四塩化硅素(S.cl24)に一定量ず
つ混入させるため図示外のタンク内からアルゴンガスを
一定量ずつ送り出すバルブ14付の連通管15や、クラ
ッド形成の際にホウ素(B)やフッ素(F)等の低屈折
材料をその四塩化硅素(S1α,)に一定量ずつ混入さ
せるため図示外のタンク内からその低屈折材料を一定量
ずつ送り出すバルブl6付の連通管17が連結されてい
る。
The heat retaining means 4 protects the connecting pipe so that the vaporized silicon tetrachloride (S./U.) filling the airtight container 10 is cooled by the outside temperature and does not form dew when passing through the connecting pipe l1. 11 at a predetermined temperature, and the connecting pipe 1
Heater with thermostat 7 arranged on the outer circumferential side of 1■
It is composed of 3. In addition, this connecting pipe 11 is supplied with an inert gas for lowering the dew point temperature, such as argon (Ar) gas, which is a gas at room temperature, from a tank (not shown) in order to mix a certain amount of silicon tetrachloride (S.cl24) into the silicon tetrachloride (S.cl24). A communication pipe 15 with a valve 14 that sends out a certain amount of argon gas, and a low refractive material such as boron (B) or fluorine (F) are mixed into silicon tetrachloride (S1α,) in a certain amount during cladding formation. Therefore, a communication pipe 17 equipped with a valve 16 is connected to send out a fixed amount of the low refractive index material from a tank (not shown).

従って、この実施例によれば、原料タンク1内の原料液
である四塩化硅素(Slcf.)を定量吐出平段2であ
るギアポンプによって密閉容器10内に一定量ずつ正確
に送り出し、所定温度、かつ所定高蒸気圧雰囲気の密閉
容器10内に送り出された原料液を瞬時に蒸発気化させ
る。そして、この密閉容器lO内に充満する気体状の四
塩化硅素(S1α4)、つまり原科ガスは、器内の高圧
力により連結管11に向けて送り出される。そして、こ
の連結管1lに送り出された原料ガスは、途中保温手段
4によって保温され結露が防止され、かつアルゴンガス
及びホウ素やフッ素等が混入され、反応部5にてノズル
11aから噴出される。
Therefore, according to this embodiment, silicon tetrachloride (Slcf.), which is the raw material liquid in the raw material tank 1, is accurately delivered in fixed amounts into the closed container 10 by the gear pump, which is the constant-quantity discharge plate 2, at a predetermined temperature, and In addition, the raw material liquid sent into the closed container 10 in a predetermined high vapor pressure atmosphere is instantaneously evaporated. Then, the gaseous silicon tetrachloride (S1α4), that is, the raw material gas, filling the airtight container IO is sent toward the connecting pipe 11 due to the high pressure inside the container. The raw material gas sent to the connecting pipe 1l is kept warm by the heat insulating means 4 midway to prevent dew condensation, mixed with argon gas, boron, fluorine, etc., and is ejected from the nozzle 11a in the reaction section 5.

〔効果〕〔effect〕

以上説明してきたようにこの発明に係る原料ガス供給装
置によれば、従来のような高価でしかも故障しやすい流
量コントローラを使用せず、液体状の原料を定量吐出手
段によって正確に一定量ずつ吐出して蒸発手段側に供給
するようになっており、廉価で、正確、かつ信頼度の高
いものが提供できる。
As explained above, according to the raw material gas supply device according to the present invention, a liquid raw material can be accurately discharged in a fixed amount by a quantitative discharge means without using a conventional flow rate controller that is expensive and prone to failure. It is designed to supply the evaporation means to the evaporation means side, making it possible to provide an inexpensive, accurate, and highly reliable product.

また、この発明に係る原料ガス供給装置によれば、蒸発
手段によって蒸発気化した原料ガスを単一の反応部に供
給させるようになっており、換言すれば1個の装置から
単一の反応部に原料ガスを供給させる一系統ずつの光フ
ァイバ製造システムを構或するようになっており、構或
が単純であり、万一装置が故障したときに他の系統も作
業が停止するような事態にならずにすむ等、高信頼度の
装置を低コストで提供でき、極めて実用的価値が大きい
Further, according to the raw material gas supply device according to the present invention, the raw material gas evaporated and vaporized by the evaporation means is supplied to a single reaction section, in other words, the raw material gas is supplied from one device to a single reaction section. The optical fiber manufacturing system is designed to supply raw material gas to each system, and the structure is simple, so that in the unlikely event that one system malfunctions, other systems will stop working. It is possible to provide a highly reliable device at a low cost, such as by eliminating the need for damage, and has great practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る原料ガス供給装置を示す概略構
戊図、第2図は従来O原科ガス供給装置を示す概略構或
図である。 6・・・石英ガラス(母材)、 7・・・原料ガス、 5・・・反応部、 2・・・定量吐出手段(ギアポンプ)、3・・・蒸発手
段。
FIG. 1 is a schematic structural diagram showing a raw material gas supply apparatus according to the present invention, and FIG. 2 is a schematic structural diagram showing a conventional O raw material gas supply apparatus. 6... Quartz glass (base material), 7... Raw material gas, 5... Reaction section, 2... Fixed quantity discharge means (gear pump), 3... Evaporation means.

Claims (1)

【特許請求の範囲】 1、原料液を蒸発・気化させて原料ガスを形成し、この
形成された原料ガスを一定量ずつ反応部(5)に向けて
供給し、その反応部(5)にて他の物質と共に化学的に
反応させて所定の物質を形成させるために使用する原料
ガス供給装置であって、原料タンク(1)側に蓄えられ
ている原料液を定量・吐出させる定量吐出手段(2)と
、 この定量吐出手段(2)に連結されていると共に前記反
応部(5)側に開口された連結管(11)と連結され、
定量吐出手段(2)から吐出される原料液を蒸発して前
記原料ガスを形成させ、かつ内部の蒸気圧によって連結
管(11)のノズル(11a)からその原料ガスを噴出
させる蒸発手段(3)と を備えたことを特徴とする原料ガス供給装置。
[Claims] 1. Evaporating and vaporizing the raw material liquid to form a raw material gas, supplying the formed raw material gas in fixed amounts toward the reaction section (5); A raw material gas supply device used to chemically react with other substances to form a predetermined substance, the metering discharge means for metering and discharging the raw material liquid stored in the raw material tank (1) side. (2) and a connecting pipe (11) which is connected to the quantitative discharge means (2) and opened to the reaction section (5) side,
Evaporating means (3) for forming the raw material gas by evaporating the raw material liquid discharged from the quantitative discharge means (2), and spouting the raw material gas from the nozzle (11a) of the connecting pipe (11) by internal vapor pressure; ) A raw material gas supply device characterized by comprising:
JP18845489A 1989-07-20 1989-07-20 Raw material gas feed device Pending JPH0354130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18845489A JPH0354130A (en) 1989-07-20 1989-07-20 Raw material gas feed device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18845489A JPH0354130A (en) 1989-07-20 1989-07-20 Raw material gas feed device

Publications (1)

Publication Number Publication Date
JPH0354130A true JPH0354130A (en) 1991-03-08

Family

ID=16223986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18845489A Pending JPH0354130A (en) 1989-07-20 1989-07-20 Raw material gas feed device

Country Status (1)

Country Link
JP (1) JPH0354130A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635460A2 (en) * 1993-07-22 1995-01-25 Sumitomo Electric Industries, Ltd. Gas producing apparatus and method and apparatus for manufacturing optical waveguide and optical fiber preform
EP0659698A1 (en) * 1993-12-20 1995-06-28 Corning Incorporated Method and apparatus for vaporization of liquid reactants
WO2009101953A1 (en) * 2008-02-14 2009-08-20 Ulvac, Inc. Vapor generating apparatus and deposition apparatus
JP2015504408A (en) * 2011-11-25 2015-02-12 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG Method for producing synthetic quartz glass according to the soot method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635460A2 (en) * 1993-07-22 1995-01-25 Sumitomo Electric Industries, Ltd. Gas producing apparatus and method and apparatus for manufacturing optical waveguide and optical fiber preform
EP0635460A3 (en) * 1993-07-22 1995-08-09 Sumitomo Electric Industries Gas producing apparatus and method and apparatus for manufacturing optical waveguide and optical fiber preform.
EP0659698A1 (en) * 1993-12-20 1995-06-28 Corning Incorporated Method and apparatus for vaporization of liquid reactants
WO2009101953A1 (en) * 2008-02-14 2009-08-20 Ulvac, Inc. Vapor generating apparatus and deposition apparatus
JP2015504408A (en) * 2011-11-25 2015-02-12 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG Method for producing synthetic quartz glass according to the soot method

Similar Documents

Publication Publication Date Title
US5078092A (en) Flash vaporizer system for use in manufacturing optical waveguide fiber
EP0058571A1 (en) Method and apparatus for delivering a controlled flow rate of reactant to a vapour deposition process
FI67361B (en) ANORDNING FOER FORMNING AV ETT AEMNE FOER OPTISK VAOGLEDARE
EP0659698B1 (en) Method and apparatus for vaporization of liquid reactants
US4212663A (en) Reactants delivery system for optical waveguide manufacturing
CN103518005B (en) For the method and apparatus of gas conveying
US5997827A (en) Apparatus for sterilizing surfaces with hydrogen peroxide
CN102272351B (en) Reagent dispensing apparatuses and delivery methods
JPH06291040A (en) Method and apparatus for vaporizing and supplying liquid
JPH10511923A (en) Vertical packed bed film evaporator of silicon-containing compounds without halide
CN103502163A (en) Methods and apparatuses for reducing gelation of glass precursor materials during vaporization
JP2000252269A (en) Equipment and method for liquid vaporization
JPH0354130A (en) Raw material gas feed device
JPH0781965A (en) Gas producer, method for producing optical waveguide and optical fiber preform and device therefor
JPH0365231A (en) Method and apparatus for manufacturing gas-vapor mixture
US5213537A (en) Method for dosing a discharge lamp with mercury
CN102899637A (en) Vapour delivery system
JPH05156448A (en) Raw material evaporating device for cvd
JP3186446B2 (en) Method for producing silica glass
JP3112721B2 (en) Vaporizer for liquid raw materials
WO2001092172A1 (en) Method of making a titania-doped fused silica preform
US20210309558A1 (en) Method and apparatus for reproducibly producing a preform for glass fiber manufacture
JPH04119928A (en) Apparatus for generating gaseous starting material for glass
JPS63134531A (en) Device for synthesizing glass fine particle
JPS598740Y2 (en) Constant concentration gas generation and supply equipment