JPH0353875A - Purification of mirin - Google Patents

Purification of mirin

Info

Publication number
JPH0353875A
JPH0353875A JP1185881A JP18588189A JPH0353875A JP H0353875 A JPH0353875 A JP H0353875A JP 1185881 A JP1185881 A JP 1185881A JP 18588189 A JP18588189 A JP 18588189A JP H0353875 A JPH0353875 A JP H0353875A
Authority
JP
Japan
Prior art keywords
mirin
filtration
dextran
membrane
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1185881A
Other languages
Japanese (ja)
Inventor
Takayuki Kobayashi
小林 栄幸
Yasuhide Sawada
泰秀 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP1185881A priority Critical patent/JPH0353875A/en
Publication of JPH0353875A publication Critical patent/JPH0353875A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Abstract

PURPOSE:To remove proteins and enzymes from a MIRIN(a sweet sake) to purify the MIRIN is shortened processes without changing a alcohol degree, amino acid degree, etc., of the MIRIN by filtering the MIRIN with a specific selective permselective membrane by a cross flow filtration method. CONSTITUTION:A raw MIRIN prepared by adding malted rice and steamed glutinous rice to SHOCHU(a low class distilled spirit), maturing the mixture and subsequently pressing the matured product, etc., is filtered with a permselective membrane having a dextoran T-70 inhibitions degree of >=70% and a dextran T-10 inhibition degree of <=80% by a cross flow filtration method to purify the objective MIRIN. The raw MIRIN may be filtered with a permselective membrane made from an aromatic polysulfone.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分離膜を使用する味酪の精製方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for purifying flavored dairy products using a separation membrane.

〔従来の技術〕[Conventional technology]

味醸には、本味醋と本直しの2品目があり、本味醸はア
ルコール度が13度の時にエキス分が50度未満、本直
しはアルコール度が22度の時にエキス分がl6度未満
と規定されている。本味醸は、焼酎に米麹及び蒸した餅
米を加え、15〜20゜C位に保ち2カ月前後熟或させ
た味醸もろみを圧搾濾過し精製したもので、酒質きよう
正剤、香味調節のためのブドウ糖、水飴などの添加によ
り上記の戒分に調整される。また、本直しは味酪もろみ
に焼酎が加えられ、本味醂と同様に圧搾濾過、精製が行
われ、上記の戒分に調節される。
There are two types of Ajijo, Honmijo and Honnaji. Honmijo has an extract content of less than 50% when the alcohol content is 13%, and Honnaisho has an extract content of 16% when the alcohol content is 22%. stipulated as less than Honmijo is made by adding rice malt and steamed glutinous rice to shochu, keeping it at 15-20°C, and maturing it for about two months. Honmijo is refined by squeezing and filtering the ajijo moromi, and is a sake quality enhancer. It is adjusted to the above precepts by adding glucose, starch syrup, etc. to adjust the flavor. In addition, hon-naoshi is made by adding shochu to the flavored dairy mash, which is then compressed, filtered, and refined in the same way as hon mirin, and adjusted to the above-mentioned precepts.

一般に、圧搾濾過後の精製工程としては、おり下げ、火
入れ、仕上げ濾過が行われている。おり下げ工程では、
煮切りの原因であるところの蛋白質をタンニンに吸着さ
せる方法が一般的であるが、この方法では一回の操作で
蛋白質を除去することは困難であり、数回繰り返してい
るのが現状である。従って、工程の簡略化と完全な蛋白
質の除去が問題となっている。また、火入れ工程では、
加熱によるα−アミラーゼ、プロテアーゼ等の酵素失活
が一般的な目的である。しかし、加熱に用する設備やエ
ネルギー等、多大な費用が消費されるため、ランニング
コストの低下が重要な課題となっている。
Generally, purification steps after press filtration include draining, pasteurization, and final filtration. In the lowering process,
A common method is to adsorb proteins, which are the cause of simmering, onto tannins, but it is difficult to remove proteins with this method in a single operation, and the process is currently repeated several times. . Therefore, simplification of the process and complete protein removal are issues. In addition, in the pasteurization process,
The general purpose is to inactivate enzymes such as α-amylase and protease by heating. However, a large amount of money is consumed in equipment and energy used for heating, so reducing running costs has become an important issue.

これらの問題を解決し、ランニングコストの低下を容易
にする方法として、従来の精製工程を選択性分離膜に置
き換える方法が考えられる。すなわち逆浸透膜、ルース
RO膜、限外濾過膜、精密濾過膜などの選択性分離膜を
用いて、煮切りの原因である蛋白質及び酵素を除去する
ことが可能となれば、従来の精製工程での問題点あるい
はランニングコストの低下が解決できる。しかしながら
、逆浸透膜やルースRO膜では、溶質を分離する膜の孔
径が小さすぎるために味醋の主戒分であるところのアル
コール分、エキス分等が一部除去されることは自明であ
り、精密濾過膜では逆に膜の孔径が大きすぎるため除去
すべき蛋白質や酵素が透3 過してしまう。一方、限外濾過膜は膜の孔径が上記の分
離膜の中間に位置するため最も可能性があると考えられ
る。しかし、限外濾過膜においても膜の孔径や濾過方法
が種々あり、これらの選定が精製味醂の質を左右するた
め、膜孔径及び濾過方法を適切に設定しなければならな
い。
As a method to solve these problems and easily reduce running costs, it is possible to replace the conventional purification process with a selective separation membrane. In other words, if it becomes possible to remove proteins and enzymes that cause boiling down using selective separation membranes such as reverse osmosis membranes, loose RO membranes, ultrafiltration membranes, and precision filtration membranes, conventional purification processes can be This can solve problems or reduce running costs. However, it is obvious that with reverse osmosis membranes and loose RO membranes, the pore size of the membrane that separates solutes is too small, so that some of the alcohol content, extract content, etc., which is the main ingredient of ajishu, is removed. Conversely, with microfiltration membranes, the pores of the membrane are too large, allowing proteins and enzymes to be removed to pass through. On the other hand, an ultrafiltration membrane is considered to be the most likely because its pore size is between those of the above separation membranes. However, even in ultrafiltration membranes, there are various membrane pore sizes and filtration methods, and the selection of these affects the quality of purified mirin, so the membrane pore size and filtration method must be appropriately set.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は味醂の精製工程における前記ような問題を解決
せんとして研究した結果、適切な膜孔径を有する選択性
分離膜、又は荷電型分離膜を使用することによって味醸
中の蛋白質及び酵素を除去できるとの知見を得、更にこ
の知見に基づき種々の検討を重ねて本発明を完威するに
至ってもので、その目的とするところは味醸のアルコー
ル度、ボーメ度、アくノ酸度等の基本威分を変化させる
ことがなく、且つ煮切りの原因であるところの蛋白質及
びα−アミラーゼ、プロテアーゼ等の酵素を完全に除去
し、更に精製工程を短縮することができる味酪の精製方
法を提供することにある。
As a result of research to solve the above-mentioned problems in the mirin purification process, the present invention has been developed to remove proteins and enzymes in mirin by using a selective separation membrane with an appropriate membrane pore size or a charged separation membrane. Based on this knowledge, we conducted various studies to perfect the present invention. We have developed a method for purifying Ajibutsu that does not change its basic properties, completely removes proteins and enzymes such as α-amylase and protease that cause boiling, and further shortens the purification process. It is about providing.

〔課題を解決するための手段〕[Means to solve the problem]

4 本発明は、デキストランT−70の阻止率が30%以上
で且つデキストランT−10の阻止率が80%以下ある
選択性分離膜、もしくは、デキストランT500の阻止
率が75%で、芳香族ポリスルホンよりなる多孔膜の外
表面及び細孔表面が四級ア短ノ基を有し且つ架橋構造化
している荷電型分i!ifI膜を用いて、クロスフロー
フィルトレーション法により濾過処理することを特徴と
する味酪精製方法である。
4 The present invention provides a selective separation membrane with a rejection rate of dextran T-70 of 30% or more and a rejection rate of dextran T-10 of 80% or less, or a selective separation membrane with a rejection rate of dextran T500 of 75% and an aromatic polysulfone membrane. The outer surface and pore surface of the porous membrane consists of a charged type component i! having a quaternary abano group and having a crosslinked structure. This is a taste dairy purification method characterized by filtration using an ifI membrane and a cross-flow filtration method.

本発明における味醋は、焼酎に米麹及び蒸した餅米を加
え、15〜20゜C位に保ち2カ月前後熟威させた味醸
もろみ圧搾濾過した生味酪及び味酪もろみに焼酎を加え
圧搾濾過した生味醸である。
The ajishu of the present invention is made by adding rice malt and steamed glutinous rice to shochu, and adding shochu to the ajijo moromi, which is kept at about 15 to 20 degrees Celsius and matured for about 2 months, compressed and filtered raw flavor dairy, and aji dairy moromi. It is a raw flavor brewed by adding pressure and filtering.

本発明で用いる選択性分離膜の特徴は、その表面の最大
孔径によって左右される。表面とは膜表面にあって溶質
あるいは懸濁粒子の透過を阻止する薄く緻密な層表面の
ことである。その表面の孔は一般に円形や長円形等では
なく複雑な形状をしていることが多いが、本発明でいう
最大孔径とは電子顕微鏡観察でみられる複雑な形状の最
長部の長さである。
The characteristics of the selective separation membrane used in the present invention are influenced by the maximum pore size of its surface. The surface is a thin, dense layer on the surface of a membrane that prevents the passage of solutes or suspended particles. The pores on the surface are generally not circular or oval, but often have a complex shape, but the maximum pore diameter in this invention is the length of the longest part of the complex shape observed by electron microscopy. .

本発明において使用する分離膜としては、デキストラン
T−70(平均分子量7万)の阻止率30%以上で、且
つデキストランT−10(平均分子量1万)の阻止率が
80%以下であるもの、あるいはデキストランT−50
0(平均分子量50万)の阻止率が75%以上で、素材
が芳香族ポリスルホンであり、多孔膜の外表面及び細孔
表面が四級アミノ基を有し且つ架橋構造化している荷電
型分離膜が適している。
The separation membrane used in the present invention has a rejection rate of 30% or more for Dextran T-70 (average molecular weight 70,000) and a rejection rate of 80% or less for Dextran T-10 (average molecular weight 10,000); Or dextran T-50
0 (average molecular weight 500,000), the material is aromatic polysulfone, and the outer surface and pore surface of the porous membrane have quaternary amino groups and have a crosslinked structure. Membrane is suitable.

デキストランT−500の阻止率75%は、電子顕微鏡
観察で測定した最大孔径0.1μmにほぼ相当し、孔径
がこれより小さくなると電子顕微鏡測定ができない範囲
であるため、通常は分子量が既知の標準物質(通常はデ
キストラン)の阻止率により膜表面の孔径を規定する。
The rejection rate of dextran T-500 of 75% is approximately equivalent to the maximum pore diameter of 0.1 μm measured by electron microscopy.If the pore diameter is smaller than this, electron microscopy cannot be measured, so it is usually used as a standard with a known molecular weight. The pore size of the membrane surface is determined by the rejection rate of the substance (usually dextran).

従って、デキストランT−10の阻止率80%は、電子
顕微鏡観察が十分にできない範囲であり、孔径がこれよ
り小さくなると、味醸の主威分である糖類、アルコール
をも阻止する結果となり、本発明の目的を達することが
出来ない。また、デキストランT−70の阻止率30%
より孔径が大きくなると、味醸の煮切りの原因である蛋
白質あるいは酵素を除去することが出ない。
Therefore, the inhibition rate of 80% for Dextran T-10 is a range in which electron microscopy cannot be observed sufficiently, and if the pore size is smaller than this, it will also inhibit sugars and alcohol, which are the main ingredients for flavor creation, and the The purpose of the invention cannot be achieved. In addition, the inhibition rate of dextran T-70 is 30%.
If the pore size becomes larger, it will not be possible to remove the proteins or enzymes that cause the simmering taste.

しかし、デキストランT−500の阻止率が75%であ
る荷電型分離膜は、デキストランT−10の阻止率が0
%であるが、膜表面が荷電処理されているため従来の膜
に比べ蛋白質、酵素等の選択的阻止機能が高く、且つ従
来の膜に比べ耐熱性、耐薬品性及び性能安定性に勝れて
おり、スケールの吸着が少ないため、透過流束が安定し
ている。スケールとは、一般に膜表面上に析出した層の
意味であり、本発明においては、味醸中の蛋白質あるい
は等などの難溶性物質の膜表面への吸着を言う。
However, a charged separation membrane that has a rejection rate of 75% for Dextran T-500 has a rejection rate of 0 for Dextran T-10.
%, but because the membrane surface is electrically charged, it has a higher selective blocking function for proteins, enzymes, etc. than conventional membranes, and it also has better heat resistance, chemical resistance, and performance stability than conventional membranes. Since there is little scale adsorption, the permeation flux is stable. Scale generally refers to a layer deposited on the membrane surface, and in the present invention, it refers to the adsorption of poorly soluble substances such as proteins or the like in flavor brewing onto the membrane surface.

かかる荷電型分離膜は、芳香族ボリスルホンを素材とす
る分離膜の外表面及び細行表面を、クロロアルヰル化す
ると同時に架橋せしめ、更に3級アミンを用いて4級ア
ンモニウム塩基を導入することにより製造されるもので
ある。
Such a charged separation membrane is produced by simultaneously crosslinking the outer surface and narrow surface of a separation membrane made of aromatic borisulfone with chloroalylyl, and further introducing a quaternary ammonium base using a tertiary amine. It is something that

分離膜の濾過方法には種々の方法があるが、本発明では
クロスフローフィルトレーション法を用7 いている。クロスフローフィルトレーション法とは供給
液が膜の表面上を流れる間に膜を透過し、不純物が除去
された透過液が得られる方法である。
Although there are various methods for filtration using a separation membrane, the present invention uses a cross-flow filtration method. The cross-flow filtration method is a method in which a feed liquid passes through a membrane while flowing over the surface of the membrane, and a permeate from which impurities are removed is obtained.

本発明の味醸の精製工程における用い方は、特に限定さ
れるものではないが、ランニングコストや本発明の効果
を考えた場合、前記精製工程における圧搾濾過後に行う
のが最も好ましい。
The method of use in the refining process of the ajijo of the present invention is not particularly limited, but when considering running costs and the effects of the present invention, it is most preferable to use it after the squeeze filtration in the refining process.

〔発明の効果〕〔Effect of the invention〕

問題点、すなわち、おり下げ工程の煩雑さを解消し、精
製工程を短縮すると共に、アルコール度、アくノ酸等の
基本戒分を変化させることなく、蛋白質や火入れ工程で
の酵素の漏出を防ぎ完全に除去することが出来る。
We have solved the problems, namely, the complexity of the cooling process, shortened the purification process, and prevented the leakage of proteins and enzymes during the pasteurization process without changing the basic principles such as alcohol content and acetic acids. It can be prevented and completely removed.

以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例−1 前記の精製工程における生味醂を濾過原液とし、選択性
分離膜は、Pharmacia Fine Chemi
cal社製のデキストランT−70の阻止率が30%で
ある中空糸型選択性分離膜Aと、デキストランT−50
0の阻止率が75%で、膜の外表面及び細孔表面が架橋
8 構造化している中空糸型荷電型分離膜B(有効膜面積7
85cffl有効長50cm)を用いて、原液10l、
濾過温度30゜C、循環容ffil70 ffi / 
h、入口圧2.5kg/c+fl、出口圧0 . 5 
kg / ciの条件で内圧濾過を行い精製味醂を得た
。得られた精製味醋の威分分析を行った結果、第1表に
示す通り、濾過原液と同等の威分をもっていることが明
らかとなった。
Example-1 Raw mirin in the above purification process was used as the filtration stock solution, and the selective separation membrane was manufactured by Pharmacia Fine Chemi.
Hollow fiber selective separation membrane A with a dextran T-70 rejection rate of 30% manufactured by Cal, and dextran T-50
0 rejection rate is 75%, and the outer surface and pore surface of the membrane are cross-linked.
85cffl effective length 50cm), 10L of stock solution,
Filtration temperature 30°C, circulation volume ffil70 ffi/
h, inlet pressure 2.5kg/c+fl, outlet pressure 0. 5
Purified mirin was obtained by internal pressure filtration under the conditions of kg/ci. As a result of the analysis of the strength of the obtained refined miso, as shown in Table 1, it was revealed that it had the same strength as the filtered stock solution.

次に、濾過により蛋白質及び酵素が除去されているかど
うか、次の(1)〜(5)の試験方法により調べた。
Next, whether proteins and enzymes were removed by filtration was examined using the following test methods (1) to (5).

(1)加水煮切りによる白濁試験 試料を水で3倍に希釈し、沸騰水中で5分間の加熱後水
冷し、660nmにおける吸光度を測定する。
(1) Cloudy test sample obtained by adding water and boiling The sample is diluted 3 times with water, heated in boiling water for 5 minutes, cooled with water, and the absorbance at 660 nm is measured.

(2)加熱煮切りによる白濁試験 試料を沸騰水中で5分間加熱し、水冷した後660nm
における吸光度を測定する。
(2) Cloudy test sample by boiling and heating for 5 minutes, cooled in water, and then 660 nm
Measure the absorbance at

(3)柿しぶによる白濁試験 試料20dに対し、10倍に希釈した柿しぶを0.1一
間隔で0 . 5 mflまで添加し、660nmにお
ける吸光度を測定する。
(3) White cloudiness test sample due to persimmon shibu 20d, 10 times diluted persimmon shibu was added at 0.1 intervals. Add up to 5 mfl and measure absorbance at 660 nm.

(4)残存酵素量(α−アミラーゼ) 国税庁所定分析法に準じ、1%澱粉溶液10 mlに、
試料1成加え一定時間ごとの透過率を670nmにおい
て測定する。
(4) Residual enzyme amount (α-amylase) According to the analysis method specified by the National Tax Agency, add 10 ml of 1% starch solution to
One sample is added and the transmittance is measured at 670 nm at regular intervals.

(5)残存酵素量(プロテアーゼ) 国税庁所定分析法に準じ、酸性及び中性プロテアーゼ力
価を測定する。
(5) Amount of remaining enzyme (protease) Measure the acidic and neutral protease titers according to the analysis method prescribed by the National Tax Agency.

前記試験方法による結果は、第2表に示す通りであり、
試験方法(1)〜(3)によれば、各方法による白濁が
大幅に減少していることがわかり、蛋白質が除去されて
いることが明らかとなった。また試験方法(4)〜(5
)により、α−アミラーゼ、プロテアーゼ等の酵素が除
去されていることが明らかである。よって、本発明の方
法によれば、煮切りの原因であるところの蛋白質及びα
−ア1ラーゼ、プロテアーゼ等の酵素を除去することが
可能である。
The results according to the test method are shown in Table 2,
According to test methods (1) to (3), it was found that the white turbidity caused by each method was significantly reduced, and it became clear that proteins were removed. Also, test methods (4) to (5)
), it is clear that enzymes such as α-amylase and protease are removed. Therefore, according to the method of the present invention, protein and α, which are the causes of simmered
- It is possible to remove enzymes such as allase and protease.

第 ■ 表 第 2 表 11一 実施例−2 焼酎を加えた生味酪を濾過原液とし、実施例1と同様の
濾過処理を行い、実施例−1と同様の試験を行った。結
果は、第3表に示す通りであり、味醋の社木或分に変化
がないことが確認された。
Table 2 Table 11-Example-2 Raw flavored dairy products with shochu added were used as a filtration stock solution, and the same filtration treatment as in Example 1 was carried out, and the same tests as in Example-1 were conducted. The results are as shown in Table 3, and it was confirmed that there was no change in the shaki content of mirin.

よた、第4表に示すように、蛋白質による自濁が減少し
ており、本発明により蛋白質の除去が可能であると確認
できた。従って本発明は、焼酎を加えた生味酪すなわち
本直しのおり下げ、火入れ、ろ別工程にもかえることが
出来る。
Additionally, as shown in Table 4, self-turbidity due to protein was reduced, confirming that protein can be removed by the present invention. Therefore, the present invention can be applied to the lowering, pasteurization, and filtration processes of raw flavored dairy products with shochu added, that is, genuine dairy products.

1 2 第 3 表 第 4 表 実施例−3 実施例−1で用いた生味醸をおり下げ処理した味酪を濾
過原液とし、実施例−1と同様の濾過処理を行った。精
製味醸の評価は、実施例−1で述べた試験方法(4)に
より残存酵素量の測定を行った。
1 2 Table 3 Table 4 Example-3 The same filtration treatment as in Example-1 was performed using the Ajibutsu obtained by draining the raw flavor brewing used in Example-1 as a filtration stock solution. The purified ajijo was evaluated by measuring the amount of residual enzyme using the test method (4) described in Example-1.

結果は第5表に示す通りで、明らかにα−アミラーゼ、
プロテアーゼの除去が可能であり、火入れ工程、仕上げ
濾過工程の代わりにも本発明は用いることが可能である
The results are shown in Table 5, and it is clear that α-amylase,
Protease can be removed, and the present invention can also be used in place of the pasteurization process and final filtration process.

第   5   表 比鮫例−1 実施例−3で用いた濾過原液を用い、従来の仕上げ濾過
方法であるセライト濾過を行った。その濾過液について
、実施例−3で得られた濾過液と比較した。セライトは
、毛利フィルター工業株式会社製スノーライトR及びス
ノーライト2号を併用した。比較方法は、味酪のテリ、
ツヤの違いを660nm及び430nmにおける吸光度
で観察した。
Table 5 Hibiscus Example-1 Using the filtration stock solution used in Example-3, celite filtration, which is a conventional finishing filtration method, was performed. The filtrate was compared with the filtrate obtained in Example-3. As Celite, Snowlite R and Snowlite No. 2 manufactured by Mouri Filter Industries Co., Ltd. were used together. The comparison method is Aji Dairyu's Terry,
The difference in gloss was observed by absorbance at 660 nm and 430 nm.

その結果は第6表に示す通りで、濾過原液と同様の吸光
度を示しており、中空糸型分離膜を用いても、従来のセ
ライト濾過同様のテリ、ツヤが得られることがわかった
。従って、本発明が従来の仕上げ濾過方法であるセライ
ト濾過の代わりに用いられることが明らかとなった。
The results are shown in Table 6, showing the same absorbance as the filtration stock solution, and it was found that even when a hollow fiber separation membrane was used, the same texture and gloss as conventional Celite filtration could be obtained. Therefore, it has become clear that the present invention can be used in place of Celite filtration, which is the conventional finishing filtration method.

第   6   表 実施例−4 実施例−2で用いた濾過原液を、おり下げ処理した味醸
を濾過原液とし、実施例−1と同様の濾過処理をした。
Table 6 Example-4 The filtered stock solution used in Example-2 was filtered and the Ajijo was used as the filtered stock solution, and the same filtration treatment as in Example-1 was performed.

得られた濾過液について、残存酵素量を実施例一lと同
様の試験方法(4)により測定した。その結果は第7表
に示す通りであり、αアミラーゼの透過率が低く、明ら
かに除去されていることがわかる。よって、焼酎を加え
た生味醋すなわち本直しの精製工程のおり下げ工程以下
にも本発明が適用できることが明らかとなった。
Regarding the obtained filtrate, the amount of residual enzyme was measured by the same test method (4) as in Example 11. The results are shown in Table 7, and it can be seen that the permeability of α-amylase was low and that it was clearly removed. Therefore, it has become clear that the present invention can be applied to the lowering step of the refining process of raw miso with shochu added, that is, the refining process.

第   7   表 比較例−2 実施例−4で用いた濾過原液を用い、比較例lと同様に
セライト濾過を行い、その濾過液について実施例−4で
得られた濾過液と比較した。
Table 7 Comparative Example-2 Using the filtration stock solution used in Example-4, Celite filtration was performed in the same manner as in Comparative Example 1, and the filtrate was compared with the filtrate obtained in Example-4.

比較方法は振動泡立ち減少時間について行うものであり
、試験方法は、味醸を直径32恥高さ380mmのメス
シリンダーに100ml!入れて上下に激しく振動し、
味醂を泡立たせた後に静止させ、泡が消失するまでの時
間を測定した。
The comparison method is the vibration foaming reduction time, and the test method is to put 100ml of Ajijo into a graduated cylinder with a diameter of 32mm and a height of 380mm! I put it in and it vibrates violently up and down,
After the mirin was foamed, it was allowed to stand still, and the time until the foam disappeared was measured.

その結果は、第8表に示す通りで、本発明により従来の
セライト濾過では不十分であった味酪の泡立ち物質の除
去が可能となった。
The results are shown in Table 8, and the present invention made it possible to remove foaming substances from Ajibutsu, which was insufficient with conventional Celite filtration.

第 8 表 比較例−3 実施例−1で得られた分離膜Aによる濾過液と、デキス
トランT−500の阻止率が75%である選択性分離膜
Cを用い、実施例−1と同様の濾過処理により得られた
濾過液を比較した。比較方法は実施例−1と同様の試験
方法とした。その結果は第9表に示した通りで、試験方
法(1)〜(3)では吸光度が大きく、蛋白質漏出によ
る白濁がみられた。また、試験方法(4)による透過率
が高く、試験方法(5)によるプロテアーゼ力価が高い
ことがわかる。よって、膜の孔径が大きくなると蛋白質
及び酵素の漏出が求められ、本発明の効果が得られない
ことが明らかとなった。
Table 8 Comparative Example-3 Using the filtrate obtained by the separation membrane A obtained in Example-1 and the selective separation membrane C having a dextran T-500 rejection rate of 75%, the same procedure as in Example-1 was carried out. The filtrate obtained by the filtration treatment was compared. The comparison method was the same test method as in Example-1. The results are shown in Table 9, and in test methods (1) to (3), the absorbance was high and cloudiness due to protein leakage was observed. It can also be seen that the transmittance according to test method (4) is high and the protease titer according to test method (5) is high. Therefore, it has become clear that when the pore size of the membrane increases, leakage of proteins and enzymes is required, and the effects of the present invention cannot be obtained.

第 9 表 比較例−4 実施例一Iの濾過処理過程における荷電型分離膜の透過
流速の変化と、比較例−3で用いた選択性分離膜Cの透
過流束の変化を測定した。
Table 9 Comparative Example-4 Changes in the permeation flow rate of the charged separation membrane during the filtration process of Example 1I and changes in the permeation flux of the selective separation membrane C used in Comparative Example-3 were measured.

その結果は第1図に示した通りで、荷電型分離膜の透過
流束が荷電処理されていない選択性分離膜のそれより安
定していることがわかる。すなわち荷電型分離膜は、ス
ケールの吸着が少なく膜の性能が安定していることがわ
かる。
The results are shown in FIG. 1, and it can be seen that the permeation flux of the charged separation membrane is more stable than that of the selective separation membrane that has not been subjected to charging treatment. In other words, it can be seen that the charged separation membrane has less scale adsorption and stable membrane performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は比較例−4にお4ノる透過流速の変化を示す図
である。 図中、容量減少率とは、濃縮倍率と同様の意味であり濾
過原液の最初の容量を、処理後の保持液の要領で割った
値である。また、透過流束とは濾過液量を膜面積と濾過
時間で割った値である。
FIG. 1 is a diagram showing four changes in permeation flow rate in Comparative Example-4. In the figure, the volume reduction rate has the same meaning as the concentration ratio, and is the value obtained by dividing the initial volume of the filtered stock solution by the volume of the retentate after treatment. Further, the permeation flux is a value obtained by dividing the amount of filtrate by the membrane area and the filtration time.

Claims (2)

【特許請求の範囲】[Claims] (1)デキストランT−70の阻止率が30%以上で且
つデキストランT−10の阻止率が80%以下である選
択性分離膜を用いて、クロスフローフィルトレーション
法により濾過処理することを特徴とする味醂の精製方法
(1) The filtration process is carried out by a cross-flow filtration method using a selective separation membrane that has a rejection rate of 30% or more for Dextran T-70 and a rejection rate of 80% or less for Dextran T-10. A method for refining mirin.
(2)デキストランT−500の阻止率が75%以上で
、芳香族ポリスルホンよりなる多孔膜の外表面及び細孔
表面が四級アミノ基を有し、且つ架橋構造化している荷
電型分離膜を用いて、クロスフローフィルトレーション
法により濾過処理することを特徴とする味醂精製方法。
(2) A charged separation membrane that has a rejection rate of dextran T-500 of 75% or more, has quaternary amino groups on the outer surface and pore surface of the porous membrane made of aromatic polysulfone, and has a crosslinked structure. 1. A mirin purification method characterized in that the mirin is filtered by a cross-flow filtration method.
JP1185881A 1989-07-20 1989-07-20 Purification of mirin Pending JPH0353875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1185881A JPH0353875A (en) 1989-07-20 1989-07-20 Purification of mirin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1185881A JPH0353875A (en) 1989-07-20 1989-07-20 Purification of mirin

Publications (1)

Publication Number Publication Date
JPH0353875A true JPH0353875A (en) 1991-03-07

Family

ID=16178512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1185881A Pending JPH0353875A (en) 1989-07-20 1989-07-20 Purification of mirin

Country Status (1)

Country Link
JP (1) JPH0353875A (en)

Similar Documents

Publication Publication Date Title
US4834998A (en) Ultrafiltration of red wines
US4581236A (en) Process and apparatus for reduction of alcohol by dialysis in fermented beverages
CA1275270C (en) Continuous recycle process for the production of low alcoholic content beverages
JP3630729B2 (en) Microfiltration membrane and / or ultrafiltration membrane and production method thereof
JP3667342B2 (en) Filtration aid, filtration method using the same, and regeneration method of the filtration aid
JPH025849A (en) Method and apparatus for reducing alcohol content of alcoholic beverage
JP3447741B2 (en) Liquid filtration method and microfiltration device using MF module
US7651616B2 (en) Apparatus and method for isolating and/or eliminating at least one solute from a solution
JPH07155559A (en) Method of removing component causing fluid to become turbid by microfiltration
JPS6283881A (en) Method and apparatus for adjusting alcohol content of wine oalcoholic beverage
JP2007509145A (en) Method for concentrating extracts of natural theanine
Schnabel et al. Separation of protein mixtures by Bioran® porous glass membranes
US4717482A (en) Production of low alcoholic content beverages
JPH0353875A (en) Purification of mirin
US20110097464A1 (en) Method for liquid processing
JPH03280832A (en) Production of tea drink
JPH0686471B2 (en) Method for producing polyphenols
CN1041390A (en) The method of lowering number of degree and turbidity and removing impurities for white spirit
EP0057785B1 (en) Process for the preparation of a flavored alcoholic beverage
JPH07265055A (en) Fine filteration of beer
JP3676914B2 (en) Method for producing tea beverage
US6033690A (en) Process for pre-conditioning brewer&#39;s wort with beer fermentation products and production of a beer therefrom
JPH10263374A (en) Filter for filtering fermented drink
JPH04222585A (en) Production of drink having low alcohol content
RU1838398C (en) Method for producing vodka