JPH0353802Y2 - - Google Patents

Info

Publication number
JPH0353802Y2
JPH0353802Y2 JP1986142953U JP14295386U JPH0353802Y2 JP H0353802 Y2 JPH0353802 Y2 JP H0353802Y2 JP 1986142953 U JP1986142953 U JP 1986142953U JP 14295386 U JP14295386 U JP 14295386U JP H0353802 Y2 JPH0353802 Y2 JP H0353802Y2
Authority
JP
Japan
Prior art keywords
tube
tip
insulating
electrode
core tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986142953U
Other languages
Japanese (ja)
Other versions
JPS6353375U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986142953U priority Critical patent/JPH0353802Y2/ja
Publication of JPS6353375U publication Critical patent/JPS6353375U/ja
Application granted granted Critical
Publication of JPH0353802Y2 publication Critical patent/JPH0353802Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、軟鋼、ステンレス鋼、アルミニウ
ム、銅、真ちゅう等を溶断するためのプラズマ切
断トーチに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a plasma cutting torch for cutting mild steel, stainless steel, aluminum, copper, brass, etc.

〔従来の技術〕[Conventional technology]

プラズマ切断トーチは、芯管の先端に取付けた
電極と支持筒の先端に取付けた金属チツプの間に
高周波によるパイロツトアークを形成し、このパ
イロツトアークによつて、前記電極と母材間に金
属チツプに形設したプラズマ用孔を通じて主アー
クを発生させるもので、従来前記芯管と支持筒間
には、この間で高周波が飛んでしまうことがない
ように、全体が四弗化エチレン樹脂を始めとする
電気的性質に優れた熱可塑性樹脂でなる絶縁筒が
介設されていた。また、芯管から導入したガスを
作動ガスとしてのみでなく冷却ガスとして有効に
用いることにより電極やチツプを冷却し、これに
よつて前記絶縁筒が過熱状態になるのを防止しよ
うとしていた。
A plasma cutting torch uses high frequency waves to form a pilot arc between an electrode attached to the tip of a core tube and a metal chip attached to the tip of a support tube, and this pilot arc causes the metal tip to be cut between the electrode and the base material. The main arc is generated through a plasma hole formed in the core tube. Conventionally, the entire space between the core tube and the support tube was made of polytetrafluoroethylene resin to prevent high frequency waves from flying between them. An insulating tube made of thermoplastic resin with excellent electrical properties was interposed. Further, the electrodes and chips are cooled by effectively using the gas introduced from the core tube not only as a working gas but also as a cooling gas, thereby preventing the insulating cylinder from becoming overheated.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかしながら、上記のように全体が熱可塑性樹
脂でなる絶縁筒を設けたプラズマ切断トーチで
は、電極やチツプの消耗あるいは冷却ガスの減少
等による芯管及び支持筒の異常発熱により、絶縁
筒の先端部に250℃程度の温度がかかり、これに
よつて絶縁筒が容易に変形したり焼損してしまう
というトラブルが煩出していた。また、従来のプ
ラズマ切断トーチでは100A以上の大容量で使用
しようとした場合にも、前記のような絶縁筒の変
形や焼損といつた問題が生じ、こうした大容量に
対応することができなかつた。即ち、このように
絶縁筒が変形したり焼損したりすると、必要な絶
縁耐力や沿面距離が得られなくなり、高周波が逃
げてしまう等の種々の問題が発生するため、プラ
ズマ切断トーチとしての使用に耐えないことにな
るのである。上記のような絶縁筒の変形は、この
絶縁筒が熱可塑性樹脂でなるため、異常発熱が生
じた際に絶縁筒が蕩けた状態となつて起こるもの
と考えられ、この変形によつて絶縁筒を形成する
樹脂がより高熱な側に流れて焼損してしまつた
り、あるいは変形部分にガス通路が形成されてい
た場合にはこのガス流通路が閉ざされてしまい、
ガスによる冷却効果を受けられなくなつて焼損に
至ることが推測される。
However, in a plasma cutting torch equipped with an insulating tube made entirely of thermoplastic resin as described above, abnormal heat generation in the core tube and support tube due to consumption of electrodes and chips or decrease in cooling gas causes the tip of the insulating tube to Temperatures of around 250°C are applied to the insulating cylinder, which causes troubles such as easily deforming or burning out the insulating cylinder. In addition, when conventional plasma cutting torches are used with a large capacity of 100A or more, problems such as deformation and burnout of the insulating cylinder as described above occur, making it impossible to handle such a large capacity. . In other words, if the insulating tube is deformed or burnt out in this way, it will not be possible to obtain the necessary dielectric strength and creepage distance, and various problems will occur such as high frequency waves escaping, so it should not be used as a plasma cutting torch. It becomes unbearable. The above deformation of the insulating tube is thought to occur because the insulating tube is made of thermoplastic resin, so when abnormal heat generation occurs, the insulating tube collapses, and this deformation causes the insulating tube to collapse. The resin that forms the part flows to the hotter side and burns out, or if a gas passage is formed in the deformed part, this gas flow passage is closed.
It is presumed that the cooling effect of the gas is no longer available, leading to burnout.

本考案は上記のような事情に鑑みてなされたも
のであつて、絶縁筒の保形性を高めて、異常発熱
があつても絶縁筒の変形およびそれに関連する冷
却効果の低下を抑制して、大容量使用においても
その耐久性を十分に向上させることができるプラ
ズマ切断トーチを提供することを目的とする。
The present invention was developed in view of the above-mentioned circumstances, and it improves the shape retention of the insulating tube and suppresses the deformation of the insulating tube and the related decline in cooling effect even in the event of abnormal heat generation. An object of the present invention is to provide a plasma cutting torch whose durability can be sufficiently improved even when used in large capacity.

[問題点を解決するための手段] 上記目的を達成するために、本考案に係るプラ
ズマ切断トーチは、先端に電極を取付けた芯管
に、絶縁耐力が10KV/mm以上の筒状のセラミツ
クスを絶縁耐力が前記セラミツクス以上の耐熱性
の樹脂からなる本体部の電極側先端部に設けた絶
縁筒を外嵌させ、この絶縁筒にその先端にチツプ
を取付けた支持筒を外嵌させて、前記芯管及び支
持筒の露出部分を絶縁材で覆わせ、前記絶縁筒内
または絶縁筒に接した部分に、前記芯管内に導入
したガスを絶縁筒の冷却用ガスとして流動させる
ための冷却ガス流通路を形成したものである。
[Means for Solving the Problems] In order to achieve the above object, the plasma cutting torch according to the present invention has a core tube with an electrode attached to the tip, and a cylindrical ceramic having a dielectric strength of 10 KV/mm or more. An insulating tube provided at the electrode-side tip of the main body made of a heat-resistant resin having a dielectric strength higher than that of the ceramics is fitted onto the outside, and a support tube having a chip attached to the tip thereof is fitted onto the insulating tube, and the above-mentioned Cooling gas distribution for covering the exposed parts of the core tube and the support tube with an insulating material, and causing the gas introduced into the core tube to flow into the inside of the insulating tube or the part in contact with the insulating tube as cooling gas for the insulating tube. It formed a road.

[作用] 上記構成のプラズマ切断トーチによれば、先端
に電極を取付けた芯管に、絶縁耐力が10KV/mm
以上の筒状のセラミツクスを絶縁耐力が前記セラ
ミツクス以上の耐熱性の樹脂からなる本体部の電
極側先端部に設けた絶縁筒を外嵌させ、この絶縁
等にその先端にチツプを取付けた支持筒を外嵌さ
せたことにより、電極やチツプに異常発熱が生じ
た場合にも、最も熱の影響を受け易い前記絶縁筒
の電極側先端部が変形したり焼損してしまうこと
がない。また、絶縁筒の電極側先端部が変形しな
いことにより、絶縁筒全体の変形も抑制され、芯
管と支持筒間の沿面距離が小さくなつたり、絶縁
筒内または絶縁筒に接した部分に形成したガス流
通路が狭められたり閉ざされたりすることもな
い。
[Function] According to the plasma cutting torch with the above configuration, the core tube with an electrode attached to the tip has a dielectric strength of 10 KV/mm.
The above cylindrical ceramic is fitted with an insulating tube provided at the electrode-side tip of the main body made of a heat-resistant resin with a dielectric strength higher than that of the ceramic, and a support tube is fitted with a chip at the tip of the insulator. By fitting the insulating tube externally, even if abnormal heat generation occurs in the electrode or chip, the electrode-side tip of the insulating tube, which is most susceptible to heat, will not be deformed or burnt out. In addition, since the tip of the insulating tube on the electrode side does not deform, the deformation of the entire insulating tube is suppressed, and the creepage distance between the core tube and the support tube is reduced, and the formation of The gas flow path is not narrowed or closed.

〔実施例〕〔Example〕

以下、本考案の実施例を図面に基づいて説明す
る。第1図乃至第5図は本考案の一実施例を示
し、同図において、 1はプラズマ切断トーチとトーチ本体であつ
て、このトーチ本体1はフエノール系あるいはエ
ポキシ系の熱硬化性樹脂でなり、芯管2、絶縁筒
3、支持筒4の上半分を被覆している。
Hereinafter, embodiments of the present invention will be described based on the drawings. Figures 1 to 5 show an embodiment of the present invention, in which reference numeral 1 denotes a plasma cutting torch and a torch body, and the torch body 1 is made of a phenolic or epoxy thermosetting resin. , covers the upper half of the core tube 2, insulating tube 3, and support tube 4.

芯管2は真ちゆうでなりトーチ本体1の中心軸
上に設けられている。この芯管2には中心軸に沿
つて貫通孔2aが貫設されており、且つ先端部外
周に雄ねじ2bが螺設されている。芯管2の先端
には内周に前記雄ねじ2bと螺合する雌ねじ5a
を螺設したキヤツプ状の銅製電極5が取付けられ
ている。5bは電極5の先端中心部に埋め込まれ
たハフニウム等でなるアーク発生部の電極材であ
る。また、前記貫通孔2aには一端側にガス供給
管6が連結されており、このガス供給管6連結側
に近い中間部の内周面には雌ねじ2cが螺設され
ている。そして、貫通孔2aはこの雌ねじ2c螺
設部分よりも電極5側の径が大径に形成されてい
る。前記雌ねじ2cには、前記貫通孔2aの大径
部を軸部と外周部に2分する隔壁用チユーブ7の
一端側外周に螺設した雄ねじ7aが螺合されてい
る。前記隔壁用チユーブ7の他端は芯管2の他端
から突出し、キヤツプ状である電極5の底部との
間に隙間aを設けて設定されている。
The core tube 2 is made of brass and is provided on the central axis of the torch body 1. A through hole 2a is formed through the core tube 2 along the central axis, and a male screw 2b is screwed around the outer periphery of the tip. At the tip of the core tube 2, there is a female thread 5a on the inner periphery that is screwed into the male thread 2b.
A cap-shaped copper electrode 5 with a screw threaded thereon is attached. Reference numeral 5b denotes an electrode material of the arc generating part made of hafnium or the like embedded in the center of the tip of the electrode 5. Further, a gas supply pipe 6 is connected to one end side of the through hole 2a, and a female thread 2c is threaded onto the inner circumferential surface of the intermediate portion near the connection side of the gas supply pipe 6. The through hole 2a is formed to have a larger diameter on the electrode 5 side than the threaded portion of the female screw 2c. A male screw 7a screwed onto the outer periphery of one end side of a partition tube 7 that divides the large diameter portion of the through hole 2a into a shaft portion and an outer peripheral portion is screwed into the female screw 2c. The other end of the partition tube 7 protrudes from the other end of the core tube 2, and is set with a gap a between it and the bottom of the cap-shaped electrode 5.

絶縁筒3は、前記電極5の近傍に構成される真
円筒状の先端部3aとその他の部分を構成する本
体部3bとからなる。本体部3bは例えば絶縁耐
力20KV/mm、連続使用温度250℃のガラス繊維
樹脂が充填されたポリイミド樹脂でなり、前記芯
管2の外周に螺設された雄ねじ2dに、自身の内
周に螺設された雌ねじ3aを螺合させることによ
つて芯管2に外嵌されている。
The insulating tube 3 consists of a true cylindrical tip portion 3a located near the electrode 5 and a main body portion 3b comprising the other portion. The main body part 3b is made of, for example, polyimide resin filled with glass fiber resin with a dielectric strength of 20 KV/mm and a continuous use temperature of 250°C. It is externally fitted onto the core tube 2 by screwing together the provided female thread 3a.

一方、先端部3aは例えば絶縁耐力が10KV/
mm、最高使用温度1600℃のアルミナ系セラミツク
スでなり、前記本体部3bの先端外周に周設した
切欠部と後述する支持筒4の内筒4aの間に嵌合
固定されている。前記本体部3b内には前記芯管
2と隔壁用チユーブ7間に形成された冷却通路8
と連通する冷却用のガス流通路9が形成されてお
り、このガス流通路9は後述する支持筒4内に形
成された筒状空間10に連通しているが、芯管2
と支持筒4の間の沿面距離を十分なものとするた
め、前記ガス流通路9は本体部3内を軸方向に向
けて冷却ガスが移動するよう形成された後、前記
筒状空間10に連通している。また、先端部3a
の外周面には、後述する内筒4aに形成したプラ
ズマ作動ガス流出口12に対向する箇所に、環状
溝13が形成されており、この環状溝13から先
端部3aを貫通してチツプ11と電極5との間の
プラズマ作動ガス流通路14に連通するプラズマ
作動ガス噴出口15が形成されている。そして、
この噴出口15は第4図に示すようにプラズマ作
動ガス流通路14の接線にほぼ沿つている。即
ち、これらプラズマ作動ガス流通路14とプラズ
マ作動ガス噴出口15とで前記ガス流通路9と連
通するガス流通路が形成されている。
On the other hand, the tip portion 3a has a dielectric strength of 10KV/
mm, and is made of alumina-based ceramics with a maximum operating temperature of 1600° C., and is fitted and fixed between a notch provided around the outer periphery of the tip of the main body portion 3b and an inner cylinder 4a of the support cylinder 4, which will be described later. A cooling passage 8 is formed between the core tube 2 and the partition wall tube 7 in the main body portion 3b.
A cooling gas flow passage 9 is formed which communicates with the core pipe 2, and this gas flow passage 9 communicates with a cylindrical space 10 formed in the support tube 4, which will be described later.
In order to provide a sufficient creepage distance between the support tube 4 and the support tube 4, the gas flow passage 9 is formed so that the cooling gas moves in the axial direction within the main body 3, and then the gas flow passage 9 is formed so that the cooling gas moves in the axial direction within the main body 3. It's communicating. In addition, the tip portion 3a
An annular groove 13 is formed on the outer circumferential surface of the inner cylinder 4a at a location opposite to a plasma working gas outlet 12 formed in the inner cylinder 4a, which will be described later. A plasma working gas outlet 15 is formed which communicates with the plasma working gas flow path 14 between the electrode 5 and the plasma working gas flow path 14 . and,
As shown in FIG. 4, this jet port 15 is substantially along a tangent to the plasma working gas flow path 14. That is, these plasma working gas flow passages 14 and plasma working gas jet ports 15 form a gas flow passage that communicates with the gas flow passage 9.

支持筒4は真ちゆうでなり、内筒4aと外筒4
bに分割されており、これらはろう付けされてい
る。内筒4aは前記絶縁筒3に外嵌されており、
下端にはチツプ11がねじ止めされている。また
内筒4aと外筒4bの間には筒状空間10が形成
されており、前述したように前記ガス流通路9と
連通している。前記内筒4aには筒状空間10の
下部近傍に連通するプラズマ作動ガス流出口12
が形成されており、前述したように絶縁筒3の先
端部3b外周面のこのプラズマ作動ガス流出口1
2に対向する箇所には環状溝13が形成されてい
る。
The support tube 4 is made of brass and includes an inner tube 4a and an outer tube 4.
It is divided into parts b, which are soldered together. The inner cylinder 4a is fitted onto the insulating cylinder 3,
A tip 11 is screwed to the lower end. Further, a cylindrical space 10 is formed between the inner cylinder 4a and the outer cylinder 4b, and communicates with the gas flow passage 9 as described above. The inner cylinder 4a has a plasma working gas outlet 12 communicating with the vicinity of the lower part of the cylindrical space 10.
is formed, and as described above, this plasma working gas outlet 1 on the outer peripheral surface of the tip 3b of the insulating cylinder 3
An annular groove 13 is formed at a location facing 2.

一方、外筒4bを貫通して筒状空間10の他端
に連通する冷却ガス流出口16が形成され、その
冷却ガス流出口16は筒状空間10内から斜め下
方へ延びると共に筒状空間10の接線にほぼ沿つ
ている。シードカツプ17は、外筒4bにねじ止
めされると共にチツプ11に中央の貫通孔18が
遊嵌合し、かつチツプ11のフランジ部11aを
内筒4aの下面に押し付けるようにして設けら
れ、該シールドカツプ17の内面のフランジ部1
1aに対向する箇所には周方向適当間隔ごとに冷
却ガス流出溝19が形成されている。
On the other hand, a cooling gas outlet 16 is formed that penetrates the outer cylinder 4b and communicates with the other end of the cylindrical space 10, and the cooling gas outlet 16 extends diagonally downward from inside the cylindrical space 10 and almost along the tangent line. The seed cup 17 is screwed to the outer cylinder 4b, has a central through-hole 18 that loosely fits into the chip 11, and is provided so that the flange 11a of the chip 11 is pressed against the lower surface of the inner cylinder 4a. Flange portion 1 on the inner surface of the cup 17
Cooling gas outflow grooves 19 are formed at appropriate intervals in the circumferential direction at locations facing 1a.

尚、図において20はチツプ11の先端に穿設
されたプラズマ用孔である。また、21はシール
ドカツプ17の外周面に形成した環状溝に嵌合さ
せたトーチ間隔調整用ガイド枠であつて、このガ
イド枠21の下端を工作物Aに当接させてトーチ
と工作物Aとの間の間隔を一定に保つことができ
るようにしている。22はシールドカツプ17と
外筒4bとの間に配設したOリングである。
In the figure, reference numeral 20 indicates a plasma hole drilled at the tip of the chip 11. Reference numeral 21 denotes a guide frame for adjusting the torch spacing, which is fitted into an annular groove formed on the outer peripheral surface of the shield cup 17. This allows the distance between the two to be kept constant. 22 is an O-ring disposed between the shield cup 17 and the outer cylinder 4b.

上記構成において、電極5とチツプ11との間
に高周波放電を先導させてのパイロツトアークを
発生させてから電極5と工作物Aとの間に主アー
クを移行させるわけであるが、電極5の消耗等の
原因により絶縁筒3の環状溝13及び噴出口15
形成部分、即ち先端部3aには、120A定格のプ
ラズマ切断トーチにおいても250℃程度の発熱が
生じることがある。しかしながら、上記プラズマ
切断トーチは、前記先端部3aを最高使用温度
1600℃のアルミナ系セラミツクスで形成している
ため、上記のような発熱によつて前記環状溝13
や噴出口15が変形することがなく、プラズマ作
動ガスがプラズマ作動ガス流通路14に円滑に送
られなかつたり、変形により絶縁耐力が低下した
りすることがない。
In the above configuration, a pilot arc is generated by leading a high-frequency discharge between the electrode 5 and the chip 11, and then the main arc is transferred between the electrode 5 and the workpiece A. Due to wear and tear, the annular groove 13 and spout 15 of the insulating cylinder 3
Even in a plasma cutting torch rated at 120 A, heat of about 250° C. may be generated in the forming portion, that is, the tip portion 3a. However, the plasma cutting torch has the tip portion 3a at the maximum operating temperature.
Since it is made of alumina ceramics heated to 1600°C, the annular groove 13 is heated as described above.
Therefore, the plasma working gas will not be smoothly sent to the plasma working gas flow path 14, and the dielectric strength will not decrease due to deformation.

尚、本考案が上記実施例に限定されないのはも
ちろんであつて、絶縁筒の先端部に用いるセラミ
ツクスは、通常セラミツクスの最高使用温度は
800℃以上であるので絶縁耐力10KV/mm以上で
あれば他のセラミツクスを用いても良い。また、
絶縁筒の本体部には実施例に示すポリイミド樹脂
のような熱硬化性樹脂の他、従来使用されていた
四弗化エチレン樹脂等の熱可塑性樹脂を用いても
よい。しかし、特に本体部に従来絶縁筒の材料と
して用いていた四弗化エチレン樹脂を用いる場合
には、絶縁筒各部の温度分布を知り、セラミツク
スで形成する先端部の範囲を決定する必要があ
る。この他、本考案においては、絶縁筒内もしく
は絶縁筒に接して設けられるガス流通路の形状も
任意に設計変更しうるものである。
It should be noted that the present invention is of course not limited to the above embodiments, and the ceramic used for the tip of the insulating cylinder usually has a maximum operating temperature of
Since the temperature is 800°C or higher, other ceramics may be used as long as the dielectric strength is 10 KV/mm or higher. Also,
In addition to a thermosetting resin such as the polyimide resin shown in the embodiment, a conventionally used thermoplastic resin such as tetrafluoroethylene resin may be used for the main body of the insulating cylinder. However, especially when using tetrafluoroethylene resin, which has conventionally been used as a material for insulating cylinders, for the main body, it is necessary to know the temperature distribution of each part of the insulating cylinder and decide the range of the tip to be formed of ceramics. In addition, in the present invention, the shape of the gas flow passage provided within the insulating cylinder or in contact with the insulating cylinder can also be arbitrarily changed in design.

〔考案の効果〕[Effect of idea]

以上の説明から明らかなように、本考案による
プラズマ切断トーチによれば、芯管と支持筒との
間に介挿する絶縁筒を、絶縁耐力10KV/mm以上
の筒状のセラミツクスを絶縁耐力が前記セラミツ
クス以上の耐熱性の樹脂からなる本体部の電極側
先端部に設けた構成としたことにより、複雑な形
状になる絶縁筒にセラミツクスを用いるものであ
りながらその絶縁筒の製造を容易に行うことがで
きる。しかも、耐熱性が一番要求される電極側先
端部には筒状のセラミツクスが設けられた絶縁筒
であるため、絶縁筒の保形性を向上でき、電極や
チツプの消耗等に起因して芯管や支持管が過熱さ
れることがあつても、この絶縁筒が熱的に変形
し、かつその変形にともなつて絶縁耐力が低下し
たり、さらには絶縁筒内または絶縁筒に接した部
分に形成されている冷却ガス流通路が狭ばめられ
て冷却効果が低下あるいは消失してしまうような
不都合を防止することができる。したがつて絶縁
破壊および高周波の逃げの発生を極力抑制できる
とともに、冷却ガスおよびプラズマ作動ガスの流
量を所定通りに保持することができ、長年月にわ
たる使用においても、また大容量の連続使用にお
いても、所定のプラズマ切断を確実かつ安定良く
行なうことができる。
As is clear from the above description, according to the plasma cutting torch of the present invention, the insulating tube inserted between the core tube and the support tube is made of cylindrical ceramics with a dielectric strength of 10 KV/mm or more. By having the structure provided at the electrode-side tip of the main body made of a resin with a heat resistance higher than that of ceramics, the insulating tube can be easily manufactured even though ceramics are used for the insulating tube, which has a complicated shape. be able to. In addition, since the insulating tube has a cylindrical ceramic at the tip of the electrode side, where heat resistance is most required, the shape retention of the insulating tube can be improved, preventing wear and tear of the electrode and chip. Even if the core tube or support tube is overheated, this insulating tube may be thermally deformed and its dielectric strength may decrease as a result of this deformation. It is possible to prevent the inconvenience that the cooling gas flow passage formed in the portion is narrowed and the cooling effect is reduced or lost. Therefore, the occurrence of dielectric breakdown and high frequency escape can be suppressed to the utmost, and the flow rates of the cooling gas and plasma working gas can be maintained at the specified levels, even during long-term use and large-capacity continuous use. , predetermined plasma cutting can be performed reliably and stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は本考案の一実施例を示し、第
1図は一部切欠き正面図、第2図の第1図の−
矢視図、第3図は第1図の−矢視図、第4
図は第1図の−矢視図、第5図は第1図の
ー矢視図である。 2……芯管、3……絶縁筒、3a……先端部、
3b……本体部、4……支持筒、9……冷却用の
ガス流通路(冷却ガス流通路)。
1 to 5 show an embodiment of the present invention, in which FIG. 1 is a partially cutaway front view, and FIG.
The arrow view, Figure 3 is the - arrow view of Figure 1, Figure 4.
The figure is a view taken along the - arrow in FIG. 1, and FIG. 5 is a view taken along the - arrow in FIG. 2...Core tube, 3...Insulating cylinder, 3a...Tip part,
3b... Body portion, 4... Support tube, 9... Cooling gas flow path (cooling gas flow path).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 先端に電極を取付けた芯管に、絶縁耐力が
10KV/mm以上の筒状のセラミツクスを絶縁耐力
が前記セラミツクス以上の耐熱性の樹脂からなる
本体部の電極側先端部に設けた絶縁筒を外嵌さ
せ、この絶縁筒にその先端にチツプを取付けた支
持筒を外嵌させて、前記芯管及び支持筒の露出部
分を絶縁材で覆わせ、前記絶縁筒内または絶縁筒
に接した部分に、前記芯管内に導入したガスを絶
縁筒の冷却用ガスとして流動させるための冷却ガ
ス流通路を形成したことを特徴とするプラズマ切
断トーチ。
The dielectric strength of the core tube with an electrode attached to the tip is
A cylindrical ceramic of 10 KV/mm or more is fitted with an insulating tube provided at the tip of the electrode side of the main body made of a heat-resistant resin with a dielectric strength higher than that of the ceramic, and a chip is attached to the tip of the insulating tube. A support tube is fitted onto the outside of the core tube and the exposed portions of the support tube are covered with an insulating material, and the gas introduced into the core tube is used to cool the insulating tube, and the exposed portions of the core tube and the support tube are covered with an insulating material. 1. A plasma cutting torch characterized in that a cooling gas flow path is formed for flowing a cooling gas.
JP1986142953U 1986-09-18 1986-09-18 Expired JPH0353802Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986142953U JPH0353802Y2 (en) 1986-09-18 1986-09-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986142953U JPH0353802Y2 (en) 1986-09-18 1986-09-18

Publications (2)

Publication Number Publication Date
JPS6353375U JPS6353375U (en) 1988-04-09
JPH0353802Y2 true JPH0353802Y2 (en) 1991-11-26

Family

ID=31052179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986142953U Expired JPH0353802Y2 (en) 1986-09-18 1986-09-18

Country Status (1)

Country Link
JP (1) JPH0353802Y2 (en)

Also Published As

Publication number Publication date
JPS6353375U (en) 1988-04-09

Similar Documents

Publication Publication Date Title
US7605340B2 (en) Apparatus for cooling plasma arc torch nozzles
US6156995A (en) Water-injection nozzle assembly with insulated front end
US8933364B2 (en) High current electrode for a plasma arc torch
US5897059A (en) Nozzle for use in a torch head of a plasma torch apparatus
US8575510B2 (en) Nozzle for a liquid-cooled plasma burner, arrangement thereof with a nozzle cap, and liquid-cooled plasma burner comprising such an arrangement
US5451739A (en) Electrode for plasma arc torch having channels to extend service life
US5756959A (en) Coolant tube for use in a liquid-cooled electrode disposed in a plasma arc torch
US3858072A (en) Plasma torch with axial supply of the stabilizing gas
JPH0450865B2 (en)
JPH0353803Y2 (en)
JPH0353802Y2 (en)
JPH0353801Y2 (en)
JPH11285834A (en) Plasma welding torch and its parts
JP3784039B2 (en) Plasma torch and its parts
JPH11285835A (en) Plasma torch
JP2686535B2 (en) torch
GB2355379A (en) Plasma torch electrode
JP2568439Y2 (en) Plasma torch
JPH0329023Y2 (en)
JP4391847B2 (en) Plasma welding torch
JPH0539834Y2 (en)
RU2778889C1 (en) Plasma torch for surfacing the inner surface with powder material
JP2557429Y2 (en) Consumable electrode torch
JPS62124079A (en) Plasma arc cutting torch
JPH1094877A (en) Nozzle construction of plasma torch