JPH0353581A - Manufacture of semiconductor laser device - Google Patents

Manufacture of semiconductor laser device

Info

Publication number
JPH0353581A
JPH0353581A JP18954989A JP18954989A JPH0353581A JP H0353581 A JPH0353581 A JP H0353581A JP 18954989 A JP18954989 A JP 18954989A JP 18954989 A JP18954989 A JP 18954989A JP H0353581 A JPH0353581 A JP H0353581A
Authority
JP
Japan
Prior art keywords
layer
mask
type gaas
conductivity type
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18954989A
Other languages
Japanese (ja)
Inventor
Seiji Kawada
誠治 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18954989A priority Critical patent/JPH0353581A/en
Publication of JPH0353581A publication Critical patent/JPH0353581A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor laser which is small in astigmatism by a method wherein a mesa stripe is formed using an insulating film as a mask for selective growth so as to enable both the ends of the mask to extend much from the edge of the mesa stripe. CONSTITUTION:An N-type (Al0.6Ga0.4)0.5In0.5P layer 2, an active layer 3, a clad layer 4, and a cap layer 5 are successively formed on an N-type GaAs substrate 1 through a low pressure MOVPE method. A stripe-like SiO2 mask 9 7mum in width is formed through photolithography, the cap layer 5 is selectively etched into a mesa shape 3mum in width, in succession the layers under the layer 5 are etched. Thereafter, leaving the mask as it is, a second growth is carried out to form an N-type GaAs layer 6. After the mask is removed, a third growth is executed to form a buried layer 7 and a contact layer 8. Lastly, a P and an N electrodes are formed, and the substrate 1 is so cleaved as to make a cavity 250mum in length and separated into chips.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は単一横モードで発゛録するA I G aIn
P系の半導体レーザ装置の製造方法に関する.(従来の
技術) 最近、有機金属熱分解法(以後MOVPEと略す》によ
る結晶成長により形成された単一横モードで発振するA
IGaInP系の半導体レーザ装置として、第3図に示
すような#4nが報告されている(Extended 
Abstracts of the 18th Con
ference on Solid State De
vices and Materials,Toky0
.1988.DD.153 − 156).このjfR
遣は従来、次のような工程で作られる.即ち、第1回目
の成長でn型GaAs基板1上に、n型(AlosG 
ao.< ) o.s I no.s Pクラッド層2
、Gao.s I no.s P活性層3、p型(AI
(1.GEho.* ) o.s I no.s Pク
ラッド層4、を順次形成する.その後、フォトリングラ
フィにょりSinsをマスクとして、メサストライプを
形成する.そしてS l otマスクをつけたまま、第
2回目の成長を行い、エッチングしたところをn型Ga
As層6で埋め込む.次にS I O 2マスクを除去
しp側全面に電極が形成できるように第3回目の戒長で
P型GaAsコンタクト層8を成長ずる. このようなS造においては、電流はn型GaAs層6に
よりブロックされメサストライプ部にのみ注入される.
また、メサストライプ形成のエッチングのときに、メサ
ストライ1部以外のp型クラッド層の厚みを光の閉じ込
めには不十分な厚みにまでエッチングするのでn型Ga
As層6のある部分では、このn型GaAs層6に光が
吸収されメサストライプ部にのみ光は導波される.この
ようにこのI造では、電流狭窄R横と光導波機構が同時
に作り付けられる. (発明が解決しようとする課題) 上述の従来の製造方法により得られる第3図の梢遺では
、モードの安定に光の吸収を用いているために、メサス
トライプ両脇で光の波面が遅れてしまい、非点収差が大
きくなってしまうという問題がある. 本発明の14的は、上述の問題点を解決し、MOVPE
法による非点収差の小さい横モード制御横造のAIGa
InP系半導体レーザ装置の製造方法を提供することに
ある. (課題を解決するための手段) 前述の課題を解決するために本発明による半導体レーザ
装置の製造方法では、第1導電型G aAs基板上に、
活性層およびこの活性層をはさみ前記活性層よりも屈折
率の小さいクラッド層からなる(A lm Ga+−g
 ) o.s  I no.s P (0≦x≦1》系
のダブルヘテロII mを形成する工程と、前記ダブル
ヘテロ構造上に第2導電型のGaAs系半導体層を形成
する工程と、前記第2導電型のG a A.s系半導体
層上にストライプ状の絶縁体層を形成する工程と、前記
第2導電型のGaAs系半導体層を前記ストライプ状の
絶縁体層をマスクとして、エッチング後の前記第2導電
型のGaAs系半導体層の端とストライプ状の絶縁体層
のマスクの端との距離が、第2導電型のGaAs系半導
体層と上側のクラッド層の厚みの和より大きくなるよう
にエッチングする工程と、前記ダブルヘテロ構造の下側
のクラッド層の途中までこれをエッチングしてメサ状の
ストライプを形成する工程と、前記ストライプ状の絶縁
体層を選択マスクとして有機金属熱分解気相或長法で第
1導電型GaAsまたはGaInPをメサ状のストライ
プ以外の部分へ形成する工程と、前記−ストライプ状の
絶縁体眉を除去し第2導電型で活性層よりも屈折率の小
さい(A I K Ga+−x ) o.s I no
.s P層を形戊する工程を含む. (作用) AIGaInP系の場合、液相成長法では成長が困龍で
、MOVPE法でもS i 0 2などをマスクとした
選択成長は困難である。そこで本発明ではダブルヘテロ
構造を形成した後に絶縁体膜を選択成長のマスクとし、
このマスクの両端が大きく突き出たようになるメサスト
ライプを形戚ずる.こうすることによりマスクの影にな
る部分には原料ガスが到達できずメサ以外の部分にのみ
電流狭窄層を自己整合的に形成できる.そしてマスクを
除去した後に、活性層よりも屈折率の小さい(A l 
z Ga+−* ) o.s I no.s P層を形
成すれば活性層の両端もこの層で埋め込まれ実屈折型の
レーザ横遣が実現でき弁点収差の小さなレーザが得られ
る. (実施例) 次に本発明の実施例を図面を用いて説明する.第1図は
本発明により得られる半導体レーザ装置の一実施例を示
すレーザチツプの断面図であり、第2図(a)〜(d)
は本発明によるレーサ装置の一実施例を示す製造工程図
である. まず一回目の減圧MOVPEによる成長で、n型GaA
s基板1上に、n型(A I 0.6 Gao.< )
o.s I no.s P層2、Gao.s I no
 % P活性噌3、P型(A I o.h G &o.
< ) o.s I no.s Pクラッド層4、p型
GaAsキャップ層5を順次形成する,成長条件は、例
えば温度700℃、圧力70’l”orr、V/1 1
 1=200、キャリアガス(H1)の全流量151/
minとする.原料としては、トリメチルインジウム(
’I’MI:(CHs )3 In)  }リエチルガ
リウム(TEG : (CI Hs )x Ga) 、
}’リメチルアルミニウム(TMA : ( CHs 
) s A 1 ) 、アルシン(AsH,)、ホスフ
イン(PH3)、n型ドーパント:セレン化水素(H−
t Se ) 、P型ドーパント:ジメチルジンク(D
MZ :(CH3 ) x Z n )が用いられる.
こうして或長したウエハにフォトリングラフイにより幅
7μmのストライプ状のS i O 2マスク9を形成
する(第2図<a)).次に、このSto2マスク9を
用いてp型GaAs’rヤツプ層5を例えば幅3μmに
なるまで選択的にメサ状にエッチングし、引き続いて、
n型( A I o.  G ao.< ) o.sI
no.s Pl2、G ao.s I n o.q P
活性層3.p型(A I o.a G&o4) o.s
 I no.s PクラッドM4をn型(A l o.
6 G ao.4) o.s I n。.P層2の途中
までエッチングする(第2図(b)).ここで、p型G
 a A s ’r ヤツ7層5のエッチング幅3μm
は、エッチング後のp型GaAsキャップ層5の端とス
トライプ状のSiOzWA9のマスクの端との距離が、
p型GaAsキャップ層5と上側のクラッド層4の厚み
の和より大きくなるように選定されたものである.その
後S i O 2マスク9をつけたまま減圧MOVPH
により二回目の或長を行いn型GaAs層6を形成する
(第2図(c)).そしてS I O 2マスク9を除
去した後に、減圧MOVPEにより三回目の成長を行い
p型(A I o. 6Gao.4) o.s I n
o.s Pj!lめ込み層7、p型GaAsコンタクト
層8を形成する.最後に、P + n両電極を形成して
キャビティ長250μmにへき関し、個々のチップに分
離する.以上の工程により得られた半導体レーザ装置の
断面図が第1図に示され、本半導体レーザ装置の非点収
差は2μm以下であることが実験的に確認された.この
値は従来方法による半導体レーザ装置の非点収差5〜1
0μmと比較して大幅に改善されていることがわかる. 以上述べた実施例では、活性層を特定の組戒としたが、
これらは本発明の要件を満たす範囲で、活性層は制作す
るレーザ装置に要求される発振波長要件を満たす組成や
量子井戸にすればよく、クラッド層組戒は用いる活性層
組戒に対して光とキャリアの閉じ込めが十分にできる組
成を選べばよい.また、レーザ装置に要求される特性に
よりSCHIl造にするなどクラッド層をより多層化す
ることもできる. (発明の効果) 以上説明したように本発明による半導体レーザ装置の製
造方法に基づけば非点収差の小さい半導体レーザを得る
ことができる.
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention provides an AIG aIn that records in a single transverse mode.
This article relates to a method for manufacturing a P-based semiconductor laser device. (Prior art) Recently, A that oscillates in a single transverse mode is formed by crystal growth using metal organic pyrolysis (hereinafter abbreviated as MOVPE).
As an IGaInP-based semiconductor laser device, #4n as shown in Fig. 3 has been reported (Extended
Abstracts of the 18th Con
ference on Solid State De
vices and Materials, Tokyo0
.. 1988. D.D. 153-156). This jfR
Traditionally, kashi is made using the following process. That is, in the first growth, n-type (AlosG) is grown on the n-type GaAs substrate 1.
ao. < ) o. s I no. s P cladding layer 2
, Gao. s I no. s P active layer 3, p type (AI
(1.GEho.*) o. s I no. S P cladding layers 4 are sequentially formed. Thereafter, mesa stripes are formed using photolithography using the Sins as a mask. Then, with the S lot mask on, a second growth was performed, and the etched area was grown as n-type Ga.
Embed with As layer 6. Next, the SIO 2 mask is removed, and a P-type GaAs contact layer 8 is grown in a third step so that an electrode can be formed on the entire p-side surface. In such an S structure, current is blocked by the n-type GaAs layer 6 and is injected only into the mesa stripe portion.
In addition, when etching to form a mesa stripe, the thickness of the p-type cladding layer other than the first mesa stripe is etched to a thickness insufficient for confining light, so the n-type Ga
In a certain portion of the As layer 6, light is absorbed by the n-type GaAs layer 6 and is guided only to the mesa stripe portion. In this way, in this I structure, the current confinement R side and the optical waveguide mechanism are built at the same time. (Problems to be Solved by the Invention) In the canopy shown in Figure 3 obtained by the conventional manufacturing method described above, since light absorption is used to stabilize the mode, the wavefront of light is delayed on both sides of the mesa stripe. The problem is that astigmatism becomes large. The fourteenth aspect of the present invention is to solve the above-mentioned problems and to
AIGa with transverse mode control horizontal construction with small astigmatism
An object of the present invention is to provide a method for manufacturing an InP-based semiconductor laser device. (Means for Solving the Problems) In order to solve the above-mentioned problems, in the method for manufacturing a semiconductor laser device according to the present invention, on a first conductivity type GaAs substrate,
It consists of an active layer and a cladding layer sandwiching this active layer and having a refractive index lower than that of the active layer (Alm Ga+-g
) o. s I no. a step of forming a double hetero II m of s P (0≦x≦1) system, a step of forming a GaAs-based semiconductor layer of a second conductivity type on the double hetero structure, and a step of forming a GaAs-based semiconductor layer of the second conductivity type. A. A step of forming a striped insulator layer on the s-based semiconductor layer, and etching the GaAs-based semiconductor layer of the second conductivity type using the striped insulator layer as a mask. etching so that the distance between the edge of the GaAs-based semiconductor layer and the edge of the mask of the striped insulator layer is greater than the sum of the thicknesses of the second conductivity type GaAs-based semiconductor layer and the upper cladding layer; , etching the lower cladding layer of the double heterostructure halfway to form a mesa-like stripe, and using the stripe-like insulator layer as a selective mask using an organometallic pyrolysis vapor phase or lengthening method. A process of forming GaAs or GaInP of the first conductivity type in a portion other than the mesa-shaped stripes, and removing the stripe-shaped insulator layer to form GaAs or GaInP of the second conductivity type and having a lower refractive index than the active layer (AIK Ga+ -x ) o.s I no
.. s Including the step of shaping the P layer. (Function) In the case of the AIGaInP system, growth is difficult with the liquid phase growth method, and selective growth using Si 0 2 as a mask is difficult even with the MOVPE method. Therefore, in the present invention, after forming a double heterostructure, an insulating film is used as a mask for selective growth.
The ends of this mask are shaped like mesa stripes that protrude greatly. By doing this, the source gas cannot reach the parts that are in the shadow of the mask, and the current confinement layer can be formed in a self-aligned manner only in parts other than the mesa. Then, after removing the mask, the refractive index is smaller than that of the active layer (A l
zGa+-*) o. s I no. If the sP layer is formed, both ends of the active layer are also filled with this layer, and a real refraction type laser can be realized, and a laser with small valve point aberration can be obtained. (Example) Next, an example of the present invention will be explained using drawings. FIG. 1 is a sectional view of a laser chip showing one embodiment of a semiconductor laser device obtained by the present invention, and FIGS. 2(a) to (d)
1 is a manufacturing process diagram showing an embodiment of a laser device according to the present invention. First, in the first low-pressure MOVPE growth, n-type GaA
On the s-substrate 1, an n-type (A I 0.6 Gao.<)
o. s I no. s P layer 2, Gao. s I no
% P active 3, P type (A I o.h G & o.
< ) o. s I no. The growth conditions for sequentially forming the sP cladding layer 4 and the p-type GaAs cap layer 5 are, for example, a temperature of 700°C, a pressure of 70'l"orr, and a V/1 1
1=200, total flow rate of carrier gas (H1) 151/
Let it be min. The raw material is trimethylindium (
'I'MI:(CHs)3In)}ethylgallium(TEG:(CIHs)xGa),
}'Remethylaluminum (TMA: (CHs
) s A 1 ), arsine (AsH, ), phosphine (PH3), n-type dopant: hydrogen selenide (H-
tSe), P-type dopant: dimethyl zinc (D
MZ:(CH3) x Zn) is used.
A striped SiO 2 mask 9 with a width of 7 μm is formed on the elongated wafer by photophosphorography (FIG. 2<a)). Next, using this Sto2 mask 9, the p-type GaAs'r layer 5 is selectively etched into a mesa shape until it has a width of, for example, 3 μm, and subsequently,
n-type (A I o. G ao. < ) o. sI
no. s Pl2, Gao. s I no. qP
Active layer 3. p-type (AI o.a G&o4) o. s
I no. s P clad M4 to n type (A lo.
6 G ao. 4) o. s I n. .. Etch the P layer 2 to the middle (Fig. 2(b)). Here, p-type G
a A s 'r guy 7 layer 5 etching width 3μm
is the distance between the edge of the p-type GaAs cap layer 5 after etching and the edge of the striped SiOzWA 9 mask,
The thickness is selected to be larger than the sum of the thicknesses of the p-type GaAs cap layer 5 and the upper cladding layer 4. Afterwards, depressurize MOVPH while wearing the S i O 2 mask 9.
A second elongation process is performed to form an n-type GaAs layer 6 (FIG. 2(c)). After removing the S I O 2 mask 9, a third growth is performed by low pressure MOVPE to form a p-type (AI o. 6 Gao. 4) o. s I n
o. sPj! A p-type GaAs contact layer 8 is formed. Finally, both P + n electrodes are formed and separated into individual chips with a cavity length of 250 μm. A cross-sectional view of the semiconductor laser device obtained through the above steps is shown in FIG. 1, and it has been experimentally confirmed that the astigmatism of this semiconductor laser device is 2 μm or less. This value corresponds to the astigmatism of the conventional semiconductor laser device of 5 to 1
It can be seen that there is a significant improvement compared to 0 μm. In the embodiments described above, the active layer is a specific set of precepts, but
As long as these satisfy the requirements of the present invention, the active layer may have a composition or quantum well that satisfies the oscillation wavelength requirements for the laser device being manufactured, and the cladding layer structure may be optically optical with respect to the active layer structure to be used. It is sufficient to choose a composition that can sufficiently confine carriers. Furthermore, depending on the characteristics required for the laser device, the cladding layer can be made more multilayered, such as by using a SCHIl structure. (Effects of the Invention) As explained above, based on the method of manufacturing a semiconductor laser device according to the present invention, a semiconductor laser with small astigmatism can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により得られる半導体レーザ装置の一実
施例を示す断面図、第2図(a)〜(d)は本発明の制
作工程を示す断面図、第3図は従来の半尋体レーザ装置
の例を示す断面図である.1 −−− n型GaAs基
板、2−n型(AI.,aG ao.* ) o.s 
I no.g Pクラッド層、3・・・G ao.s 
I no.s P活性層、4 ・p型(AI0.4Ga
o,) o.s I no.i Pクラッド層、5−P
型GaAsキャップ層、6−n型GaAs層、7 ・p
型(A l o.a G ao.a ) o.s I 
no.s P埋め込み層、8・・・p型GaAsコンタ
クト層、9・・・st021模,
FIG. 1 is a cross-sectional view showing an embodiment of a semiconductor laser device obtained by the present invention, FIGS. 2(a) to (d) are cross-sectional views showing the manufacturing process of the present invention, and FIG. FIG. 2 is a cross-sectional view showing an example of a body laser device. 1 --- n-type GaAs substrate, 2-n type (AI., aG ao. *) o. s
I no. g P cladding layer, 3...G ao. s
I no. s P active layer, 4 ・p type (AI0.4Ga
o,) o. s I no. i P cladding layer, 5-P
type GaAs cap layer, 6-n type GaAs layer, 7 ・p
Type (A lo.a G ao.a ) o. s I
no. s P buried layer, 8... p-type GaAs contact layer, 9... st021 model,

Claims (1)

【特許請求の範囲】[Claims]  第1導電型GaAs基板上に、活性層およびこの活性
層をはさみ前記活性層よりも屈折率の小さいクラッド層
からなる(Al_xGa_1_−_x)_0_._51
n_0_._5P(0≦x≦1)系のダブルヘテロ構造
を形成する工程と、前記ダブルヘテロ構造上に第2導電
型のGaAs系半導体層を形成する工程と、前記第2導
電型のGaAs系半導体層上にストライプ状の絶縁体層
を形成する工程と、前記第2導電型のGaAs系半導体
層を前記ストライプ状の絶縁体層をマスクとして、エッ
チング後の前記第2導電型のGaAs系半導体層の端と
ストライプ状の絶縁体層のマスクの端との距離が、第2
導電型のGaAs系半導体層と上側のクラッド層の厚み
の和より大きくなるようにエッチングする工程と、前記
ダブルヘテロ構造の下側のクラッド層の途中までこれを
エッチングしてメサ状のストライプを形成する工程と、
前記ストライプ状の絶縁体層を選択マスクとして有機金
属熱分解気相成長法で第1導電型GaAsまたはGaI
nPをメサ状のストライプ以外の部分へ形成する工程と
、前記ストライプ状の絶縁体層を除去し第2導電型で活
性層よりも屈折率の小さい(Al_xGa_1_−_x
)_0_._5In_0_._5P層を形成する工程を
含むことを特徴とする半導体レーザ装置の製造方法。
On a first conductivity type GaAs substrate, an active layer and a cladding layer sandwiching the active layer and having a lower refractive index than the active layer are formed (Al_xGa_1_-_x)_0_. _51
n_0_. a step of forming a _5P (0≦x≦1)-based double heterostructure, a step of forming a second conductivity type GaAs-based semiconductor layer on the double heterostructure, and a step of forming the second conductivity type GaAs-based semiconductor layer a step of forming a striped insulator layer on the second conductivity type GaAs-based semiconductor layer, and etching the second conductivity type GaAs-based semiconductor layer using the striped insulator layer as a mask; The distance between the edge and the edge of the mask of the striped insulator layer is the second
A process of etching the conductive type GaAs-based semiconductor layer so that the thickness is greater than the sum of the thicknesses of the upper cladding layer, and etching this to the middle of the lower cladding layer of the double heterostructure to form mesa-shaped stripes. The process of
Using the striped insulator layer as a selective mask, the first conductivity type GaAs or GaI is grown by metal organic pyrolysis vapor phase epitaxy.
A step of forming nP in a part other than the mesa-shaped stripes, and removing the striped insulating layer to form nP with a second conductivity type and a lower refractive index than the active layer (Al_xGa_1_-_x
)_0_. _5In_0_. A method for manufacturing a semiconductor laser device, comprising the step of forming a _5P layer.
JP18954989A 1989-07-21 1989-07-21 Manufacture of semiconductor laser device Pending JPH0353581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18954989A JPH0353581A (en) 1989-07-21 1989-07-21 Manufacture of semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18954989A JPH0353581A (en) 1989-07-21 1989-07-21 Manufacture of semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH0353581A true JPH0353581A (en) 1991-03-07

Family

ID=16243179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18954989A Pending JPH0353581A (en) 1989-07-21 1989-07-21 Manufacture of semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH0353581A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733607B2 (en) * 2002-04-15 2004-05-11 Harris Corporation Embedded hermetic cavity formation in low temperature cofired ceramic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733607B2 (en) * 2002-04-15 2004-05-11 Harris Corporation Embedded hermetic cavity formation in low temperature cofired ceramic

Similar Documents

Publication Publication Date Title
JPH08107251A (en) Manufacture of reflection digital tuning laser
JPH07235732A (en) Semiconductor laser
JPH07221392A (en) Quantum thin wire and its manufacture, quantum thin wire laser and its manufacture, manufacture of diffraction grating, and distributed feedback semiconductor laser
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
JP2564813B2 (en) A (1) GaInP semiconductor light emitting device
JP2894186B2 (en) Optical semiconductor device
JPH0353581A (en) Manufacture of semiconductor laser device
JP2550725B2 (en) Semiconductor laser and manufacturing method thereof
JP2973215B2 (en) Semiconductor laser device
JP3472739B2 (en) Manufacturing method of semiconductor laser
JP2699662B2 (en) Semiconductor laser and manufacturing method thereof
JP2611509B2 (en) Semiconductor laser
JPH0437598B2 (en)
JPH11346033A (en) Semiconductor laser and manufacture thereof
JPH0329385A (en) Semiconductor laser and its manufacturing method
JPH11284276A (en) Semiconductor laser device and its manufacture
JPH04154184A (en) Semiconductor laser and manufacture thereof
JPH01244690A (en) Semiconductor laser device
JPH04106991A (en) Semiconductor laser
JPS6317586A (en) Semiconductor laser
JP2679358B2 (en) Semiconductor laser device
JPH03185889A (en) Semiconductor laser element and manufacture thereof
JP2812187B2 (en) Manufacturing method of semiconductor laser
JPH06283804A (en) Distributed reflector laser and fabrication thereof
JP3911342B2 (en) Manufacturing method of semiconductor laser device