JPH0353289B2 - - Google Patents

Info

Publication number
JPH0353289B2
JPH0353289B2 JP22097384A JP22097384A JPH0353289B2 JP H0353289 B2 JPH0353289 B2 JP H0353289B2 JP 22097384 A JP22097384 A JP 22097384A JP 22097384 A JP22097384 A JP 22097384A JP H0353289 B2 JPH0353289 B2 JP H0353289B2
Authority
JP
Japan
Prior art keywords
pressure
gas
liquid
medium
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22097384A
Other languages
Japanese (ja)
Other versions
JPS61100531A (en
Inventor
Takeshi Suzuki
Toshihiko Hirose
Hiroshi Kondo
Hiroyuki Yokohata
Masayuki Uchida
Itsupeita Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP22097384A priority Critical patent/JPS61100531A/en
Publication of JPS61100531A publication Critical patent/JPS61100531A/en
Publication of JPH0353289B2 publication Critical patent/JPH0353289B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/12Refinery or petrochemical off-gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「発明の目的」 [産業上の利用分野] この発明は、オレフインを含む多種類の中低級
炭化水素が主成分として含有される高圧ガス流が
冷却され、この冷却により得られる上記炭化水素
の混合凝縮液からメタンが深冷分離される方法に
関する。 更に詳しく言えば、この発明は、該高圧ガス流
が冷却された際に得られる炭化水素を主成分とす
る凝縮液からその中に含有されるメタンの分離
が、少ない動力消費量で実施出来る方法に関す
る。 [従来の技術] 炭素原子数2以上の脂肪族炭化水素類あるいは
これらの混合物が熱分解され、例えばエチレン、
プロピレン、ブチレンの如きオレフイン類を含む
多種類の中低級炭化水素を主成分として含有する
原料ガスが製造され、この原料ガスから所望の成
分が深冷分離法によつて分離されることが、例え
ばナフサを原料とするエチレンの製法として大規
模に実施されている。上記の如きオレフインを含
む多種類の中低級炭化水素を主成分として含有す
る原料ガスから深冷分離法によつて所望の成分を
分離する方法としては、先づ上記原料ガスが20〜
50Kg/cm2Gの圧力に圧縮されて高圧ガス流とさ
れ、次にこの高圧ガス流が−120℃あるいはこの
温度以下にまで冷却され、冷却過程で遂次的に凝
縮生成する炭化水素類の各混合液がそれぞれ未凝
縮ガスから分離され、その組成に応じて精留に付
される方法が一般的に使用される。上記の如き一
般的方法のうちにおいて、炭化水素類の凝縮液を
得る為に高圧ガス流が冷却される為の方法とし
て、プロピレンあるいはプロパン等を冷媒とし、
この冷媒が高圧ガス流と混合されることのない圧
縮→冷却(水冷)液化→減圧→熱交換蒸発→熱交
換昇温→再圧縮からなる繰返し工程に循環させら
れる冷凍法、即ち冷媒流が原料および製品のガス
流から独立した閉鎖型冷凍サイクル、およびエチ
レン又はエタンを冷媒として同様に行なう閉鎖型
冷凍サイクルの両者の併用法が最も一般的に使用
されている。又各凝縮液が精留に付される際に
は、最も沸点の低い炭化水素であるメタンが最初
に分離される方法が最も一般的方法として実施さ
れている。上記の如き最も一般的な従来法は動力
消費量が多く改善が望まれている方法であつて、
以下にその内容を簡単に説明する。 第2図は上記の最も一般的方法に工程の主要部
を模式的に図示したものである。原料ガスは管1
から圧縮機C−1に吸入され、圧縮後20〜50Kg/
cm2Gの高圧ガス流として管2から吐出され、一旦
水冷却器W−1により間接的に冷却され、水分お
よびその他の深冷分離に障害となる物質の除去の
如き予備処理が実施された後(この予備処理装置
が図面において省略されている)、管3を経て深
冷分離器の熱交換器H−1に流入させられる。熱
交換器H−1は、この高圧ガス流と高圧ガス流よ
り温度の低い分離済の高圧ガス流中の各成分、前
記の閉鎖型冷凍サイクル中を循環させられる冷媒
等とを所望に応じて熱交換させ、高圧ガス流を冷
却する為の熱交換器であつて、高圧ガス流と熱交
換すべき低温側の流体用として少なくとも1個通
常2個以上の通路を有し、これら通路数および各
通路毎の伝熱面積は所望に応じて自由に設計可能
な熱交換器である。第2図では、熱交換器H−1
に4個の低温側流体の通路R−1,R−2,R−
3,R−4を設けた例が記載されているが、この
通路数に関しては4個に限定されるものではな
い。又第2図および後記に説明する第3および第
1図において記号Hが付された他の熱交換器H−
2,H−3,H−4,H−5,H−11,H−1
2,H−13,H−14,H−15,H−16等
は全て上記熱交換器H−1と同様に単数または複
数の高温側流体通路と単数または複数の低温側流
体通路を有する熱交換器である。熱交換器H−1
において高圧ガス流は通路R−1に供給される前
記プロピレン冷媒の閉鎖型冷凍サイクルによる液
体プロピレンおよび通路R−2,R−3,R−4
等が通過させられるより温度の低い工程において
分離された原料ガス中の各成分等と熱交換して冷
却される。通路R−1に供給される液体プロピレ
ンは、プロピレンを循環冷媒とする閉鎖型冷凍サ
イクル、即ち圧縮機C−2において循環プロピレ
ンが圧縮され、この圧縮プロピレンが水冷却器W
−2において間接的に冷却液化され、管L−11
から取出される加圧液化プロピレンの一部が減圧
されることにより製させられたものである。この
通路R−1において高圧ガス流と熱交換させられ
て蒸発するプロピレンは、必要に応じ更に他の熱
交換器で昇温させられた後、他の工程において同
様に蒸発昇温させられたプロピレンと共に、圧縮
機C−2の吸入口に再循環させられ再使用され
る。即ちこの循環プロピレンは、高圧ガス流およ
びこの高圧ガス流が各成分に分離された後のガス
流から隔離された独立の閉鎖型冷凍サイクルを形
成している。以後の説明においては、この閉鎖型
冷凍サイクルにおいて圧縮冷却液化させられた後
減圧された液体プロピレンおよび液体エチレンを
それぞれ循環冷媒プロピレンおよび循環冷媒エチ
レンと呼ぶ。高圧ガス流は熱交換器H−1におい
て上記熱交換により約−40℃に冷却され、その際
高圧ガス流中の一部の比較的高沸点の炭化水素が
混合物として凝縮させられる。この凝縮分を含む
高圧ガス流が管4を経て分離器S−1に導入さ
れ、凝縮液が未凝縮ガスから分離される。凝縮液
は管L−1から抜き出され、減圧の後中圧精留塔
D−1のこの液の組成に応じた所定の位置に供給
される。一方未凝縮ガスは管5を経て熱交換器H
−2に導入され、熱交換器H−1におけると同
様、高圧ガス流が各成分に分離された後のより低
温にあるガス流等と熱交換して更に冷却される
が、熱交換器H−2においては、高圧ガス流がH
−1の場合より低温に冷却される為、H−2の通
路R−1(図にはこの番号を付していない)には
循環冷媒エチレンが供給される。循環冷媒エチレ
ンは、前記循環冷媒プロピレンの場合と同様、冷
媒エチレン流が高圧ガス流およびその各成分への
分離ガス流から独立させられた閉鎖型冷凍サイク
ル用循環冷媒として使用され、圧縮機C−3にて
圧縮されたこの冷媒エチレンが水冷却器W−3に
より冷却され、更に熱交換器H−11における循
環冷媒フロピレンの一部との熱交換により冷却液
化されて管L−12を経て取出されたた後、その
一部が減圧されたものである。この循環冷媒エチ
レンは熱交換器H−2以上にも使用されるが、使
用後の全ての循環冷媒エチレンは圧縮機C−3の
吸入口に再循環され再使用される。この様な熱交
換器H−2における冷却により、高圧ガス流中に
おいては再び残存炭化水素の一部が凝縮し、凝縮
液分と未凝縮ガスが管6経由で分離器S−2に導
入され、凝縮液が未凝縮ガスから分離される。分
離された凝縮液は管L−2から抜き出され、減圧
の後この液の組成に応じて中圧精留塔D−1の所
定個所に供給される。 分離器S−2において分離された未凝縮ガスは
管7から取出され、熱交換器H−3に導入され、
上記同様に更に冷却され管8を経て分離器S−3
に入り、凝縮液と未凝縮ガスに分離される。凝縮
液は管L−3から取出され、減圧後この液の組成
に応じて中圧精留塔D−1の所定個所に供給され
る。分離器S−3における未凝縮ガスは管9を経
て熱交換器H−4に導入され、更に冷却されて−
120℃〜−140℃に達し、管10を経て分離器S−
4に導入され、これ冷却に際し生成する凝縮液は
分離器S−4において分離され管L−4から取出
され、減圧後にこの液の組成に応じて中圧精留塔
の所定個所に供給される。分離器S−4における
未凝縮ガスは管11から取出され、必要に応じ熱
交換器H−5において更に冷却されることが出来
るが、熱交換器H−4において−120〜−140℃程
度まで冷却された場合における管11から取出さ
れる未凝縮ガスの組成は、通常メタンと原料ガス
に同伴させていた水素からなり、エチレンおよび
エチレンより沸点の高い炭化水素を実質的に含有
しない。従つて深冷分離の目的が高圧ガス流中に
含有されていたエチレンおよびエチレンより沸点
の高い炭化水素成分の分離取得にある場合には、
熱交換器H−5による高圧ガス流の一層の冷却は
必ずしも必要でない。各分離器S−1,S−2,
S−3およびS−4において取得された各凝縮液
は、メタン、エチレン、エタン、プロピレン、プ
ロパン、ブタン類、ブテン類等の混合液であり、
更に若干の水素が溶存している又高圧ガス流が−
120〜−140℃まで冷却される際に生成するこれ等
の凝縮液は、温度の低い冷却段階において生成し
たもの程メタン含有量が高いのが通常である。又
これら各混合液から所望の成分特にエチレンおよ
びプロピレンを分離する為には、これら混合液か
ら最も沸点の低いメタンおよび水素が先に除去さ
れることが有利である。中圧精留塔D−1は、こ
れら混合液からメタンおよび水素を除去する為の
精留塔である。この精留塔の塔底液は熱交換器H
−13において他の流体により間接加熱される。
この際の加熱用流体としては高圧ガス流の一部あ
るいは他の適当な温度の流体等を所望に応じ1個
または2個以上の組み合せで使用することが出来
る。又この精留塔の塔頂においては塔頂から管2
0を経て流出するガスが熱交換器H−12におい
て循環冷凍エチレンの一部により冷却され、この
ガス中のメタンの大部分が液化させられ、分離器
S−12においてメタン液と未凝縮ガスとに分離
後、メタン液は管L−12から取出され、その大
部分が管L−14を経て中圧精留塔の還流液とし
て使用され、メタン液の残部は製品として管L−
15から取出され、管21から取出される水素と
メタンを含む未凝縮ガスと共にそれぞれ冷却用低
温流体として所望の熱交換器において使用され
る。この中圧精留塔D−1における精留作用によ
つて、分離器S−1,S−2,S−3,S−4等
からこの塔に供給された前記凝縮液は、塔頂部の
管L−15から取得されるメタン液、管21から
取得される水素とメタンの混合ガスおよび塔下部
の管L−13を経て取出されるメタンを実質的に
含有しないエチレンおよびエチレンより沸点の高
い各種炭化水素の混合液とに分離される。この中
圧精留塔の塔底から得られメタンを実質的に含ま
ない炭化混合液は、更に遂次的な精留法により所
望の成分に分離されるが、この部分については図
示していない。又中圧精留塔の塔頂から取得され
た上記未凝縮ガスおよびメタン液は、熱交換器H
−1,H−2,H−3,H−4等の低温側流体通
路R−1,R−2,R−3,R−4等を適宜使用
して高圧ガス流の冷却に使用されるか、あるいは
上記メタンを含まない炭化水素混合液が精留分離
される際の冷熱源として利用される。この中圧精
留塔は通常15〜40Kg/cm2Gの圧力下で操業され
る。 以下が最も一般的な従来法の概要であるが、こ
の方法は後記の如く動力消費量が大きい欠点を有
する。 この様な従来法の欠点を改善する為の方法とし
て米国特許3443388号に開示された方法がある。
この米国特許に開示されている方法の概要工程が
第3図に示されている。第3図の方法は、高圧ガ
ス流が熱交換器H−1,H−2,H−3,H−4
等において冷却され、これら各熱交換器それぞれ
温度帯域において凝縮する炭化水素混合液が、そ
れぞれ分離器S−1,S−2,S−3,S−4等
において未凝縮ガスから分離され、それぞれの分
離液が管L−1,L−2,L−3,L−4等を経
て取出されるまでの工程は、前記第2図の場合と
略同様である故、説明を省略すると共に図も簡略
化されている。第3図の方法は、第2図のメタン
の精留分離工程が改良された方法であつて、それ
ぞれの凝縮液からメタンおよび水素が除去される
際に、中圧精留塔D−1と低圧精留塔D−3との
2本の精留塔が使用される。中圧精留塔D−1に
は分離器S−1およびS−2において取得される
凝縮液が供給され、分離器S−3において取得さ
れる凝縮液は低圧精留塔D−3に供給され、分離
器S−4において取得されるメタン含有量の多い
凝縮液は低圧精留塔D−3の還流液としてこの塔
の塔頂に供給される。中圧精留塔D−1の塔底加
熱は第2図の場合と同様熱交換器H−13により
行なるれるが、この精留塔の塔頂部から管20を
経て流出するガスが還流液に凝縮させられる為の
熱交換器H−12における冷熱源として、低圧精
留塔の塔底液が使用されている点が第2図の方法
と異なつている。即ちこの中圧精留塔D−1の塔
頂から管20を経て流出するガス、熱交換器H−
12において凝縮し、この凝縮液の大部分は管L
−14を経てこの塔に還流させられるが、この凝
縮の際に放出される凝縮潜熱は低圧精留塔の塔底
液の加熱に使用されている。この凝縮に際し塔頂
ガスの一部は、分離器S−1およびS−2におい
て取得される凝縮液中に溶解していた水素が蓄積
することを防止する為、一部のメタンと共にガス
状で管23から取出され、このガス中のメタンの
一部を回収する目的で源圧後低圧精留塔に供給さ
れる。又熱交換器H−12において凝縮したメタ
ン液の一部は、管L−15から製品として取出さ
れる。低圧精留塔の塔頂からは、管22を経て実
質的にメタンおよび水素からなるガスが、又この
低圧精留塔の塔底からはメタンおよびその他の炭
化水素を含む液が管L−16を経て取出される。
この低圧精留塔塔底液は、末だメタンの分離が不
充分であつて、ポンプP−1によ加圧し、更に熱
交換器H−14により適宜加熱の上、中圧精留塔
D−1が供給される。中圧精留塔D−1において
は、この管L−16から供給される低圧精留塔の
塔底液と前記の管L−1およびL−2からこの塔
に供給された分離器S−1およびS−2からの凝
縮液が、塔頂から管L−15を経て得られるメタ
ン液と塔底から管L−13を経て得られるメタン
を実質的に含有せず且つエチレンおよびエチレン
より沸点の高い炭化水素からなる混合液とに分離
される。管L−13から取出されたメタン除去済
の炭化水素混合液および管L−15から取出され
たメタン液の使用法については第2図の場合と同
様である。この第3図法による中圧精留塔は27〜
28Kg/cm2Gの圧力下で、又低圧精留塔は5〜6
Kg/cm2Gの圧力下でそれぞれ操業される。 第3図の改良法は、中圧精留塔の還流液を生成
させる為の熱交換器H−12の冷熱源として、第
2図の従来法の如く循環冷媒エチレンが使用され
ていない為、エチレンを冷媒とする閉鎖型冷凍サ
イクルの為のエチレン圧縮機C−3に必要な動力
が、第2図の熱交換器H−12において必要であ
つた循環冷媒エチレン量に相当する分だけ減少す
る利点を有し、優れた改良となつている。しかし
第3図の方法には2個の欠点が残されている。そ
の第1は、通常の脂肪族飽和炭化水素を熱分解の
原料とした場合の高圧ガス流の組成が遠因とな
り、又この方法が共に還流を必要とする2個の精
留塔を使用していることが直接の原因となつて、
分離器S−4から管L−4を経て低圧精留塔に供
給される還流液の量に制限がある為、低圧精留塔
および中圧精留塔の還流比を共に充分大とするこ
とが出来ず、結果的に、低圧精留塔塔頂の管22
から取得されるメタンと水素からなるガス中か、
あるいは管L−15から抜き出される中圧精留塔
の製品メタン液の何れかに、無視出来ない程度の
エチレンの混入が不可避となることである。欠点
の第2は、メタンおよび水素が除去された後の、
エチレンおよびエチレンより沸点の高い炭化水素
類の全てが、1個の液流としてL−13から得ら
れる為、この液流からエチレンおよびエタンを分
離取得する為の別の精留塔(図示していない)が
大きくない、又この別の精留塔における塔底液加
熱の為の熱源および還流液を生成させる為の冷熱
源が多量に必要となることである。 [発明が解決しようとする問題点] この発明は、上記の如き従来法に残存している
欠点を改良すること、即ち第2図のの方法に比較
して動力消費量を節減しつつ、第3図の方法に比
較してエチレンの収率を向上させつつ且つメタン
および水素が実質的に除去された後の炭化水素混
合物からエチレンおよびエタンを分離する際の精
留塔の大きさを小とすることが可能な手段の提供
を目的とする。 「発明の構成」 [問題点を解決する為の手段] この発明方法は、要旨として次記の手段から構
成される。即ち、 高圧ガス流の冷却過程のうち常温から−120
℃〜−160℃までの間が少なくとも3個の温度
帯域に分割され、 底部に間接加熱器が具備される中央塔状気液
接触装置および底部の間接加熱器ならびに塔頂
流出ガスが液体エチレンとの熱交換により凝縮
させられる還流液生成手段が具備される中圧精
留塔が使用され、 少なくとも3個の温度帯域のうち下限温度が
−50℃以上の高温度帯域から得られる凝縮液
は、中圧塔状気液接触装置に供給され、底部間
接熱器により加熱されて最大含有成分がメタン
である塔頂流出ガスとメタン含有量が0.5モル
%以下の塔底流出液とに分離され、 高温度帯域以外の温度帯域から得られる各凝
縮液および中圧気液接触装置の塔頂流出ガス
は、それぞれの組成に応じて中圧精留塔の所定
個所に供給されて、中圧精留塔の塔底が加熱さ
れつつ精留操作が実施され、メタン含有量90モ
ル%以上のメタン製品とメタン含有量0.5モル
%以下の塔底流出液とに分離され、 メタン製品の少なくとも一部は高圧ガス流と
の熱交換により昇温させられる方法である。 [作用] 以下この発明の要旨を第1図に記載した工程例
を使用しつつ説明し、次にこの発明の内容につき
詳しく説明するが、この発明は第1図の工程例に
より制限を受けるものでではない。第1図におい
て、低圧の原料ガスは管1を経て圧縮機C−1に
吸入され、圧縮されて高圧ガス流となる。この高
圧ガス流は水冷却器W−1において水により間接
的に冷却され熱交換器H−1に送入される。この
熱交換器H−1およびこれ以降の工程が深冷分離
工程である。水冷却器W−1と熱交換器H−1と
の間において、高圧ガス流に含有されている水分
等の如き深冷分離工程の障害となる物質が除去さ
れるのが通常であるが、第1図においてはこの様
な障害物質の除去工程の記載が省略されている。
熱交換器H−1から管4,5,6,7,8,9,
10,11,12,13等を経る高圧ガス流の冷
却工程において、各熱交換器H−2,H−3,H
−4,H−5等と各分離器S−1,S−2,S−
3,S−4,S−5等の配列、各熱交換器におけ
るガス通路の構成およびプロピレンとエチレンを
それぞれの冷媒として使用する2個の閉鎖型冷凍
サイクルの構成等は、第2図の説明においせ記載
したものと略同様である故、説明を省略するが、
この第1図例においては、高圧ガス流の温度が熱
交換器H−1の出口において−50℃、熱交換器H
−4の出口において−140℃となる様に各熱交換
器の伝熱達面積が保有されている。熱交換器H−
1において、前記の如き低温側の流体と熱交換し
て−50℃まで冷却された高圧ガス流中には、比較
的に沸点の高い一部の炭化水素の凝縮液が含有さ
れている。この凝縮液は分離器S−1において未
凝縮ガスから分離され減圧の上、管L−1を経て
中圧塔状気液接触装置(以下単に気液接触装置と
いう)D−2の塔頂に近い位置に供給される。例
えば、高圧ガス流がナフサの熱分解ガスを原料ガ
スとする周知組成の場合における、この凝縮液の
組成は、メタン10〜15、エチエン40〜50、エタン
5〜15、プロピレン20〜30、プロパン0.2〜1.5、
C4炭化水素3〜10および水素0.1〜1.0各モル%で
あるが、熱交換器H−1の出口温度−50℃がメタ
ンおよび水素の臨界温度より高い温度である故、
この凝縮液中のメタンおよび水素は、主として
C2,C3およびC4の炭化水素成分が凝縮して出来
た液に溶解したものと考えられ、適度に減圧およ
び加熱することによりその大部分をガス化させる
ことが出来る。気液接触装置D−2は、この現像
を利用して、この凝縮液をメタンに富む塔頂流出
ガスとメタン含有量の少ない塔底流出液とに分離
する為の装置であつて、塔内には深冷分離の際の
通常の精留塔と同様に気液接触用の棚段あるいは
充填物が具備されている。この分離は、この塔に
供給された凝縮液が、塔内を流下する際、塔の下
部にまで到達した液が塔下部の加熱用熱交換器H
−13において他の加熱用流体により加熱されて
沸騰して発生する炭化水素蒸気の上昇流と向流接
触させられて、低沸点数分が優先的に蒸発し、高
沸点成分が優先的に凝縮する如き物質交換の結果
として実現され、メタンを実質的に含有せずに
C2,C3およびC4の炭化水素からなる塔底流出液
が管L−13から、メタンを最大含有成分とする
塔頂流出ガスが管23から、それぞれ取出され
る。その結果この気液接触装置は、還流液生成の
為に他の工程から供給される必要のある冷熱源を
使用することなく、メタンを実質的に含有しない
塔底流出液を塔頂流出ガスから分離することが可
能となり、前記従来法の如く高圧ガス流を冷却す
る過程の各熱交換器において分離される凝縮液の
全量から精留のみによつてメタンが分離される場
合と比較し、この発明方法はメタン分離工程全体
として、少なく還流用メタン液量の使用でメタン
の除去が可能となる。上記の如き原理により、ナ
フサの熱分解ガスを原料ガスとして使用する場合
におけるこの発明方法の気液接触装置の塔底か
ら、メタン0.001〜0.5、エチレン35〜55、エタン
5〜15、プロピレン25〜45、プロパン0.1〜5.0、
C4炭化水素2〜15および水素0〜0.01各モル%の
液、塔頂から、メタン25〜60、エチレン20〜50、
エタン5〜10、プロピレン1〜20、プロパン0.1
〜5.0、C4炭化水素0.01〜5.0および水素0.5〜3.0各
モル%のガスを得ることが出きる。 第1図例の熱交換器H−1における未凝縮ガス
は、更に−140℃にまで冷却され、この間が熱交
換器H−2,H−3およびH−4による3個の温
度帯域に分割されている。熱交換器H−2におい
て生成し分離器S−2において分離される凝縮液
は管L−2を経て、熱交換器H−3において生成
し分離器S−3において分離される凝縮液は管L
−3を経て、熱交換器H−4において生成し分離
器S−4において分離される凝縮液は管L−4を
経て、管23から取出される気液分離器D−2の
塔頂流出ガスが熱交換器H−16において冷却用
の他の流体により冷却されてその一部が液化され
て管24から流出するものと共に、それぞれこれ
等の液あるいはガスの組成に応じ、中圧精留塔D
−1の所定位置に供給される。中圧精留塔D−1
の塔内には、通常の深冷分離の際の精留塔に使用
される棚段あるいは充填物の如き気液接触の為の
設備が具備されている。又この精留塔の塔頂部に
は、この塔の塔頂流出ガスを循環冷媒のエチレン
液により冷却しその大部分を凝縮させてこの塔の
還流液とする為の熱交換器H−12およびこの還
流液が未凝縮ガスから分離される為の分離器S−
12が設備されている。中圧精留塔D−1におい
て、この塔に供給された上記凝縮液およびガス
は、管L−12およびL−14を経てこの精留塔
に返送される還流液の作用および塔底の加熱用熱
交換器H−15による塔底液の加熱作用により精
留され、塔下部の管L−17から取出されるメタ
ン含有量の極めて少ない炭化水素の混合液、管L
−15から取出されるメタン液および熱交換器H
−12において凝縮せずに分離器S−12におい
てメタン液から分離された管21から取出される
水素とメタンを含む未凝縮ガスに分離される。管
L−15から取出されるメタン液および管21か
ら取出される未凝縮ガスは、H−1からH−5ま
での各熱交換器において高圧ガス流が冷却される
際の低温側流体あるいは気液接触装置D−2の塔
底と中圧精留塔D−10の塔底からそれぞれ管L
−13および管L−17を経て取出される炭化水
素混合液が精留法によつて各成分に分離される際
に必要な還流液生成用の冷熱源等として使用さ
れ、最終的に常温に近い温度まで昇温させられ、
製品ガスとして深冷分離工程から流出させられ
る。この様な精留作用により、中圧精留塔の塔頂
部の管L−15からメタン92〜99.5、エチレン
0.001〜0.5および水素0.5〜8.0各モル%の液体メ
タンが、又塔底から、メタン0.001〜0.5、エチレ
ン60〜90、エタン5〜15、プロピレン30〜20、プ
ロパン0.01〜3.0、C4炭化水素0.1〜3.0および水素
0〜0.01各モル%の炭化水素混合液が得られる。 この発明方法においては、高圧ガス流の冷却過
程のうち、第1図例の熱交換器H−1における温
度帯域(以下単に高温度帯域という)以外の温度
の温度帯域(以下低温度帯域と総称する)が少な
くとも2個の温度帯域に分割され且つ最も温度の
低い温度帯域の下限温度(以下単に低温帯域下限
温度という)が−120〜−160℃とされる必要があ
る。低温度帯域下限温度が−120〜−160℃とされ
る理由は、エチレンおよびエチレンより沸点の高
い炭化水素の分別取得を通常の目的とするこの種
の方法において、この下限温度が−120℃以上と
される場合では、高圧ガス流からのエチレンの凝
縮分離が不充分となつて、エチレンの損失が発生
し、この下限温度が−160℃以下とされる場合で
は、−160℃までの冷却によりエチレンおよびエチ
レンより沸点の高い炭化水素の高圧ガス流からの
凝縮分離が完了しているにもかかわらず、高圧ガ
ス流の更なる冷却の為の動力が必要以上に増大す
るからである。低温度帯域下限温度は高圧ガス流
の圧力に応じて上記範囲内の所望温度に選択され
る。しかしこの発明方法を使用する場合にあつて
も、メタンと水素の分別取得を所望する場合に
は、高圧ガス流が−160℃以下にまで冷却される
ことが望ましい。又低温度帯域を少なくとも2個
の温度帯域に分割する理由は、中圧精留塔D−1
における還流比を小とする為である。即ち、第1
図の例で言えば、高圧ガス流の冷却過程におい
て、高圧ガス流の温度が低温帯域下限温度に最も
近い温度にある熱交換器H−4において生成し分
離器S−4において分離される凝縮液は、非常に
高いメタン含有率を有する故、この凝縮液が中圧
精留塔の塔頂から若干下の位置に供給されること
により、中圧精留塔に必要な還流比が大幅に減少
し、結果として還流液生成の為に熱交換器H−1
2において必要とされる循環冷媒エチレン液の量
が大幅に節減され、最終的にエチレン圧縮機C−
3に必要な動力が大幅に節減出来るからである。
逆に低温度帯域が単一の温度帯域とされ、この間
において生成する凝縮液の全てが単一の混合液流
として中圧精留塔に供給される場合には、この単
一混合液中のメタン含有率が第1図の分離器S−
4において得られるものより小となり、この単一
混合液が中圧精留塔に供給される為の最適位置が
中圧精留塔の中段部となつて、必然的に必要な還
流比が増加することとなる。この様な理由によ
り、低温度帯域の好ましい温度帯域の数は、3あ
るいは4とされる。この温度帯域数を増加させる
ことにより、上記の利点を増大させることが出来
るが、この部分の温度帯域数5以上への増加は、
この利点の増大に比し熱交換器および分離器の必
要数が増大する欠点も多くなる。上記の利点と同
様なことが、メタンと水素が除去された炭化水素
液からこの液に含有される低沸点成分であるエチ
レンおよびエタンを分離する際にも存在する。即
ち、前記第2図および第3図に示した従来法にお
いて、メタンと水素を分離した後の炭化水素混合
物が中圧精留塔D−1の底部から単一流として得
られる故、この単一流中のエチレンおよびエタン
の合計含有率は、本発明方法(第1図)の中圧精
留塔D−1の塔底から得られるものより小であ
る。その理由は、この発明方法の場合には、気液
接触装置D−2の塔底から、エチレンおよびエタ
ンの合計含有率において中圧精留塔の塔底から得
られるものより小であつて、C3およびC4炭化水
素に富む他の1個の炭化水素混合物の流れが生ず
るからである。従つて、メタンと水素が分離され
た後の炭化水素混合物から他の1個の精留塔を使
用して、エチレンおよびエタンガ分離される際に
は、上記と同様の理由により、エチレンとエタン
に富む本発明方法の中圧精留塔塔底液がこの別の
精留塔の塔頂と中段部の間に供給され、気液接触
装置の塔底液がこの別の精留塔の中だ部と塔底の
間に供給されることにより、第2図および第3図
従来法において得られる炭化水素混合物の単一流
がこの別の精留塔の中段部に供給される場合に比
し、小還流比による精留が可能となる。第1図の
例においては、気液接触装置の塔頂流出ガスが、
熱交換器H−16により冷却されその一部が液化
された後、中圧精留塔に供給されている。熱交換
器H−16による気液接触装置塔頂流出ガスの冷
却は、本発明方法にとつて必ず必要な工程ではな
いが、上記と類似の作用により本発明の効果を増
強する為の手段として好ましい方法である。又こ
の場合に気液接触装置D−2の塔頂流出ガスが、
熱交換器H−16において、このガスの熱交換器
H−16の出口温度が中圧精留塔におけるこのガ
スの供給位置の塔内温度に略等しい温度まで、液
化されることなく冷却されるのも好ましい方法で
ある。 高圧ガス流の冷却過程のうちの高温度帯域の下
限温度が−50℃より低い場合には、高温度帯域に
おいて得られる凝縮液中のエチレンおよびエタン
の濃度が急激に増加し、実質的にメタンを含有し
ない塔底流出を得る為に気液接触装置において必
要な凝縮液の蒸発量が過大となり、次工程の中圧
精留塔に必要な還流液量が増加して、発明の目的
が達せられなくなる。この下限温度−50℃より高
くなるに従つて凝縮液の生成量が急激に減少し、
又この凝縮液中に溶解するメタンの量も急激に減
少して気液接触装置において分離可能なメタンの
量も減少する故、気液接触装置を設置することの
意味が減少する。従つてこの高温度帯域の下限温
度の上限は−30℃とされることが望ましい。第1
図の例においては、高圧ガス流と冷却過程のう
ち、この高温度帯域が、熱交換器H−1による1
個の温度帯域とされているが、この高温度帯域に
おいて、2個あるいはそれ以上の数の熱交換器と
それぞれに続く分離器を使用することにより、高
温度帯域が複数の小温度帯域に分割され、各小温
度帯域の分離器から得られる凝縮液がそれぞれの
組成に応じて気液接触装置の異なる高さの位置に
供給されることにより、この発明の効果は更に増
強される。この様に高圧ガス流の高温度帯域が複
数の小温度帯域に分割される場合には、最も温度
の低い小温度帯域から得られる凝縮液が気液接触
装置の塔頂に供給され、他の小温度帯域から得ら
れる凝縮液が、それぞれの組成に応じて気液接触
装置の塔頂と塔底の間に供給されることがこの発
明の効果を高める為に重要である。この様な気液
接触装置の使用法においては、この気液接触装置
が精留塔に類似の作用をすることになり、前記第
3図に示した従来法と似ている様に見えるが、第
3図の方法が中圧精留塔D−1に必要な還流液を
生成させる為に、低圧精留塔の塔底液を冷熱源と
して使用しているのに対し、この発明方法の気液
接触装置においては、この様な冷熱源が全く使用
されていない点が大きい違いがある。 第1図の例においては、中圧精留塔の塔頂部か
ら得られる製品が、管L−15から得られるメタ
ン液と管21から得られるメタンを含む水素ガス
であつたが、本発明方法にあつては、中圧精留塔
の塔頂部から得られる製品として、管21から得
られる水素と多量のメタンとを含有するメタンガ
スのみを選択することも出来る。この選択の場合
においては、熱交換器H−12における還流液生
成の為の循環冷媒エチレンの使用量が、管L−1
5から取得されていたメタンを液化させる為に必
要な分だけ減少し、この発明の動力節減効果が増
大することとなる。更にこの選択の場合には、管
21から得られるメタンを多量に含むガスが膨脹
タービン(図示していない)において動力を発生
させつつ断熱的に減圧されることが可能となり、
この断熱的減圧によりこのガスの温度が低下する
故、温度の低下したこのガスの所望の熱交換器に
おいて冷熱源として使用されることにより、循環
冷媒液の必要量が減少し、膨脹タービンから発生
した動力の利用による動力節減と相俟つて循環冷
媒の圧縮の為の動力が更に節減されることにな
る。 この発明方法においては、気液接触装置の塔底
流出液中および中圧精留塔の塔底流出液中のメタ
ン含有を何れも0.5モル%以下とし、中圧精留塔
の塔頂製品中のメタン含有量を90モル%以上とす
る必要がある。その理由は、両塔の塔底流出液中
のメタン含有量が0.5モル%以上の場合には、両
流出液から前記の如き別の精留塔により、エチレ
ンおよびエタンを分離する際に支障を生じ、中圧
精留塔の塔頂製品中のメタン含有量が90モル%以
下の場合には、この流出ガス中のエチレン含有量
が、無視し得ない程度に増加し、このエチレンが
損失となる為である。 この発明方法においては、気液接触装置および
中圧精留塔塔底における加熱用熱交換器H−13
およびH−15に使用する加熱用流体として、所
望の温度にある高圧がス流の分流、H−1,H−
2等の熱交換器において低温側流体として使用さ
れ所望の温度まで昇温させられた流体の分流、プ
ロピレン圧縮機C−2の出口流G−1の分流ある
いは全量、同様にエチレン圧縮機C−3の出口流
の所望温度にあるものの分流あるいは全量、その
他の所望の温度にある流体等が単独あるいは組み
合せて使用出来る。この発明方法における高圧ガ
ス流の好ましい圧力として20〜50Kg/cm2Gを挙げ
ることが出来る。高圧ガス流の圧力が上記範囲よ
り低い場合には、高圧ガス流からエチレンの略全
量が液化分離される為に、高圧ガス流が−160℃
より低い温度まで冷却される必要を生じ、高圧ガ
ス流の圧力が上記の範囲より高い場合にはこのガ
スの圧縮に必要な動力が必要以上に大となり、何
れの場合も不経済である。しかし前記の如く、こ
の発明方法を使用しつつメタンと水素の分別取得
をも合せて実施する場合には、上記範囲より高い
圧力を使用することが出来る。この発明方法にお
いて、上記に記載した利点を充分に発揮させる為
の、気液接触装置の好ましい操業圧力として15〜
40Kg/cm2G、中圧精留塔の好ましい操業圧力とし
て気液接触装置の操業圧力より0.1〜10Kg/cm2
い圧力を挙げることが出来る。気液接触装置およ
び中圧精留塔の上記操業圧力範囲は、中圧精留塔
の塔頂における還流液の生成、気液接触装置およ
び中圧精留塔の塔底の加熱および両塔の塔底流出
液が更に各成分に精留分離されること等の必要性
から選択される圧力範囲である。 この発明方法においては、循環冷媒プロピレン
および循環冷媒エチレンの液が被冷却流体の冷却
の為に沸騰蒸発させられる際、この沸騰蒸発時の
圧力が段階的に低下させられる方法により、これ
ら循環冷媒ガスの再圧縮に必要な動力が節減出来
る。即ち、これら循環冷媒が、ある沸騰圧力段か
ら次の沸騰圧力段に減圧される前に、蒸発済の冷
媒ガスと末蒸発の冷媒液とが分離され、冷媒液の
みが減圧されてより低い圧力における冷熱源とさ
れ、蒸発済の冷媒ガスは減圧されることなく、被
冷却流体と熱交換昇温させられた後再圧縮される
様にすれば、この冷媒ガスの再圧縮の際の圧縮比
が小となり、全冷媒液が被冷却流体の冷却に必要
な最も低い圧力下に蒸発させられる場合に比し、
冷媒ガスの再圧縮に必要な動力が大幅に節減出来
ることとなる。 [実施例] ナフサの熱分解により得られた水素16、メタン
29、エチレン33、エタン6、プロピレン12、プロ
パン1およびC4炭化水素3の各モル%からなる
ガス75000Nm3/時を原料ガスとし、この発明方
法によりメタ分離を実施した。使用する工程は第
1図と同様なものであつて熱交換器H−1,H−
2,H−3およびH−4によつて、高圧ガス流の
常温から−133℃に至る冷却過程を下記の4個の
温度帯域に分割した。 H−1による温度帯域 ……+40℃〜−39℃ H−2による温度帯域 ……−39℃〜−77℃ H−3による温度帯域 ……−77℃〜−100℃ H−4による温度帯域 ……−100℃〜−133℃ 上記原料ガスは、圧縮機C−1により、33Kg/
cm2Gに圧縮された後水冷却器W−1において40℃
に冷却され凝縮物を分離後、モレキユラーシーブ
吸着剤により脱水され、熱交換器H−1に流入す
る。又気液接触装置には35段の棚段等を、中圧精
留塔には65段の棚段塔を使用した。又気液接触装
置の塔底加熱の熱源としては温水が、中圧精留塔
の塔底加熱の熱源としてはプロピレン圧縮機C−
2の吐出側の流れがそれれ適当量使用された。又
分離器S−5において分離された凝縮液および未
凝縮ガスは、何れも減圧の上、熱交換器H−1,
H−2,H−3,H−4およびH−5の低温側通
路を流通させて、高圧ガス流の冷却に使用された
後、製品ガスとして系外に取出され、又管L−1
3およびL−17から得られた塔底液は、第1図
に記載されていない周知の方法により、エチレ
ン、プロピレン、プロパンおよびC4炭化水素の
各成分に精留分離された。 上記と条件で第1図装置を操業し、定常状態に
なつた際の高圧ガス流の温度および高圧ガス流か
らの凝縮液の生成量およびその組成を下表に示し
た。
"Purpose of the Invention" [Industrial Application Field] The present invention is directed to cooling a high-pressure gas stream containing various kinds of medium- and low-class hydrocarbons including olefins as main components, and a mixture of the above-mentioned hydrocarbons obtained by this cooling. This invention relates to a method for cryogenic separation of methane from condensate. More particularly, the invention provides a method by which the separation of methane contained therein from the hydrocarbon-based condensate obtained when the high-pressure gas stream is cooled can be carried out with low power consumption. Regarding. [Prior Art] Aliphatic hydrocarbons having two or more carbon atoms or mixtures thereof are thermally decomposed to produce, for example, ethylene,
For example, a raw material gas containing various kinds of medium and low hydrocarbons including olefins such as propylene and butylene as main components is produced, and desired components are separated from this raw material gas by a cryogenic separation method. This method is being used on a large scale to produce ethylene using naphtha as a raw material. As a method for separating desired components from a raw material gas mainly containing various kinds of medium- and low-grade hydrocarbons including olefins as described above by a cryogenic separation method, first, the raw material gas is
It is compressed to a pressure of 50 kg/cm 2 G to form a high-pressure gas stream, and then this high-pressure gas stream is cooled to -120°C or below this temperature, and the hydrocarbons that are successively condensed during the cooling process are Generally used is a method in which each liquid mixture is separated from uncondensed gas and subjected to rectification depending on its composition. Among the general methods mentioned above, a method for cooling a high-pressure gas stream to obtain a hydrocarbon condensate is to use propylene or propane as a refrigerant,
A method of refrigeration in which this refrigerant is circulated through a repeated process consisting of compression → cooling (water cooling) liquefaction → depressurization → heat exchange evaporation → heat exchange heating → recompression, i.e., the refrigerant stream is used as raw material. A combination of both, a closed refrigeration cycle independent of the product gas stream, and a closed refrigeration cycle, also conducted with ethylene or ethane as the refrigerant, are most commonly used. Furthermore, when each condensate is subjected to rectification, the most common method is to first separate methane, which is a hydrocarbon with the lowest boiling point. The most common conventional method as mentioned above consumes a lot of power and is a method that requires improvement.
The contents will be briefly explained below. FIG. 2 schematically illustrates the main steps of the most common method described above. Raw material gas is pipe 1
is sucked into compressor C-1, and after compression 20 to 50 kg/
It was discharged from tube 2 as a high-pressure gas stream of cm 2 G, and was once indirectly cooled by water cooler W-1, and pre-treatment such as removal of moisture and other substances that would impede cryogenic separation was carried out. Afterwards (this pretreatment device is omitted in the drawing), it flows via pipe 3 into the heat exchanger H-1 of the cryogenic separator. The heat exchanger H-1 exchanges this high-pressure gas stream with components in the separated high-pressure gas stream whose temperature is lower than that of the high-pressure gas stream, a refrigerant circulated in the closed refrigeration cycle, etc. as desired. A heat exchanger for exchanging heat and cooling a high-pressure gas stream, the heat exchanger having at least one (usually two or more) passages for a low-temperature fluid to be heat exchanged with the high-pressure gas stream, the number of passages and The heat transfer area of each passage can be freely designed as desired in the heat exchanger. In Figure 2, heat exchanger H-1
4 low temperature side fluid passages R-1, R-2, R-
Although an example in which 3, R-4 passages are provided is described, the number of passages is not limited to four. In addition, other heat exchangers H- marked with the symbol H in FIG. 2 and FIG. 3 and FIG.
2, H-3, H-4, H-5, H-11, H-1
2, H-13, H-14, H-15, H-16, etc. are all heat exchangers having one or more high-temperature side fluid passages and one or more low-temperature side fluid passages, similar to the heat exchanger H-1. It is an exchanger. Heat exchanger H-1
In the closed refrigeration cycle, the high pressure gas stream is supplied to passage R-1, liquid propylene is supplied to passage R-1, and passages R-2, R-3, R-4.
In the lower temperature step, the gas is cooled by exchanging heat with each component in the separated raw material gas. The liquid propylene supplied to the passage R-1 is a closed refrigeration cycle using propylene as a circulating refrigerant, that is, the circulating propylene is compressed in the compressor C-2, and this compressed propylene is passed through the water cooler W.
-2, it is indirectly cooled and liquefied in pipe L-11.
It is produced by reducing the pressure of a part of the pressurized liquefied propylene taken out from the liquefied propylene. The propylene that is evaporated through heat exchange with the high-pressure gas stream in this passage R-1 is further heated in another heat exchanger as necessary, and then the propylene that has been evaporated and heated in the same way in another process is heated. At the same time, it is recirculated to the suction port of compressor C-2 and reused. That is, the circulating propylene forms an independent closed refrigeration cycle that is isolated from the high pressure gas stream and the gas stream after the high pressure gas stream has been separated into its components. In the following description, liquid propylene and liquid ethylene, which have been compressed, cooled, liquefied, and then depressurized in this closed refrigeration cycle, will be referred to as circulating refrigerant propylene and circulating refrigerant ethylene, respectively. The high-pressure gas stream is cooled to about -40 DEG C. in heat exchanger H-1 by the heat exchange described above, with some relatively high-boiling hydrocarbons in the high-pressure gas stream being condensed as a mixture. This high-pressure gas stream containing the condensate is introduced via line 4 into separator S-1, where the condensate is separated from the uncondensed gas. The condensed liquid is extracted from the pipe L-1, and after being depressurized, it is supplied to a predetermined position in the medium pressure rectification column D-1 depending on the composition of this liquid. On the other hand, uncondensed gas passes through pipe 5 to heat exchanger H
The high-pressure gas stream is introduced into the heat exchanger H-2 and is further cooled by exchanging heat with the gas stream at a lower temperature after being separated into each component, as in the heat exchanger H-1. -2, the high pressure gas flow is H
Since it is cooled to a lower temperature than in the case of H-1, circulating refrigerant ethylene is supplied to passage R-1 (this number is not attached in the figure) of H-2. The circulating refrigerant ethylene is used as the circulating refrigerant for a closed refrigeration cycle in which the refrigerant ethylene stream is made independent of the high-pressure gas stream and the separation gas stream into its respective components, as in the case of the circulating refrigerant propylene described above. The refrigerant ethylene compressed in step 3 is cooled by a water cooler W-3, and further cooled and liquefied by heat exchange with a part of the circulating refrigerant phlopylene in a heat exchanger H-11, and taken out through a pipe L-12. A portion of it was then depressurized. This circulating refrigerant ethylene is also used in heat exchangers H-2 and above, but all of the used circulating refrigerant ethylene is recycled to the suction port of compressor C-3 and reused. Due to such cooling in heat exchanger H-2, a portion of the remaining hydrocarbons is condensed again in the high-pressure gas stream, and the condensed liquid and uncondensed gas are introduced into separator S-2 via pipe 6. , the condensate is separated from the uncondensed gas. The separated condensate is taken out from pipe L-2 and, after being depressurized, is supplied to a predetermined location in medium-pressure rectification column D-1 depending on the composition of the liquid. The uncondensed gas separated in the separator S-2 is taken out from the pipe 7 and introduced into the heat exchanger H-3,
It is further cooled in the same manner as above and passes through the pipe 8 to the separator S-3.
It is separated into condensed liquid and uncondensed gas. The condensed liquid is taken out from the pipe L-3, and after being depressurized, it is supplied to a predetermined location of the medium-pressure rectification column D-1 depending on the composition of the liquid. The uncondensed gas in separator S-3 is introduced into heat exchanger H-4 via pipe 9, where it is further cooled and -
The temperature reaches 120°C to -140°C and passes through pipe 10 to separator S-
4, the condensate produced during cooling is separated in separator S-4 and taken out from pipe L-4, and after pressure reduction is supplied to a predetermined location in the medium-pressure rectification column depending on the composition of this liquid. . The uncondensed gas in the separator S-4 is taken out from the pipe 11 and can be further cooled in the heat exchanger H-5 if necessary, but the temperature in the heat exchanger H-4 is about -120 to -140°C. The composition of the uncondensed gas removed from tube 11 in the cooled case usually consists of methane and the hydrogen entrained in the feed gas, and is substantially free of ethylene and hydrocarbons with a boiling point higher than ethylene. Therefore, if the purpose of cryogenic separation is to separate and obtain ethylene and hydrocarbon components with boiling points higher than ethylene contained in the high-pressure gas stream,
Further cooling of the high pressure gas stream by heat exchanger H-5 is not absolutely necessary. Each separator S-1, S-2,
Each condensate obtained in S-3 and S-4 is a mixture of methane, ethylene, ethane, propylene, propane, butanes, butenes, etc.
In addition, some hydrogen is dissolved, and a high-pressure gas flow -
These condensates produced during cooling to 120 to -140°C usually have a higher methane content as they are produced during the cooler cooling stage. In order to separate desired components, particularly ethylene and propylene, from these mixed liquids, it is advantageous to first remove methane and hydrogen, which have the lowest boiling points, from these mixed liquids. The medium pressure rectification column D-1 is a rectification column for removing methane and hydrogen from these mixed liquids. The bottom liquid of this rectification column is transferred to heat exchanger H
-13, it is indirectly heated by another fluid.
As the heating fluid at this time, a part of the high-pressure gas flow or other fluids at an appropriate temperature can be used singly or in combination of two or more as desired. Also, at the top of this rectification column, pipe 2 is connected from the top of the column.
The gas flowing out through the heat exchanger H-12 is cooled by a part of the circulating frozen ethylene, most of the methane in this gas is liquefied, and the methane liquid and uncondensed gas are separated in the separator S-12. After separation, the methane liquid is taken out from the pipe L-12, most of which is used as the reflux liquid of the medium pressure rectification column via the pipe L-14, and the remainder of the methane liquid is taken out as a product from the pipe L-14.
15 and used together with the uncondensed gas containing hydrogen and methane taken out from pipe 21, respectively, as a cooling cryogenic fluid in a desired heat exchanger. Due to the rectification action in this medium pressure rectification column D-1, the condensate supplied to this column from separators S-1, S-2, S-3, S-4, etc. is collected at the top of the column. The methane liquid obtained from pipe L-15, the mixed gas of hydrogen and methane obtained from pipe 21, and the ethylene containing substantially no methane taken out via pipe L-13 at the bottom of the tower, and the boiling point higher than ethylene. It is separated into a mixture of various hydrocarbons. The carbonized mixture, which is obtained from the bottom of the medium-pressure rectification column and is substantially free of methane, is further separated into desired components by successive rectification methods, but this part is not shown in the figure. . In addition, the uncondensed gas and methane liquid obtained from the top of the medium pressure rectification column are transferred to a heat exchanger H.
-1, H-2, H-3, H-4, etc. The low temperature side fluid passages R-1, R-2, R-3, R-4, etc. are used appropriately to cool the high-pressure gas flow. Alternatively, it is used as a cold heat source when the methane-free hydrocarbon mixture is subjected to rectification separation. This medium pressure rectification column is normally operated under a pressure of 15 to 40 kg/cm 2 G. The following is an outline of the most common conventional method, but this method has the drawback of high power consumption, as described below. There is a method disclosed in US Pat. No. 3,443,388 as a method for improving the drawbacks of such conventional methods.
The general steps of the method disclosed in this US patent are shown in FIG. In the method shown in Figure 3, the high pressure gas stream is transferred to heat exchangers H-1, H-2, H-3, H-4.
The hydrocarbon mixture that is cooled in the respective heat exchangers and condensed in the temperature range of each heat exchanger is separated from the uncondensed gas in the separators S-1, S-2, S-3, S-4, etc., respectively. The steps until the separated liquid is taken out through the pipes L-1, L-2, L-3, L-4, etc. are almost the same as in the case of FIG. has also been simplified. The method shown in FIG. 3 is an improved method of the methane rectification separation process shown in FIG. Two rectification columns are used: a low pressure rectification column D-3. The condensate obtained in the separators S-1 and S-2 is supplied to the medium pressure rectification column D-1, and the condensate obtained in the separator S-3 is supplied to the low pressure rectification column D-3. The methane-rich condensate obtained in the separator S-4 is supplied to the top of the low-pressure rectification column D-3 as a reflux liquid. The bottom of the medium-pressure rectification column D-1 is heated by the heat exchanger H-13 as in the case of FIG. The method differs from the method shown in FIG. 2 in that the bottom liquid of the low-pressure rectification column is used as the cold heat source in heat exchanger H-12 for condensing into water. That is, the gas flowing out from the top of this medium pressure rectification column D-1 through the pipe 20, the heat exchanger H-
12, and most of this condensate is in the pipe L.
The latent heat of condensation released during condensation is used to heat the bottom liquid of the low-pressure rectification column. During this condensation, a part of the overhead gas is kept in gaseous form along with some methane in order to prevent the hydrogen dissolved in the condensate obtained in separators S-1 and S-2 from accumulating. The gas is taken out from the pipe 23 and fed to a low-pressure rectification column after the source pressure for the purpose of recovering a portion of the methane in this gas. Further, a part of the methane liquid condensed in the heat exchanger H-12 is taken out as a product from the pipe L-15. A gas consisting essentially of methane and hydrogen flows from the top of the low-pressure rectification column through pipe 22, and a liquid containing methane and other hydrocarbons flows from the bottom of the low-pressure rectification tower through pipe L-16. It is taken out after passing through.
This low-pressure rectification column bottom liquid is insufficiently separated from the residual methane, so it is pressurized by pump P-1 and further heated appropriately by heat exchanger H-14. -1 is supplied. In the medium-pressure rectification column D-1, the bottom liquid of the low-pressure rectification column is supplied from this pipe L-16, and the separator S- is supplied to this column from the above-mentioned pipes L-1 and L-2. The condensate from 1 and S-2 does not substantially contain methane liquid obtained from the top of the column via pipe L-15 and methane obtained from the bottom of the column via pipe L-13, and has a boiling point lower than that of ethylene. It is separated into a mixed liquid consisting of high hydrocarbons. The usage of the methane-removed hydrocarbon mixture taken out from pipe L-13 and the methane liquid taken out from pipe L-15 is the same as in the case of FIG. 2. The medium pressure rectification column according to this diagram 3 method is 27~
Under the pressure of 28Kg/cm 2 G, the low pressure rectification column is 5 to 6
Each is operated under a pressure of Kg/cm 2 G. The improved method shown in Figure 3 does not use the circulating refrigerant ethylene as the cold heat source for the heat exchanger H-12 to generate the reflux liquid of the medium pressure rectification column, as in the conventional method shown in Figure 2. The power required for the ethylene compressor C-3 for a closed refrigeration cycle using ethylene as the refrigerant is reduced by the amount equivalent to the amount of circulating ethylene refrigerant required in the heat exchanger H-12 in Figure 2. It has its advantages and is a great improvement. However, two drawbacks remain with the method of FIG. The first is due to the composition of the high pressure gas stream when conventional aliphatic saturated hydrocarbons are used as feedstock for pyrolysis, and also because the process uses two rectification columns, both of which require reflux. The direct cause of
Since there is a limit to the amount of reflux liquid supplied from separator S-4 to the low-pressure rectification column via pipe L-4, the reflux ratios of both the low-pressure rectification column and the medium-pressure rectification column must be made sufficiently large. As a result, the pipe 22 at the top of the low pressure rectification column
In a gas consisting of methane and hydrogen obtained from
Alternatively, a non-negligible amount of ethylene will inevitably be mixed into any of the product methane liquid from the medium-pressure rectification column extracted from pipe L-15. The second drawback is that after methane and hydrogen have been removed,
Since ethylene and all of the hydrocarbons with higher boiling points than ethylene are obtained from L-13 as one liquid stream, a separate rectification column (not shown) is required to separate and obtain ethylene and ethane from this liquid stream. However, a large amount of heat source for heating the bottom liquid and a large amount of cold source for generating the reflux liquid in this separate rectification column are required. [Problems to be Solved by the Invention] The present invention aims to improve the drawbacks remaining in the conventional method as described above, that is, to reduce power consumption compared to the method shown in FIG. Compared to the method shown in Figure 3, the yield of ethylene is improved and the size of the rectification column is reduced when separating ethylene and ethane from the hydrocarbon mixture after methane and hydrogen have been substantially removed. The purpose is to provide a means to do so. "Structure of the Invention" [Means for Solving the Problems] This inventive method consists of the following means as a gist. In other words, during the cooling process of the high-pressure gas flow, -120
℃ to -160℃ is divided into at least three temperature zones, a central column-shaped gas-liquid contact device equipped with an indirect heater at the bottom, an indirect heater at the bottom, and an overhead gas flowing into liquid ethylene. A medium-pressure rectification column is used, which is equipped with means for producing a reflux liquid that is condensed by heat exchange, and the condensate obtained from the high temperature zone whose lower limit temperature is -50°C or higher among at least three temperature zones is The gas is supplied to a medium-pressure columnar gas-liquid contact device, heated by a bottom indirect heater, and separated into a top effluent gas whose largest component is methane and a bottom effluent with a methane content of 0.5 mol% or less, Each condensate obtained from a temperature zone other than the high temperature zone and the gas effluent from the top of the medium-pressure gas-liquid contactor are supplied to a predetermined location in the medium-pressure rectification column according to their respective compositions. A rectification operation is performed while the bottom of the column is heated, and the methane product is separated into a methane product with a methane content of 90 mol% or more and a bottom effluent with a methane content of 0.5 mol% or less, and at least a part of the methane product is heated under high pressure. This method raises the temperature by exchanging heat with a gas stream. [Operation] The gist of this invention will be explained below using the process example shown in FIG. 1, and then the content of this invention will be explained in detail.However, this invention is limited by the process example shown in FIG. Not in. In FIG. 1, low pressure feed gas is drawn into compressor C-1 through pipe 1 and compressed into a high pressure gas stream. This high-pressure gas stream is indirectly cooled by water in water cooler W-1 and fed into heat exchanger H-1. This heat exchanger H-1 and subsequent steps are a cryogenic separation step. Between the water cooler W-1 and the heat exchanger H-1, substances that interfere with the cryogenic separation process, such as moisture contained in the high-pressure gas stream, are usually removed. In FIG. 1, the description of such a step of removing harmful substances is omitted.
From heat exchanger H-1 to pipes 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, etc., each heat exchanger H-2, H-3, H
-4, H-5, etc. and each separator S-1, S-2, S-
3, S-4, S-5, etc., the configuration of the gas passages in each heat exchanger, and the configuration of the two closed refrigeration cycles that use propylene and ethylene as refrigerants, etc., are explained in Fig. 2. Since the smell is almost the same as the one described, the explanation will be omitted, but
In this example of FIG. 1, the temperature of the high pressure gas stream is -50°C at the outlet of heat exchanger H-1,
The heat transfer area of each heat exchanger is maintained so that the temperature at the outlet of -4 is -140°C. Heat exchanger H-
In No. 1, the high-pressure gas stream cooled to -50° C. by heat exchange with the low-temperature fluid contains some hydrocarbon condensate having a relatively high boiling point. This condensed liquid is separated from uncondensed gas in separator S-1, and after being depressurized, passes through pipe L-1 to the top of medium-pressure columnar gas-liquid contactor (hereinafter simply referred to as gas-liquid contactor) D-2. Supplied nearby. For example, in the case where the high-pressure gas stream has a well-known composition in which the feed gas is naphtha pyrolysis gas, the composition of this condensate is 10-15 methane, 40-50 ethene, 5-15 ethane, 20-30 propylene, 0.2~1.5,
3 to 10 mol% of C4 hydrocarbon and 0.1 to 1.0 mol% of hydrogen, but since the outlet temperature of heat exchanger H-1 -50°C is higher than the critical temperature of methane and hydrogen,
Methane and hydrogen in this condensate are mainly
It is thought that C 2 , C 3 and C 4 hydrocarbon components are condensed and dissolved in a liquid, and most of it can be gasified by appropriately reducing pressure and heating. The gas-liquid contact device D-2 is a device that uses this development to separate the condensate into a tower top effluent gas rich in methane and a tower bottom effluent gas with a low methane content. The column is equipped with plates or packing for gas-liquid contact, similar to a conventional rectification column used in cryogenic separation. This separation occurs when the condensate supplied to this tower flows down inside the tower, and the liquid that has reached the bottom of the tower passes through the heating heat exchanger H at the bottom of the tower.
-13, the hydrocarbon vapor is brought into countercurrent contact with the ascending flow of hydrocarbon vapor that is heated and boiled by another heating fluid, and the low boiling point components are preferentially evaporated, and the high boiling point components are preferentially condensed. This is realized as a result of material exchange such as
A bottom effluent consisting of C 2 , C 3 and C 4 hydrocarbons is taken off through line L-13, and an overhead gas containing methane as the largest component is taken off through line 23. As a result, this gas-liquid contactor converts a substantially methane-free bottom effluent from the top effluent gas without the use of cold sources that must be supplied from other processes to produce reflux. Compared to the conventional method described above, in which methane is separated from the total amount of condensate separated in each heat exchanger in the process of cooling a high-pressure gas stream, only by rectification. In the method of the invention, methane can be removed by using a small amount of refluxing methane liquid in the methane separation process as a whole. According to the above principle, when pyrolysis gas of naphtha is used as raw material gas, methane 0.001 to 0.5, ethylene 35 to 55, ethane 5 to 15, propylene 25 to 45, propane 0.1~5.0,
C4 hydrocarbon 2-15 and hydrogen 0-0.01 mol% liquid, from the top of the column, methane 25-60, ethylene 20-50,
Ethane 5-10, propylene 1-20, propane 0.1
~5.0, C4 hydrocarbons 0.01~5.0 and hydrogen 0.5~3.0 mol% each can be obtained. The uncondensed gas in heat exchanger H-1 in the example in Figure 1 is further cooled to -140°C, and this period is divided into three temperature zones by heat exchangers H-2, H-3 and H-4. has been done. The condensate produced in heat exchanger H-2 and separated in separator S-2 passes through pipe L-2, and the condensate produced in heat exchanger H-3 and separated in separator S-3 passes through pipe L-2. L
-3, the condensate produced in the heat exchanger H-4 and separated in the separator S-4 passes through the pipe L-4 and is taken out from the top of the gas-liquid separator D-2 through the pipe L-4. The gas is cooled in the heat exchanger H-16 by another cooling fluid, a part of which is liquefied and flows out from the pipe 24, and depending on the composition of these liquids or gases, medium-pressure rectification is performed. Tower D
−1 is supplied to the predetermined position. Medium pressure rectification column D-1
The column is equipped with equipment for gas-liquid contact, such as trays or packing used in a rectification column for ordinary cryogenic separation. Further, at the top of this rectification column, there is a heat exchanger H-12 and a heat exchanger H-12 for cooling the top outflow gas of this column with ethylene liquid as a circulating refrigerant and condensing most of it to make it a reflux liquid of this column. Separator S- for separating this reflux liquid from uncondensed gas
12 are installed. In the medium-pressure rectification column D-1, the condensate and gas supplied to this column are subjected to the action of the reflux liquid, which is returned to this rectification column via pipes L-12 and L-14, and the heating of the bottom of the column. A mixed liquid of hydrocarbons with an extremely low methane content, which is rectified by the heating action of the column bottom liquid by heat exchanger H-15 and taken out from tube L-17 at the bottom of the column, tube L.
- Methane liquid taken out from 15 and heat exchanger H
-12, the methane liquid is not condensed and is separated into uncondensed gas containing hydrogen and methane, which are taken out from the pipe 21 separated from the methane liquid in the separator S-12. The methane liquid taken out from pipe L-15 and the uncondensed gas taken out from pipe 21 are used as the low temperature side fluid or gas when the high pressure gas stream is cooled in each heat exchanger from H-1 to H-5. Pipes L are connected to the bottom of the liquid contactor D-2 and the bottom of the medium pressure rectification column D-10, respectively.
-13 and pipe L-17, the hydrocarbon mixture is used as a cold source for generating the reflux liquid necessary when it is separated into each component by rectification, and is finally brought to room temperature. The temperature is raised to a temperature close to that of
It is discharged from the cryogenic separation process as a product gas. Due to this rectification action, methane 92~99.5, ethylene
Liquid methane with 0.001-0.5 and 0.5-8.0 mol% of hydrogen is also extracted from the bottom of the column, methane 0.001-0.5, ethylene 60-90, ethane 5-15, propylene 30-20, propane 0.01-3.0, C4 hydrocarbons A hydrocarbon mixture containing 0.1 to 3.0 and 0 to 0.01 mole % hydrogen is obtained. In the method of this invention, during the cooling process of the high-pressure gas flow, a temperature zone (hereinafter collectively referred to as the low temperature zone) other than the temperature zone (hereinafter simply referred to as the high temperature zone) in the heat exchanger H-1 of the example in FIG. ) is divided into at least two temperature zones, and the lower limit temperature of the lowest temperature zone (hereinafter simply referred to as the lower limit temperature of the low temperature zone) must be set to -120 to -160°C. The reason why the lower limit temperature of the low temperature zone is -120 to -160℃ is that in this type of method, which normally aims to obtain fractionated ethylene and hydrocarbons with a higher boiling point than ethylene, this lower limit temperature is -120℃ or higher. In the case where ethylene is condensed and separated from the high-pressure gas stream insufficiently, ethylene loss occurs, and in the case where this lower limit temperature is set to be below -160°C, cooling to -160°C may cause ethylene loss. This is because even though the condensation separation of ethylene and hydrocarbons with higher boiling points than ethylene from the high pressure gas stream has been completed, the power required for further cooling of the high pressure gas stream is increased more than necessary. The lower limit temperature of the low temperature zone is selected at a desired temperature within the above range depending on the pressure of the high pressure gas stream. However, even when using the method of this invention, it is desirable that the high pressure gas stream be cooled to below -160 DEG C. if it is desired to obtain fractionated methane and hydrogen. The reason why the low temperature zone is divided into at least two temperature zones is that the medium pressure rectification column D-1
This is to keep the reflux ratio small. That is, the first
In the example shown in the figure, during the cooling process of the high-pressure gas stream, condensation is generated in the heat exchanger H-4, where the temperature of the high-pressure gas stream is closest to the lower limit temperature of the low-temperature zone, and is separated in the separator S-4. Since the liquid has a very high methane content, by feeding this condensate to a position slightly below the top of the medium pressure rectification column, the reflux ratio required for the medium pressure rectification column is greatly increased. heat exchanger H-1 for the production of reflux liquid.
The amount of circulating refrigerant ethylene liquid required in 2 is significantly reduced, and finally the ethylene compressor C-
This is because the power required for 3 can be significantly reduced.
On the other hand, if the low temperature zone is a single temperature zone and all of the condensate generated in this zone is supplied to the medium pressure rectification column as a single mixed liquid stream, the Separator S- with methane content in Figure 1
The optimum position for supplying this single liquid mixture to the medium pressure rectification column is the middle part of the medium pressure rectification column, which inevitably increases the necessary reflux ratio. I will do it. For these reasons, the preferred number of low temperature zones is three or four. By increasing the number of temperature zones, the above advantages can be increased, but increasing the number of temperature zones to 5 or more in this part
This increased advantage is outweighed by the increased number of heat exchangers and separators required. Similar advantages to those described above exist when separating the low-boiling components ethylene and ethane contained in a hydrocarbon liquid from which methane and hydrogen have been removed. That is, in the conventional method shown in FIGS. 2 and 3, the hydrocarbon mixture after separating methane and hydrogen is obtained as a single stream from the bottom of the medium pressure rectification column D-1. The total content of ethylene and ethane therein is lower than that obtained from the bottom of the medium pressure rectification column D-1 of the process according to the invention (FIG. 1). The reason is that, in the case of the method of the present invention, the total content of ethylene and ethane from the bottom of the gas-liquid contactor D-2 is lower than that obtained from the bottom of the medium pressure rectification column; Another hydrocarbon mixture stream rich in C 3 and C 4 hydrocarbons is produced. Therefore, when ethylene and ethane are separated using another rectification column from the hydrocarbon mixture after methane and hydrogen have been separated, ethylene and ethane are separated for the same reason as above. The medium-pressure rectification column bottom liquid of the method of the present invention is fed between the top and the middle section of this another rectification column, and the bottom liquid of the gas-liquid contactor is fed into this another rectification column. compared to the case where a single stream of the hydrocarbon mixture obtained in the conventional method of FIGS. 2 and 3 is fed to the middle section of this separate rectification column. Rectification using a small reflux ratio becomes possible. In the example of FIG. 1, the gas flowing from the top of the gas-liquid contact device is
After being cooled by heat exchanger H-16 and partially liquefied, it is supplied to the medium pressure rectification column. Although the cooling of the gas flowing out from the top of the gas-liquid contactor by the heat exchanger H-16 is not an absolutely necessary step for the method of the present invention, it can be used as a means to enhance the effects of the present invention by a similar action to the above. This is the preferred method. In addition, in this case, the gas flowing from the top of the gas-liquid contactor D-2 is
In the heat exchanger H-16, the gas is cooled without being liquefied until the temperature at the outlet of the heat exchanger H-16 is approximately equal to the internal temperature at the supply position of the gas in the medium pressure rectification column. is also a preferred method. If the lower limit temperature of the high-temperature zone in the cooling process of the high-pressure gas stream is lower than -50°C, the concentration of ethylene and ethane in the condensate obtained in the high-temperature zone increases rapidly, resulting in a substantial increase in methane concentration. The amount of evaporation of the condensate required in the gas-liquid contact device to obtain a column bottom effluent that does not contain chlorine becomes excessive, and the amount of reflux liquid required for the next step, the medium-pressure rectification column, increases, making it impossible to achieve the purpose of the invention. I won't be able to do it. As the lower limit temperature rises above -50°C, the amount of condensate produced decreases rapidly.
Furthermore, the amount of methane dissolved in the condensate decreases rapidly, and the amount of methane that can be separated in the gas-liquid contact device also decreases, so the significance of installing the gas-liquid contact device decreases. Therefore, it is desirable that the upper limit of the lower limit temperature in this high temperature range is -30°C. 1st
In the example shown in the figure, this high temperature zone of the high pressure gas flow and the cooling process is controlled by heat exchanger H-1.
However, by using two or more heat exchangers followed by a separator, the high temperature zone is divided into multiple small temperature zones. The effects of the present invention are further enhanced by supplying the condensate obtained from the separators of each small temperature zone to positions at different heights of the gas-liquid contact device depending on the respective compositions. When the high-temperature zone of the high-pressure gas stream is divided into multiple small temperature zones in this way, the condensate obtained from the lowest temperature small zone is supplied to the top of the gas-liquid contact device, and the other In order to enhance the effects of the present invention, it is important that the condensate obtained from the low temperature zone is supplied between the top and the bottom of the gas-liquid contactor according to the respective compositions. In this method of using a gas-liquid contact device, the gas-liquid contact device functions similarly to a rectification column, and it appears to be similar to the conventional method shown in Fig. 3 above. While the method shown in Figure 3 uses the bottom liquid of the low-pressure rectification column as a cold heat source to generate the reflux liquid necessary for the medium-pressure rectification column D-1, the method of this invention uses the bottom liquid of the low-pressure rectification column as a cold source. The major difference in the liquid contact device is that such a cold source is not used at all. In the example shown in FIG. 1, the products obtained from the top of the medium-pressure rectification column were methane liquid obtained from pipe L-15 and hydrogen gas containing methane obtained from pipe 21. In this case, it is also possible to select only the methane gas obtained from the pipe 21 containing hydrogen and a large amount of methane as the product obtained from the top of the medium pressure rectification column. In the case of this selection, the amount of circulating refrigerant ethylene used for producing reflux liquid in heat exchanger H-12 is
The amount of methane obtained from No. 5 is reduced by the amount necessary to liquefy it, and the power saving effect of the present invention increases. Furthermore, this option allows the methane-rich gas obtained from the pipe 21 to be depressurized adiabatically while generating power in an expansion turbine (not shown);
This adiabatic depressurization lowers the temperature of this gas, thereby reducing the need for circulating refrigerant liquid by using this lower temperature gas as a source of cold in the desired heat exchanger, which is generated from the expansion turbine. Coupled with the reduction in power by utilizing the power thus obtained, the power required for compressing the circulating refrigerant is further reduced. In the method of this invention, the methane content in the bottom effluent of the gas-liquid contactor and in the bottom effluent of the medium-pressure rectification column is both 0.5 mol% or less, and the methane content in the top product of the medium-pressure rectification column is The methane content must be 90 mol% or more. The reason for this is that if the methane content in the bottom effluent of both columns is 0.5 mol% or more, it will be difficult to separate ethylene and ethane from both effluents using separate rectification columns as described above. If the methane content in the overhead product of the medium-pressure rectification column is less than 90 mol%, the ethylene content in this effluent gas will increase to a non-negligible extent, and this ethylene will be lost. It is for the sake of becoming. In this invention method, a gas-liquid contact device and a heating heat exchanger H-13 at the bottom of the medium pressure rectification column are used.
And as a heating fluid used in H-15, high pressure at a desired temperature is a branch of the gas stream, H-1, H-
A divided flow of the fluid that is used as a low-temperature side fluid in a heat exchanger such as No. 2 and heated to a desired temperature, a divided flow or the entire amount of the outlet flow G-1 of the propylene compressor C-2, and a divided flow of the fluid used as the low-temperature side fluid in the second class heat exchanger, and a divided flow of the outlet flow G-1 of the propylene compressor C-2. A divided flow or the entire amount of the outlet stream No. 3 at the desired temperature, and other fluids at the desired temperature can be used alone or in combination. A preferred pressure of the high pressure gas flow in the method of this invention is 20 to 50 kg/cm 2 G. When the pressure of the high-pressure gas flow is lower than the above range, almost the entire amount of ethylene is liquefied and separated from the high-pressure gas flow, so the high-pressure gas flow reaches -160℃.
If the pressure of the high-pressure gas stream is higher than the above range, the power required to compress this gas will be unnecessarily large, both of which are uneconomical. However, as mentioned above, when using the method of the present invention and also carrying out the fractional acquisition of methane and hydrogen, pressures higher than the above range can be used. In the method of this invention, the preferred operating pressure of the gas-liquid contact device is 15 to
40 Kg/cm 2 G, and a preferred operating pressure of the medium pressure rectification column is a pressure that is 0.1 to 10 Kg/cm 2 lower than the operating pressure of the gas-liquid contact device. The above operating pressure range of the gas-liquid contact device and the medium-pressure rectification column covers the generation of reflux liquid at the top of the medium-pressure rectification column, the heating of the bottom of the gas-liquid contact device and the medium-pressure rectification column, and the pressure range of both columns. This pressure range is selected based on the necessity of further rectifying and separating the tower bottom effluent into each component. In the method of this invention, when the circulating refrigerant propylene and the circulating refrigerant ethylene liquid are boiled and evaporated for cooling the fluid to be cooled, the pressure at the time of boiling and evaporation is gradually lowered. The power required for recompression can be saved. That is, before these circulating refrigerants are depressurized from one boiling pressure stage to the next, evaporated refrigerant gas and partially evaporated refrigerant liquid are separated, and only the refrigerant liquid is depressurized to a lower pressure. If the evaporated refrigerant gas is not depressurized, but is heated through heat exchange with the fluid to be cooled and then recompressed, the compression ratio when recompressing the refrigerant gas can be reduced. is smaller than if all the refrigerant liquid were evaporated to the lowest pressure required to cool the cooled fluid.
The power required to recompress the refrigerant gas can be significantly reduced. [Example] Hydrogen 16 and methane obtained by thermal decomposition of naphtha
Meta-separation was carried out by the method of the present invention using 75,000 Nm 3 /hour of a gas consisting of 29 mol %, 33 ethylene, 6 ethane, 12 mol % propylene, 1 propane, and 3 mol % of C 4 hydrocarbon as a raw material gas. The process used is the same as that shown in Figure 1, with heat exchangers H-1 and H-
The cooling process of the high-pressure gas stream from room temperature to -133°C was divided into the following four temperature zones by H-2, H-3 and H-4. Temperature band due to H-1...+40℃~-39℃ Temperature band due to H-2...-39℃~-77℃ Temperature band due to H-3...-77℃~-100℃ Temperature band due to H-4 ...-100℃~-133℃ The above raw material gas is compressed by compressor C-1 at 33Kg/
cm 2 G after being compressed to 40°C in water cooler W-1.
After cooling and separating the condensate, it is dehydrated by a molecular sieve adsorbent and flows into heat exchanger H-1. In addition, 35 plate plates were used for the gas-liquid contact device, and a 65 plate plate column was used for the medium pressure rectification column. Also, the heat source for heating the bottom of the gas-liquid contactor is hot water, and the heat source for heating the bottom of the medium-pressure rectification column is the propylene compressor C-
Appropriate amounts of the two discharge side streams were used. In addition, the condensed liquid and uncondensed gas separated in the separator S-5 are both depressurized and transferred to the heat exchangers H-1,
The low-temperature side passages of H-2, H-3, H-4, and H-5 are used to cool the high-pressure gas flow, and then taken out of the system as a product gas.
The bottom liquids obtained from No. 3 and L-17 were rectified into ethylene, propylene, propane, and C4 hydrocarbon components by well-known methods not shown in FIG. The temperature of the high-pressure gas flow, the amount of condensate produced from the high-pressure gas flow, and its composition are shown in the table below when the apparatus shown in FIG. 1 was operated under the above conditions and a steady state was reached.

【表】【table】

【表】 又定常状態における気液接触装置および中圧精
留塔の操業状態は下表の通りであつた。
[Table] The operating conditions of the gas-liquid contactor and medium pressure rectification column in steady state were as shown in the table below.

【表】 「発明の効果」 この発明の利点の第1は、前記の理由により、
第2図の従来法に比し、循環冷媒エチレンおよび
循環冷媒プロピレンの圧縮に必要な動力が約4〜
7%節減できることにある。具体的には、例えば
年産30万トンのエチレン製造設備の場合、循環冷
媒であるエチレンおよびプロピレンの圧縮に必要
な動力は、第2図の従来法によるものが約
18000KWH/時であるのに対し、この発明方法
によるものが約17000KWH/時である。更にこ
の動力必要量の節減に付随して、両圧縮機の小型
化、動力発生設備の小型化およびこれ等の機器の
為の基礎の小型化等が派生し、大きな経済的利益
が得られる。利点の第2は、第3図に説明した従
来方法に比し、エチレンおよびエタンの収率が、
従来法の99.0〜99.7モル%から、99.75〜99.95モ
ル%に向上することにある。即ち、第3図の方法
にあつては、原料ガス中に含有されたいたエチレ
ンおよびエタンの約0.5%が、中圧精留塔D−1
あるいは/および低圧精留塔D−3の塔頂から取
得されるメタン中に混入して損失となることが不
可避であつたが、この発明方法においては、この
損失が約0.1%に削減出来る。この損失の削減は
一見大きな利益ではない様に見受けられるが、年
産30万トンの如き大型設備が通常であるエチレン
の製造においては、この程度の収率向上により大
きな経済的利益が得られる。この発明の利点の第
3は、この発明方法によりメタンの除去された炭
化水素混合液から、エチレンおよびエタンが精留
法によつて分離される際に、この分離の為の精留
塔における還流比が削減出来ることにある。この
還流比削減が可能となる理由については既に説明
したが、この利点によりこの精留塔の還流液生成
の為に必要な冷熱源の量、精留塔の塔径および塔
底液の加熱に必要な熱源の量等が何れも減少し、
経済的利益が得られる。 この発明方法は、上記の如き利点を有する為、
炭素原子数2以上の脂肪族飽和炭化水素化合物お
よびこれ等の混合物、例えば、エタンガス、液化
石油ガス、ナフサ、ガスオイル等が熱分解され
て、各種のオレフインおよびメタン等を含む原料
ガスが製造され、この原料ガスから深冷分離法に
よつてエチレン、プロピレン、C4、オレフイン
等が製造される際のメタン分離法として有用であ
る。又第1図の従来法により建設済の多数の既設
エチレン製造設備の操業用動力の節減が、前記の
気液接触装置およびその付帯設備のみの簡単且つ
小規模な増設により達成される点で特に有用であ
る。
[Table] "Effects of the Invention" The first advantage of this invention is that for the reasons mentioned above,
Compared to the conventional method shown in Figure 2, the power required to compress the circulating refrigerant ethylene and circulating refrigerant propylene is approximately 4~
This means that you can save 7%. Specifically, for example, in the case of an ethylene production facility with an annual output of 300,000 tons, the power required to compress the circulating refrigerants ethylene and propylene using the conventional method shown in Figure 2 is approximately
It is 18,000KWH/hour, while that of the method of this invention is about 17,000KWH/hour. Further, this reduction in power requirements is accompanied by a reduction in the size of both compressors, a reduction in the size of the power generation equipment, and a reduction in the size of the foundations for such equipment, resulting in significant economic benefits. The second advantage is that the yields of ethylene and ethane are lower than the conventional method explained in Figure 3.
The aim is to improve the content from 99.0 to 99.7 mol% in the conventional method to 99.75 to 99.95 mol%. That is, in the method shown in FIG. 3, about 0.5% of the ethylene and ethane contained in the raw material gas is transferred to
Otherwise, it was inevitable that it would be mixed into the methane obtained from the top of the low-pressure rectification column D-3, resulting in a loss, but in the method of the present invention, this loss can be reduced to about 0.1%. At first glance, this reduction in loss does not seem to be a huge benefit, but in the production of ethylene, where large-scale equipment with an annual production capacity of 300,000 tons is the norm, this level of yield improvement can yield significant economic benefits. The third advantage of this invention is that when ethylene and ethane are separated by rectification from the hydrocarbon mixture from which methane has been removed by the method of this invention, the reflux in the rectification column for this separation is The reason is that the ratio can be reduced. The reason why this reduction in the reflux ratio is possible has already been explained, but this advantage reduces the amount of cold heat source required to generate the reflux liquid in the rectification column, the column diameter of the rectification column, and the heating of the bottom liquid. The amount of heat source required is reduced,
Economic benefits can be obtained. Since the method of this invention has the above-mentioned advantages,
Aliphatic saturated hydrocarbon compounds having two or more carbon atoms and mixtures thereof, such as ethane gas, liquefied petroleum gas, naphtha, gas oil, etc., are thermally decomposed to produce raw material gases containing various olefins, methane, etc. This method is useful as a methane separation method when ethylene, propylene, C 4 , olefin, etc. are produced from this raw material gas by cryogenic separation. In addition, it is particularly advantageous in that the operating power of a large number of existing ethylene production facilities constructed by the conventional method shown in Fig. 1 can be reduced by simply and small-scale addition of only the gas-liquid contact device and its ancillary equipment. Useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明方法の工程例、第2図は従来
法の工程例、第3図は他の従来法の工程例 記号、C−1……原料ガス圧縮機、C−2……
プロピレン圧縮機、C−3……エチレン圧縮機、
W−1,W−2,W−3……水冷却器、H−1〜
H−16……熱交換器、S−1〜S−12……気
液分離器、L−1〜L−17……液化ガス用管、
R−1〜R−4……熱交換器における低温側流体
通路、D−1……中圧精留塔、D−2……気液接
触装置、D−3……低圧精留塔、1〜24……そ
の他の管。
Fig. 1 is an example of the process of this invention method, Fig. 2 is an example of the process of the conventional method, and Fig. 3 is an example of the process of another conventional method. Symbol, C-1... Raw material gas compressor, C-2...
Propylene compressor, C-3...Ethylene compressor,
W-1, W-2, W-3...Water cooler, H-1~
H-16... Heat exchanger, S-1 to S-12... Gas-liquid separator, L-1 to L-17... Liquefied gas pipe,
R-1 to R-4... Low-temperature side fluid passage in the heat exchanger, D-1... Medium pressure rectification column, D-2... Gas-liquid contact device, D-3... Low pressure rectification column, 1 ~24...Other tubes.

Claims (1)

【特許請求の範囲】 1 多種類の脂肪族中低級炭化水素を主成分とし
て含有する高圧ガス流が−120℃あるいはこの温
度以下にまで冷却され、該冷却により得られる該
炭化水素の凝縮液からメタンが分離される方法に
おいて、 該高圧ガス流の該冷却過程のうち常温から−
120℃〜−160℃までの間が少なくとも3個の温
度帯域に分割され、 底部に間接加熱器が具備される中圧塔状気液
接触装置および底部の間接加熱器ならびに塔頂
流出ガスが液体エチレンとの熱交換により凝縮
させられる還流液生成手段が具備される中圧精
留塔が使用され、 少なくとも3個の該温度帯域のうち下限温度
が−50℃以上の高温度帯域から得られる該凝縮
液は、該中圧塔状気液接触装置に供給され、該
底部間接加熱器により加熱されて最大含有成分
がメタンである塔頂流出ガスとメタン含有量が
0.5モル%以下の塔底流出液とに分離され、 該高温度帯域以外の各温度帯域から得られる
該凝縮液および該中圧気液接触装置の塔頂流出
ガスは、それぞれの組成に応じて該中圧精留塔
の所定個所に供給されて、該中圧底精留の塔底
が加熱されつつ精留操作が実施され、メタン含
有量90モル%以上のメタン製品とメタン含有量
0.5モル%以下の塔底流出液とに分離され、 該メタン製品の少なくとも一部は該高圧ガス
流との熱交換により昇温させられる ことを特徴とする該高圧ガス流からメタンを分離
する方法。 2 該高温度帯域が単一の温度帯域とされる特許
請求の範囲第1項記載の方法。 3 該高温度帯域が2個以上の小温度帯域に分割
され、これら小温度帯域のうちの最も温度の低い
小温度帯域において生成する該凝縮液が該中圧塔
状気液接触装置の塔頂に供給され、他の小温度帯
域において生成する該各凝縮液がそれぞれの組成
に応じて該中圧塔状気液接触装置の塔頂と塔底と
の中間に供給される特許請求の範囲第1項記載の
方法。 4 該中圧塔状気液接触装置の塔頂流出ガスが間
接的に冷却されその一部が液化された後該中圧精
留塔に供給される特許請求の範囲第1項、第2項
あるいは第3項記載の方法。 5 該中圧塔状気液接触装置内の圧力がこの塔上
部において15〜40Kg/cm2Gとされる特許請求の範
囲第1項、第2項、第3項あるいは第4記載の方
法。 6 該中圧精留塔内の圧力がこの塔の上部におい
て該中圧塔状気液接触装置の塔上部圧力より0.1
〜10Kg/cm2低い圧力とされる特許請求の範囲第1
項、第2項、第3項、第4項あるいは第5項記載
の方法。 7 該メタン製品がガス状であり且つ該ガス状メ
タン製品が動力を発生させつつ膨脹させられた後
少なくともその一部が該高圧ガス流と熱交換させ
られる特許請求の範囲第1項記載の方法。 8 該中圧塔状気液接触装置の塔底流出液および
該中圧精留塔の塔底流出液とが、両液からエチレ
ンおよびエタンが分離される為の他の精留塔の別
個の所定個所に、それぞれの液の組成に応じて供
給される特許請求の範囲第1項記載の方法。 9 該高圧ガス流の圧力が20〜50Kg/cm2Gとされ
る特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. A high-pressure gas stream containing various types of aliphatic medium-low hydrocarbons as main components is cooled to -120°C or below, and from the condensate of the hydrocarbons obtained by the cooling. In the method in which methane is separated, during the cooling process of the high pressure gas stream from room temperature to -
A medium-pressure columnar gas-liquid contact device that is divided into at least three temperature zones from 120°C to -160°C and equipped with an indirect heater at the bottom, an indirect heater at the bottom, and a liquid effluent gas at the top of the tower. A medium-pressure rectification column is used which is equipped with means for producing a reflux liquid that is condensed by heat exchange with ethylene, and the reflux liquid obtained from a high temperature zone having a lower limit temperature of -50°C or higher among at least three temperature zones is used. The condensate is fed to the medium pressure columnar gas-liquid contactor and heated by the bottom indirect heater to separate the methane content from the top effluent gas whose maximum content is methane.
The condensate obtained from each temperature zone other than the high temperature zone and the tower top effluent gas of the medium pressure gas-liquid contactor are separated into 0.5 mol % or less of the tower bottom effluent, and the tower top effluent gas of the medium pressure gas-liquid contactor is divided into It is supplied to a predetermined part of the medium pressure rectification column, and the bottom of the medium pressure bottom rectification column is heated while the rectification operation is carried out to produce methane products with a methane content of 90 mol% or more and methane content.
A method for separating methane from a high-pressure gas stream, characterized in that at least a portion of the methane product is heated by heat exchange with the high-pressure gas stream. . 2. The method of claim 1, wherein the high temperature zone is a single temperature zone. 3. The high temperature zone is divided into two or more small temperature zones, and the condensate produced in the lowest temperature zone of these small temperature zones is delivered to the top of the medium pressure columnar gas-liquid contact device. and each of the condensates produced in other small temperature zones is supplied to an intermediate point between the top and the bottom of the medium-pressure columnar gas-liquid contacting device according to their respective compositions. The method described in Section 1. 4 Claims 1 and 2, in which the top effluent gas of the medium-pressure columnar gas-liquid contact device is indirectly cooled and a part of it is liquefied before being supplied to the medium-pressure rectification column. Or the method described in Section 3. 5. The method according to claim 1, 2, 3, or 4, wherein the pressure in the medium pressure columnar gas-liquid contact device is 15 to 40 kg/cm 2 G at the upper part of the column. 6 The pressure inside the medium-pressure rectification column is 0.1 below the pressure at the top of the medium-pressure columnar gas-liquid contact device at the top of the column.
~10Kg/cm 2 Claim 1 which is defined as a low pressure
2. The method according to item 2, item 3, item 4, or item 5. 7. The method of claim 1, wherein the methane product is gaseous and at least a portion of it is subjected to heat exchange with the high pressure gas stream after the gaseous methane product is expanded while generating power. . 8. The bottom effluent of the intermediate pressure columnar gas-liquid contactor and the bottom effluent of the medium pressure rectification column are separated from each other in another rectification column for separating ethylene and ethane from both liquids. 2. The method according to claim 1, wherein the liquid is supplied to predetermined locations depending on the composition of each liquid. 9. The method according to claim 1, wherein the pressure of the high-pressure gas stream is between 20 and 50 kg/cm 2 G.
JP22097384A 1984-10-19 1984-10-19 Separation of methane Granted JPS61100531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22097384A JPS61100531A (en) 1984-10-19 1984-10-19 Separation of methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22097384A JPS61100531A (en) 1984-10-19 1984-10-19 Separation of methane

Publications (2)

Publication Number Publication Date
JPS61100531A JPS61100531A (en) 1986-05-19
JPH0353289B2 true JPH0353289B2 (en) 1991-08-14

Family

ID=16759464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22097384A Granted JPS61100531A (en) 1984-10-19 1984-10-19 Separation of methane

Country Status (1)

Country Link
JP (1) JPS61100531A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997041085A1 (en) * 1996-04-30 1997-11-06 Mitsubishi Chemical Corporation Method for separating hydrogen and methane from gaseous hydrocarbon

Also Published As

Publication number Publication date
JPS61100531A (en) 1986-05-19

Similar Documents

Publication Publication Date Title
KR0157595B1 (en) Cryogenic separation of gaseous mixtures
US6266977B1 (en) Nitrogen refrigerated process for the recovery of C2+ Hydrocarbons
US5983665A (en) Production of refrigerated liquid methane
JP3724840B2 (en) Olefin recovery from hydrocarbon streams.
KR20120069732A (en) Hydrocarbon gas processing
KR20110137778A (en) Hydrocarbon gas processing
CA2603294A1 (en) A flexible hydrocarbon gas separation process and apparatus
HUT75977A (en) Cryogenic separation
KR101643796B1 (en) Hydrocarbon gas processing
JP2869357B2 (en) Ethylene recovery method
JPH0552875B2 (en)
US3813890A (en) Process of continuous distillation
JP5793139B2 (en) Hydrocarbon gas treatment
KR960003938B1 (en) Process for recovery of c2+ or c3+ hydrocarbons
EP0134243B1 (en) Apparatus and method for recovering light hydrocarbons from hydrogen containing gases
RU2688533C1 (en) Ltdr plant for integrated gas preparation and production of lng and its operation method
JP5802259B2 (en) Hydrocarbon gas treatment
JP5836359B2 (en) Hydrocarbon gas treatment
KR101758394B1 (en) Hydrocarbon gas processing
KR101680922B1 (en) Hydrocarbon gas processing
US4530708A (en) Air separation method and apparatus therefor
JPH0353289B2 (en)
KR101676069B1 (en) Hydrocarbon gas processing
KR101687851B1 (en) Hydrocarbon gas processing
US6487876B2 (en) Method for providing refrigeration to parallel heat exchangers