JPH0353192A - Positioning device - Google Patents

Positioning device

Info

Publication number
JPH0353192A
JPH0353192A JP1189081A JP18908189A JPH0353192A JP H0353192 A JPH0353192 A JP H0353192A JP 1189081 A JP1189081 A JP 1189081A JP 18908189 A JP18908189 A JP 18908189A JP H0353192 A JPH0353192 A JP H0353192A
Authority
JP
Japan
Prior art keywords
movement
contact
moving
drive unit
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1189081A
Other languages
Japanese (ja)
Other versions
JP2937348B2 (en
Inventor
Hidehiko Kuroda
英彦 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1189081A priority Critical patent/JP2937348B2/en
Publication of JPH0353192A publication Critical patent/JPH0353192A/en
Application granted granted Critical
Publication of JP2937348B2 publication Critical patent/JP2937348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/34Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission
    • B23Q5/50Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission feeding step-by-step

Abstract

PURPOSE:To realize free movement or the like by providing a first member with driving units which displace contact parts to a second member in the direction, where the second member is pushed away from the first member, and the movement direction by plural actuators. CONSTITUTION:Driving units consisting of contact parts 3, pushing-up piezoelectric elements 4, and moving piezoelectric elements 5 are stored in a driving unit frame 6 and are attached to a first member 1. Four driving units are provided, and contact parts 3 of driving units are pressed to a second member 2 by elements 4 in four positions to lift the second member, and contact surfaces of members 1 and 2 are separated to support only contact parts 3 by the member 2. Contact parts 3 are moved by a required extent in an arbitrary direction in a plane by elements 5 of driving units. Elements are contracted, and surfaces of two members 1 and 2 are brought into contact with each other and are fixed, and contact parts 3 are returned to original positions by elements 5, thereby completing positioning.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、精密機器に用いられる位置決め装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a positioning device used in precision instruments.

(従来の技術) 従来、圧電素子等のアクチュエータを用いた位置決め装
置としては、可動部を直接圧電素子により駆動する機構
や、第5図に示すように、ヒンジL6,17を支点とし
ててこの原理によりアーム20. 19を動かして圧電
素子11の微小な変位を拡大する変位拡大機構を用いて
駆動する装置が知られている。また第6図のように、一
対のクランプレバー24,24と、そのクランプレバ−
24. 24を移動させる移動用圧電素子22を持ち、
固定用圧電素子23によりクランプレバー24, 24
を動かしてクランプを交互に行ない、移動用圧電素子2
2を伸縮させ移動する尺取り虫的な方法により、一軸の
位置決めをする機構も知られている。第6図ではクラン
プレバー24, 24をフレーム21に固定し、24’
, 24’を離している状態を示している。また図面は
示していないが多軸の移動機構を構戒する方法として、
板ばねにより可動部を支持し、圧電素子によって微動を
させる機構がある(特開昭62−214412号公報)
。また第7図に示すように尺取り虫的な方法を用い、平
面上に圧電素子(図示せず)により金具32を下方にひ
っぱり圧電素子31により伸縮する移動部をクランプす
るXY2軸の移動機構がある(精密工学会昭和62年秋
季論文集P247)。さらに、図8に示すように、尺取
り虫的な方法により並進、回転を行なう機構もある(精
密工学会昭和60年春季論文集P305)。
(Traditional technology) In the past, as a positioning device that uses actuators such as a piezoelectric element, this is the principle of hinge L6 and 17 as shown in the mechanism that directly drives the movable portion with a piezoelectric element and Fig. 5. Arm 20. A device is known that uses a displacement amplifying mechanism that moves the piezoelectric element 19 to amplify minute displacements of the piezoelectric element 11. Also, as shown in FIG. 6, a pair of clamp levers 24, 24,
24. It has a moving piezoelectric element 22 that moves 24,
Clamp levers 24, 24 are fixed by piezoelectric elements 23 for fixation.
The moving piezoelectric element 2 is moved and clamped alternately.
A mechanism for uniaxial positioning using an inchworm-like method of expanding and contracting 2 is also known. In Fig. 6, the clamp levers 24, 24 are fixed to the frame 21, and 24'
, 24' are shown separated. Although the drawings are not shown, as a method for controlling a multi-axis movement mechanism,
There is a mechanism in which the movable part is supported by a leaf spring and made to move slightly by a piezoelectric element (Japanese Patent Application Laid-Open No. 62-214412).
. In addition, as shown in FIG. 7, there is an XY two-axis moving mechanism that uses an inchworm-like method to pull the metal fitting 32 downward using a piezoelectric element (not shown) on a plane, and clamps the expanding and contracting moving part using the piezoelectric element 31. (Society of Precision Engineering, Autumn Proceedings of 1986, P247). Furthermore, as shown in FIG. 8, there is also a mechanism that performs translation and rotation using an inchworm-like method (Society for Precision Engineering, 1985 Spring Proceedings P305).

(発明が解決しようとする課題) 可動部を直接圧電素子等のアクチュエータにより駆動す
る方法では、アクチュエータの最大変位量により移動範
囲が制限される。圧電素子を用いた場合、変位の大きい
積層型圧電素子を用いても、数+11m程度の移動範囲
が限界である。変位拡大機構を用いた第5図の方法では
、直接駆動する場合に比べて、最大数十倍の変位拡大率
が得られるが、変位拡大機構により剛性が低下して外力
により簡単に変位や振動してしまうという問題がある。
(Problems to be Solved by the Invention) In a method in which a movable part is directly driven by an actuator such as a piezoelectric element, the movement range is limited by the maximum displacement amount of the actuator. When a piezoelectric element is used, even if a laminated piezoelectric element with a large displacement is used, the movement range is limited to about several +11 meters. The method shown in Figure 5 using a displacement magnification mechanism can obtain a displacement magnification rate up to several tens of times higher than that of direct drive, but the displacement magnification mechanism reduces rigidity and is easily susceptible to displacement and vibration due to external forces. The problem is that you end up doing it.

板ばねを支持に用いた特公昭62−214412号の例
では、板ばねの変位量が限られるため移動距離や回転角
度が制限され、多自由度の場合には、機構が複雑になり
剛性が低下する。第6図のように尺取り虫機構の場合、
通常一軸のみに移動するものが多いが、これを二軸以上
組み合わせた場合、構造が複雑になり、剛性が低下し、
振動、精度の点で問題となる。第6図の尺取り虫機構で
はアクチュエータの故障等により、固定が解除される恐
れがある。また固定機構部分の複雑さにより、固定時の
剛性が低下する。またクランプ動作により、微小な移動
が生じて誤差が発生することがある。第6図〜8図尺取
り虫機構のように移動時に面が摺動する場合、部材間の
焼き付き、スティックスリップの発生等の可能性があり
、また超高真空の装置内で用いる場合や空気のクリーン
度が要求される場合、塵埃の発生という問題がある。さ
らに、上述のような様々の微動機構の場合、位置決め後
、微動の必要が無い場合、不要となる微動機構部の取り
外しができない。また従来の微動機構では、1回の動作
でXYe3自由度の移動ができるものはなかった。
In the example of Japanese Patent Publication No. 62-214412 that uses a leaf spring for support, the displacement of the leaf spring is limited, so the travel distance and rotation angle are restricted, and in the case of multiple degrees of freedom, the mechanism becomes complicated and the rigidity is reduced. descend. In the case of the inchworm mechanism as shown in Figure 6,
Usually, many items move only on one axis, but when two or more axes are combined, the structure becomes complicated and the rigidity decreases.
This causes problems in terms of vibration and accuracy. In the inchworm mechanism shown in FIG. 6, there is a possibility that the fixation may be released due to failure of the actuator or the like. Furthermore, the rigidity during fixation is reduced due to the complexity of the fixing mechanism. Furthermore, the clamping operation may cause minute movements and errors. Figures 6 to 8 If the surface slides during movement, as in the inchworm mechanism, there is a possibility of seizure between parts, stick-slip, etc. Also, when used in an ultra-high vacuum device or when cleaning the air. When high temperature is required, there is a problem of dust generation. Furthermore, in the case of the various fine movement mechanisms described above, if there is no need for fine movement after positioning, the unnecessary fine movement mechanism cannot be removed. In addition, there is no conventional fine movement mechanism that can move with three degrees of freedom in XYe in one operation.

本発明の目的は、移動量の制限がなく大ストロークの移
動ができ、固定時の剛性が高く、アクチュエータの故障
による固定の解除、位置の狂いがなく、固定時にエネル
ギーが不要で、摺動ずる部分がなく、1回の動作でXY
e3自由度の移動ができる位置決め装置を提供すること
にある。
The objects of the present invention are to be able to move over a large stroke without any restrictions on the amount of movement, to have high rigidity when fixed, to prevent release of fixing or misalignment due to actuator failure, to require no energy when fixing, and to prevent sliding. No parts, XY in one movement
The object of the present invention is to provide a positioning device that can move with e3 degrees of freedom.

(課題を解決するための手段) 本発明の位置決め装置は、第一の部材と第二の部材より
構成され、第一の部材に対し第二の部材を移動させ位置
決めを行う位置決め装置において、第二の部材との接触
部と、複数の圧電素子等の伸縮するアクチュエータによ
り構戒され、前記アクチュエータにより前記接触部を第
一の部材に対し第二の部材を押し離す方向と移動方向に
変位可能とした駆動ユニットを第一の部材に備え、第一
の部材と第二の部材は固定時には、面で接触しており、
前記アクチュエータにより、駆動ユニットの第二の部材
との接触部を押し離す方向に変位させることにより第一
の部材と第二の部材の接触面を離し、前記アクチュエー
タにより駆動ユニットの接触部を面内方向の移動させる
方向に変位させる移動機構を備えたことを特徴とする。
(Means for Solving the Problems) The positioning device of the present invention is composed of a first member and a second member, and is a positioning device that performs positioning by moving a second member with respect to the first member. It is controlled by a contact part with the second member and a plurality of actuators that expand and contract such as piezoelectric elements, and the contact part can be displaced by the actuator in the direction of pushing the second member away from the first member and in the direction of movement. The first member is provided with a drive unit having the following structure, and the first member and the second member are in contact with each other at a surface when they are fixed,
The actuator displaces the contact portion of the drive unit with the second member in the pushing direction to separate the contact surfaces of the first member and the second member, and the actuator moves the contact portion of the drive unit in-plane. The present invention is characterized in that it includes a moving mechanism for displacing in the moving direction.

また、前記位置決め装置において、第一の部材と第二の
部材の間をバネの弾性力により押しつけて固定する押し
付け手段、あるいは第一の部材と第二の部材の間を磁石
の吸引力あるいは、斥力により押しつけて固定する押し
付け手段を設けてもよい。
In the positioning device, the first member and the second member may be pressed and fixed by the elastic force of a spring, or the first member and the second member may be moved between the first member and the second member by an attractive force of a magnet, or A pressing means for pressing and fixing by repulsive force may be provided.

(作用) 本発明においては、押し上げ機構により駆動ユニットの
接触部を第二の部材に押しつけて第二の部材を持ち上げ
、第一の部材と第二の部材の接触面を離し、前記接触部
のみで第二の部材が支えられるようにし、前記接触部を
駆動ユニットの移動機構によって、面内の任意の方向に
必要量移動させることにより、第二の部材を任意の方向
に必要量移動させた後、押し上げ機構を縮ませて2つの
部材の面を接触、固定させ、第二の部材と離れた前記接
触部を移動機構により、初めの位置に戻すという行程に
より位置決めを行う。また、行程内の順番を変えて、接
触部を予め必要量移動させた後、第2の部材を持ち上げ
、接触部と第2の部材をもとの位置に移動させ、2つの
部材間の面を接触、固定するという行程による位置決め
も行える。ストロークが大きい場合には、前記行程を繰
り返すことにより必要量の移動が可能である。移動機構
を必要量だけ移動させることにより、任意の精密な位置
決めを行うことが可能となる。接触部をXYの2方向に
移動可能にすることにより、1回の移動動作でX軸、Y
軸の2自由度の移動ができる。また、個々の駆動ユニッ
トで接触部を異なる方向に移動させることにより、e軸
の回転移動ができる。
(Function) In the present invention, the contact portion of the drive unit is pressed against the second member by the push-up mechanism, the second member is lifted, the contact surfaces of the first member and the second member are separated, and only the contact portion is The second member is supported by the second member, and the contact portion is moved by the required amount in any direction within the plane by the movement mechanism of the drive unit, thereby moving the second member by the required amount in any direction. After that, positioning is performed by retracting the push-up mechanism to bring the surfaces of the two members into contact and fixing them, and returning the contact portion separated from the second member to the initial position by the moving mechanism. Alternatively, after changing the order of the stroke and moving the contact part by the necessary amount in advance, lift the second member, move the contact part and the second member to their original positions, and then Positioning can also be performed by touching and fixing. If the stroke is large, the required amount of movement can be achieved by repeating the above steps. By moving the moving mechanism by the required amount, it becomes possible to perform arbitrary precise positioning. By making the contact part movable in two directions, X and Y, one movement can move the
The axis can move in two degrees of freedom. Furthermore, by moving the contact portions in different directions using individual drive units, rotational movement of the e-axis is possible.

また、個々の駆動ユニットの移動量を変えることにより
、回転移動時の回転中心を任意に設定することもできる
。この構成により、面内のXYe3自由度についての2
つの部材の位置決めを同時に行うことができる。押し上
げ機構と移動機構に用いている圧電素子等のアクチュエ
ータは、移動時にのみ作動し、固定時には、部材間が面
接触し、摩擦力により固定される。2個の部材間の広い
面積で面接触し固定されるため、固定時の剛性が高い。
Further, by changing the amount of movement of each drive unit, the center of rotation during rotational movement can be arbitrarily set. With this configuration, 2
Two members can be positioned simultaneously. Actuators such as piezoelectric elements used in the push-up mechanism and the moving mechanism operate only when moving, and when fixed, the members come into surface contact and are fixed by frictional force. Since the two members are fixed by surface contact over a wide area, the rigidity during fixation is high.

固定時には、アクチュエータは作動していないため、ア
クチュエータに故障が生じても固定が解除されたり、位
置が狂う恐れがない。また、これにより、固定時にエネ
ルギーを消費しないので、発熱の心配もない。また移動
時においても各部材間の摺動はないため、真空中や空気
のクリーン度を要求される所で問題となる、塵埃の発生
がない。また摺動がないので焼き付き、スティックスリ
ップがない。2平面間において、相互の位置決めを行う
場合、一方の平面の四隅等に、ユニット化した駆動部を
設けることにより、容易に微動装置を構戒でき、位置決
め後、移動が不要であれば、駆動部を取り外すことも容
易である。これにより、精密機器製造、調整時の部材の
精密位置決め時に本装置を用い、位置決め後駆動部を取
り外すという治具的な使用も可能である。
When the actuator is fixed, it is not operating, so even if a failure occurs in the actuator, there is no fear that the fixation will be released or the position will go out of order. Furthermore, since no energy is consumed during fixation, there is no need to worry about heat generation. Furthermore, since there is no sliding movement between the various members during movement, there is no generation of dust, which can be a problem in vacuum environments or in places where air cleanliness is required. Also, since there is no sliding, there is no sticking or slipping. When performing mutual positioning between two planes, by providing a unitized drive unit at the four corners of one plane, the fine movement device can be easily controlled, and if movement is not required after positioning, the drive It is also easy to remove the parts. This allows the device to be used as a jig for precise positioning of components during manufacturing and adjustment of precision equipment, and for removing the drive unit after positioning.

第一の部材と第二の部材の間にバネを設け、バネの弾性
力により移動部材間を加圧することにより、より強固な
固定が得られる。移動時の接触部と移動部材間の摩擦も
大きくなり、垂直面の移動や、第2の部材を第1の部材
の下方に配置した上下が逆さの状態での移動が可能とな
る。圧電素子による高速の押し上げ動作に対しても、運
動の慣性により移動部材が接触部と離れることがなく安
定した動作が可能となる。磁気的、電気的に周囲に影響
を与えないため、電子ビーム露光装置、電子ビームアニ
ール装置にも使用できる。
By providing a spring between the first member and the second member and applying pressure between the movable members using the elastic force of the spring, stronger fixation can be obtained. The friction between the contact portion and the movable member during movement also increases, allowing movement in a vertical plane or in an upside-down state with the second member disposed below the first member. Even in the case of a high-speed push-up operation by the piezoelectric element, the moving member does not separate from the contact portion due to the inertia of the movement, allowing stable operation. Since it does not affect the surroundings magnetically or electrically, it can also be used in electron beam exposure equipment and electron beam annealing equipment.

一方の移動部材に磁石を設け、もう一方の部材に磁石に
吸引される材料を用いたり、もう一方の部材に前記磁石
に吸引する磁石を設けて磁石の吸引力により加圧するこ
とにより、バネによる加圧と同様、より強固な固定が得
られる。双方の移動部材に磁石を設け、それらの磁石の
斥力により、移動部材の接触面が加圧されるようにして
も、吸引の場合と同様、より強固な固定が得られる。移
動時の押上部と移動部材間の摩擦も大きくなり、垂直面
の移動や、第2の部材を第1の部材の下方に配置した上
下が逆さの状態での移動が可能となる。圧電素子による
高速の押し上げ動作に対しても、運動の慣性により移動
部材が接触部と離れることがなく安定した動作が可能と
なる。さらに、バネを使用したときに問題となる最大移
動ストロークの制限を無くすことができる。
By providing a magnet on one moving member and using a material that is attracted to the magnet on the other member, or providing a magnet on the other member that is attracted to the magnet and applying pressure by the attractive force of the magnet, it is possible to use a spring. Similar to pressurization, a stronger fixation can be obtained. Even if magnets are provided on both moving members and the contact surfaces of the moving members are pressurized by the repulsive force of those magnets, stronger fixation can be obtained as in the case of suction. The friction between the push-up part and the movable member during movement also increases, making it possible to move in a vertical plane or in an upside-down state with the second member disposed below the first member. Even in the case of a high-speed push-up operation by the piezoelectric element, the moving member does not separate from the contact portion due to the inertia of the movement, allowing stable operation. Furthermore, it is possible to eliminate limitations on the maximum movement stroke, which is a problem when using springs.

(実施例) 以下、本発明の実施例を図に基づいて説明する。第1図
は、本発明の一実施例を示す縦断面図で、第2図は本発
明の位置決め装置を接触部3と押し上げ用圧電素子4と
駆動用圧電素子5よりなる駆動ユニットを含むA−A断
面で切断した横断面図である。第1図では、駆動ユニッ
トのある第一の部材1が固定されており、第二の部材2
を移動させ位置決めを行う。本実施例では、アクチュエ
ータとじて積層型圧電素子を使用している。接触部3と
押し上げ用圧電素子4と移動用圧電素子5よりなる駆動
ユニットは、駆動ユニットフレーム6に納められ、第一
の部材1に取り付けられる。駆動ユニットは、この実施
例では4個あり、4ケ所の押し上げ用圧電素子により駆
動ユニットの接触部3を第二の部材2に押しつけて第二
の部材2を持ち上げ、第一の部材1と第二の部材2の接
触面を離し、前記接触部3のみで第二の部材2が支えら
れるようにし、前記接触部3を駆動ユニットの移動用圧
電素子5によって、面内の任意の方向に必要量移動させ
ることにより、第二の部材2を任意の方向に必要量移動
させた後、押し上げ用圧電素子4を縮ませて2つの部材
の面を接触、固定させ、第二の部材2と離れた前記接触
部3を移動用圧電素子5により、初めの位置に戻すとい
う行程により位置決めを行う。また、行程内の順番を変
えて、接触部3を予め必要量移動させた後、第2の部材
2を持ち上げ、接触部3と第2の部材2をもとの位置に
戻し、2つの部材間の面を接触、固定するという行程に
よる位置決めも行える。
(Example) Hereinafter, an example of the present invention will be described based on the drawings. FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention, and FIG. 2 is a longitudinal sectional view showing an embodiment of the present invention. - It is a cross-sectional view taken along the A cross section. In FIG. 1, a first member 1 with a drive unit is fixed and a second member 2
Move and position. In this embodiment, a laminated piezoelectric element is used as the actuator. A drive unit consisting of the contact portion 3, the piezoelectric element 4 for pushing up, and the piezoelectric element 5 for movement is housed in a drive unit frame 6 and attached to the first member 1. In this embodiment, there are four drive units, and the contact portion 3 of the drive unit is pressed against the second member 2 by the piezoelectric elements for pushing up at four locations, the second member 2 is lifted, and the first member 1 and the second member 2 are lifted up. The contact surfaces of the second member 2 are separated so that the second member 2 is supported only by the contact portion 3, and the contact portion 3 is moved in any desired direction within the plane by the moving piezoelectric element 5 of the drive unit. After moving the second member 2 by the required amount in an arbitrary direction, the pushing-up piezoelectric element 4 is contracted to bring the surfaces of the two members into contact and fixation, and the second member 2 is separated from the second member 2. Positioning is performed by returning the contact portion 3 to its initial position using the moving piezoelectric element 5. Also, after changing the order in the stroke and moving the contact part 3 by the necessary amount in advance, lift the second member 2, return the contact part 3 and the second member 2 to their original positions, and move the two members together. Positioning can also be performed by touching and fixing the surfaces in between.

本実施例では、駆動ユニットは一組毎に駆動ユニットフ
レーム6に納められているが、第一の部材1に直接納め
られていても良い。本実施例のように、駆動ユニットを
第一の部材と別体とすることにより、位置決め機構が不
要なときには、駆動ユニットを取り外すことが可能とな
る。第2図は、第1図の切断線A−Aで切断し上方より
見た横断面図である。各駆動ユニットは、押し上げ用圧
電素子4と、XY2個の移動用圧電素子5を備えており
、XY千面内の任意の方向に移動可能になっている。四
箇所の接触部3が同じ動きをすれば、第二の部材2は、
その動きの通りに動く。四箇所の接触部3を第二の部材
2が回転するようにそれぞれを異なる方向に動かすこと
により、第二の部材2を回転移動させることができる。
In this embodiment, each set of drive units is housed in the drive unit frame 6, but they may be housed directly in the first member 1. By making the drive unit separate from the first member as in this embodiment, the drive unit can be removed when the positioning mechanism is not required. FIG. 2 is a cross-sectional view taken along section line A-A in FIG. 1 and viewed from above. Each drive unit includes a push-up piezoelectric element 4 and two XY moving piezoelectric elements 5, and is movable in any direction within the XY plane. If the four contact parts 3 move in the same way, the second member 2 will
Move according to the movement. The second member 2 can be rotated by moving the four contact parts 3 in different directions so that the second member 2 rotates.

このとき、それぞれの駆動ユニットの移動量を変えるこ
とにより、任意の回転中心位置を設定することが可能と
なる。
At this time, by changing the amount of movement of each drive unit, it is possible to set an arbitrary rotation center position.

第3図は、前記の位置決め装置で第一の部材1と第二の
部材2の間にバネ7を設け、バネマの弾性力により移動
部材間を加圧することにより、より強固な固定を得る位
置決め装置である。バネ7の弾性力により加圧すること
によって、移動時の接触部と移動部材間の摩擦力も大き
くなる。
FIG. 3 shows a positioning system in which a spring 7 is provided between the first member 1 and the second member 2 in the above-mentioned positioning device, and by applying pressure between the movable members by the elastic force of the spring, more firm fixation is achieved. It is a device. By applying pressure using the elastic force of the spring 7, the frictional force between the contact portion and the moving member during movement also increases.

第4図は、前記の位置決め装置で、第二の部材2に磁石
8を設け、第一の部材1に磁石に吸引される材料を用い
て磁石の吸引力により加圧することにより、バネによる
加圧と同様、より強固な固定が得る位置決め装置である
。磁石の吸引力による加圧によって、移動時の押上部と
移動部材間の摩擦力も大きくなる。
FIG. 4 shows the positioning device described above, in which the second member 2 is provided with a magnet 8, and the first member 1 is pressurized by the attraction force of the magnet using a material that is attracted to the magnet. Similar to pressure, it is a positioning device that provides stronger fixation. The frictional force between the push-up part and the moving member during movement also increases due to the pressurization caused by the attractive force of the magnet.

(発明の効果) 本発明の利点とするところは、次の通りである。すなわ
ち、移動量の制限がなく大ストロークの移動が可能であ
り、また、アクチュエータの分解能の限界までの任意の
精密な位置決めができる。1回の動作でXYe3自由度
の移動ができ、e軸の回転中心を任意に設定できる。第
一の部材と第二の部材は、2個の部材間の広い面積で面
接触し固定されるため、固定時の剛性が高い。固定時に
はアクチュエータは作動していないため、アクチュ二一
夕に故障が生じても固定が解除されたり、位置が狂う恐
れがない。また、これにより、固定時にエネルギーを消
費せず、発熱の心配もない。移動時においても各部材間
の摺動はないため、精密機器や真空中で問題となる、塵
埃の発生や、焼き付きのような問題はない。2千面間に
おいて、相互の位置決めを行う場合、一方の平面の四隅
等に、ユニット化した駆動部を設けることにより、容易
に微動装置を構戒でき、位置決め後、移動が不要であれ
ば、駆動部を取り外すことも容易である。これにより、
精密機器製造、調整時の部材間の精密位置決め時に本装
置を用い、位置決め後駆動部を取り外すという治具的な
使用も可能である。
(Effects of the Invention) The advantages of the present invention are as follows. That is, there is no restriction on the amount of movement, and large stroke movement is possible, and arbitrary precise positioning can be performed up to the limit of the resolution of the actuator. It is possible to move with three degrees of freedom in XYe in one operation, and the rotation center of the e-axis can be set arbitrarily. Since the first member and the second member are fixed in surface contact over a wide area between the two members, the rigidity at the time of fixation is high. Since the actuator is not operating when the actuator is fixed, even if a failure occurs in the actuator, there is no risk of the actuator being unfixed or being misaligned. Additionally, this allows no energy to be consumed during fixation, and there is no need to worry about heat generation. Since there is no sliding movement between the various parts during movement, there are no problems such as dust generation or burn-in, which can occur in precision equipment or in a vacuum. When performing mutual positioning between 2,000 planes, by providing a unitized drive unit at the four corners of one plane, the fine movement device can be easily controlled, and if no movement is required after positioning, It is also easy to remove the drive unit. This results in
This device can also be used as a jig for precise positioning between components during manufacturing and adjustment of precision equipment, and removing the drive unit after positioning.

バネ等の弾性力により移動部材間を加圧することにより
、より強固な固定が得られる。移動時の押上部と移動部
材間の摩擦も大きくなり、垂直面の移動や、第2の部材
を第1の部材の下方に配置した上下が逆さの状態での移
動が可能となる。圧電素子による高速の押し上げ動作に
対しても、運動の慣性により移動部材が接触部と離れる
ことがなく安定した動作が可能となる。磁気的、電気的
に周囲に影響を与えないため、電子線装置等にも使用で
きる。
By applying pressure between the movable members using the elastic force of a spring or the like, stronger fixation can be obtained. The friction between the push-up part and the movable member during movement also increases, making it possible to move in a vertical plane or in an upside-down state with the second member disposed below the first member. Even in the case of a high-speed push-up operation by the piezoelectric element, the moving member does not separate from the contact portion due to the inertia of the movement, allowing stable operation. Since it does not affect the surroundings magnetically or electrically, it can also be used in electron beam equipment, etc.

磁石により加圧することにより、バネによる加圧と同様
、より強固な固定が得られる。移動時の押上部と移動部
材間の摩擦も大きくなり、垂直面の移動や、第2の部材
を第1の部材の下方に配置した上下が逆さの状態での移
動が可能となる。圧電素子による高速の押し上げ動作に
対しても、運動の慣性により移動部材が接触部と離れる
ことがなく安定した動作が可能となる。さらに、バネを
使用したときに問題となる最大移動ストロークの制限を
無くすことができる。
By applying pressure with a magnet, stronger fixation can be obtained, similar to applying pressure with a spring. The friction between the push-up part and the movable member during movement also increases, making it possible to move in a vertical plane or in an upside-down state with the second member disposed below the first member. Even in the case of a high-speed push-up operation by the piezoelectric element, the moving member does not separate from the contact portion due to the inertia of the movement, allowing stable operation. Furthermore, it is possible to eliminate limitations on the maximum movement stroke, which is a problem when using springs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例の断面図、第2図は第1図の
A−A面における断面図、第3図は、バネの力により固
定した実施例の図、第4図は、磁石の力により固定した
実施例の図、第5図は、変位拡大機構を用いた移動装置
の従来例の図、第6図は、尺取り虫機構を用いたー軸の
微動装置の従来例の図、第7図は、尺取り虫機構を用い
た、XY2軸の微動装置従来例の図、第8図は、尺取り
虫機構を用いた並進、回転微動装置の従来例の図である
FIG. 1 is a sectional view of an embodiment of the present invention, FIG. 2 is a sectional view taken along the line A-A in FIG. 1, FIG. 3 is a diagram of an embodiment fixed by the force of a spring, and FIG. , a diagram of an embodiment fixed by the force of a magnet, FIG. 5 is a diagram of a conventional example of a moving device using a displacement magnification mechanism, and FIG. 6 is a diagram of a conventional example of a shaft fine movement device using an inchworm mechanism. 7 is a diagram of a conventional example of an XY two-axis fine movement device using an inchworm mechanism, and FIG. 8 is a diagram of a conventional example of a translational and rotational fine movement device using an inchworm mechanism.

Claims (1)

【特許請求の範囲】 1、第一の部材に対し第二の部材を移動させ位置決めを
行う位置決め装置において、第二の部材との接触部と、
伸縮するアクチュエータにより構成され、前記アクチュ
エータにより前記接触部を第一の部材に対し第二の部材
を押し離す方向および移動方向に変位可能とした駆動ユ
ニットを第一の部材に備え、第一の部材と第二の部材は
固定時には、面で接触しており、前記アクチュエータに
より、駆動ユニットの第二の部材との接触部を押し離す
方向に変位させることにより第一の部材と第二の部材の
接触面を離し、前記アクチュエータにより駆動ユニット
の接触部を面内方向の移動させる方向に変位させる移動
機構を備えたことを特徴とする位置決め装置。 2、第一の部材と第二の部材の間をバネの弾性力により
押しつけて固定する押し付け手段を設けた特許請求項1
記載の位置決め装置。 3、第一の部材と第二の部材の間を磁石の吸引力あるい
は、斥力により押しつけて固定する押し付け手段を設け
た請求項1記載の位置決め装置。
[Claims] 1. A positioning device that moves and positions a second member relative to a first member, comprising: a contact portion with the second member;
The first member includes a drive unit that is configured by an actuator that expands and contracts, and is capable of displacing the contact portion in the direction of pushing and moving the second member with respect to the first member by the actuator, When the and second member are fixed, they are in surface contact, and the actuator displaces the contact portion of the drive unit with the second member in the direction of pushing them apart, thereby causing the first member and the second member to separate. A positioning device characterized by comprising a moving mechanism that separates the contact surface and causes the actuator to displace the contact portion of the drive unit in the in-plane direction. 2. Patent claim 1, which includes a pressing means for pressing and fixing the first member and the second member using the elastic force of a spring.
The positioning device described. 3. The positioning device according to claim 1, further comprising a pressing means for pressing and fixing the first member and the second member between the first member and the second member using the attractive force or repulsive force of a magnet.
JP1189081A 1989-07-20 1989-07-20 Positioning device Expired - Fee Related JP2937348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1189081A JP2937348B2 (en) 1989-07-20 1989-07-20 Positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1189081A JP2937348B2 (en) 1989-07-20 1989-07-20 Positioning device

Publications (2)

Publication Number Publication Date
JPH0353192A true JPH0353192A (en) 1991-03-07
JP2937348B2 JP2937348B2 (en) 1999-08-23

Family

ID=16234995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1189081A Expired - Fee Related JP2937348B2 (en) 1989-07-20 1989-07-20 Positioning device

Country Status (1)

Country Link
JP (1) JP2937348B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343277A (en) * 1993-02-05 1994-12-13 Discovision Assoc Electrostatic operation type pickup
JP2009189228A (en) * 2008-01-08 2009-08-20 Nec Tokin Corp Actuator, and positioning apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274894A (en) * 1987-05-01 1988-11-11 魚住 清彦 Feeder
JPH02234093A (en) * 1989-03-08 1990-09-17 Hitachi Ltd Moving mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274894A (en) * 1987-05-01 1988-11-11 魚住 清彦 Feeder
JPH02234093A (en) * 1989-03-08 1990-09-17 Hitachi Ltd Moving mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343277A (en) * 1993-02-05 1994-12-13 Discovision Assoc Electrostatic operation type pickup
JP2009189228A (en) * 2008-01-08 2009-08-20 Nec Tokin Corp Actuator, and positioning apparatus

Also Published As

Publication number Publication date
JP2937348B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
Zhang et al. Piezoelectric friction–inertia actuator—A critical review and future perspective
Peng et al. A review of long range piezoelectric motors using frequency leveraged method
Ouyang et al. Micro-motion devices technology: The state of arts review
US5089740A (en) Displacement generating apparatus
US4736131A (en) Linear motor driving device
Breguet et al. Stick and slip actuators: design, control, performances and applications
US6806991B1 (en) Fully released MEMs XYZ flexure stage with integrated capacitive feedback
Codourey et al. A robot system for automated handling in micro-world
US6386609B1 (en) Gripper design to reduce backlash
JPH1190867A (en) Micromanipulator
Zhou et al. Development of a Δ-type mobile robot driven by three standing-wave-type piezoelectric ultrasonic motors
US4600854A (en) Piezoelectric stepping rotator
Bergander et al. Micropositioners for microscopy applications based on the stick-slip effect
Li et al. A miniature impact drive mechanism with spatial interdigital structure
JPH0353192A (en) Positioning device
JPH0760581A (en) X-y stage
JP2000009867A (en) Stage moving device
CN211791324U (en) Inchworm type piezoelectric linear driver
Bergander et al. Micropositioners for microscopy applications and microbiology based on piezoelectric actuators
Kortschack et al. Driving principles of mobile microrobots for micro-and nanohandling
US6513250B2 (en) Micro positioning device with shared actuators
WO2010114488A1 (en) Active manipulator
WO2004077584A1 (en) Piezoelectric actuator with passive gap for push-pull motion
KR102149381B1 (en) Micro transfer mechanism and high-precision positioning aparatus comprising the same
CN108788792B (en) Plane-driven pitching three-degree-of-freedom motion platform

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees