JPH0353186A - Transmission frequency automatic adjusting circuit for fm-cw radar - Google Patents

Transmission frequency automatic adjusting circuit for fm-cw radar

Info

Publication number
JPH0353186A
JPH0353186A JP18809289A JP18809289A JPH0353186A JP H0353186 A JPH0353186 A JP H0353186A JP 18809289 A JP18809289 A JP 18809289A JP 18809289 A JP18809289 A JP 18809289A JP H0353186 A JPH0353186 A JP H0353186A
Authority
JP
Japan
Prior art keywords
frequency
signal
transmission
circuit
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18809289A
Other languages
Japanese (ja)
Inventor
Minoru Ishikawa
実 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP18809289A priority Critical patent/JPH0353186A/en
Publication of JPH0353186A publication Critical patent/JPH0353186A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To eliminate the variance of the transmission frequency due to the change of tempera ture or the like by switching the frequency modulation of a transmission signal at intervals of a prescribed time by a modulation signal for measurement, a modulation signal stopped with a minimum frequency, and a modulation signal for distance correction to automatically adjust the transmission frequency to minimum and maximum transmission frequencies. CONSTITUTION:The modulation signal supplied to a transmission circuit 2 is switched by a signal switch 11 and is corrected by a modulation voltage corrector 12. The signal of the circuit 2 is converted to a lower frequency by a frequency divider 13 and is inputted to a mixer 21 and a delay circuit 31 is parallel. A signal having a certain frequency is inputted to the mixer 21 in the period of a minimum transmission frequency determining modulation signal, a sampling and holding circuit 24 regards the output of a frequency discriminator 23 as the error voltage is accordance with signal switching of the switch 11, and the frequency modulated signal and the time delay signal are inputted to a mixer 32 in the period of a maximum transmission frequency determining modulation signal. A sampling and holding circuit 34 regards the output of a frequency discriminator 33 as the error voltage in accordance with signal switching of the switch 11. The maximum frequency is automatically controlled to the frequency determined by the delay time of the circuit 31, and the minimum transmission frequency is automatically controlled to the frequency determined by the reference quartz oscillator 22.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はFM−CWレーダにおいて、送信周波数を自動
調整する回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a circuit that automatically adjusts a transmission frequency in an FM-CW radar.

(従来の技術) 従来より所定距離内における目標物の距離判定には、周
波数変調された連続波(いわゆるFM−CW)信号によ
り掃引探知する方式のレーダが用いられている。
(Prior Art) Conventionally, to determine the distance of a target within a predetermined distance, a radar that performs sweep detection using a frequency-modulated continuous wave (so-called FM-CW) signal has been used.

第3[!Iには、この方式すなわちFM−CWレーダ方
式に係るレーダシステムの一構成例が示されている。
Third [! 1 shows an example of the configuration of a radar system according to this method, that is, the FM-CW radar method.

一定勾配をもつ変調信号F(t)を発生する変調器1に
は、該変調信号F(t)により周波数変調ざれた送信信
号を出力する送信回路2が接続されている。
A modulator 1 that generates a modulated signal F(t) having a constant slope is connected to a transmitting circuit 2 that outputs a transmitted signal frequency-modulated by the modulated signal F(t).

すなわち、第4図(a)に示すように、変調器1ば立上
り時間Tが決定されるスロープを有する変調信号F(t
)を発生する。このとき、前記スロープはある一定の振
幅を有している。また送イε回路2においては、この変
調信号F(t)により送信信号が周波数変調され、出力
される。このとき、送信{ε号の周波数は第4図(b)
に示すように変vR信号F(t)の相似波形の関数f(
t)で表わされる。
That is, as shown in FIG. 4(a), the modulator 1 generates a modulated signal F(t
) occurs. At this time, the slope has a certain amplitude. Further, in the transmission ε circuit 2, the transmission signal is frequency-modulated by this modulation signal F(t) and output. At this time, the frequency of the transmission {ε is shown in Fig. 4(b)
As shown in , the function f(
t).

従って、送信信号の周波数f(t)は、基本周波数(例
えば13GHZ)に対して前記変調信号F(t)のスロ
ープの振幅に対応する偏移帯域幅ΔF(例えば400M
Hz)で直線的に変化する。
Therefore, the frequency f(t) of the transmitted signal has a deviation bandwidth ΔF (eg 400M
Hz).

前記送信回路2には、目標物4に対する送信信号の放射
及び目標物4からの反射波の受信を行うアンテナ3がミ
キサ5を介して接続され、送43信号の一部とアンテナ
3の受信信号とのミキシングを行うミキサ5には、ミキ
サ5の出力を増輻する受信回路6が接続されている。
An antenna 3 that emits a transmission signal to a target object 4 and receives a reflected wave from the target object 4 is connected to the transmission circuit 2 via a mixer 5, and a part of the transmission signal 43 and a reception signal of the antenna 3 are connected to the transmission circuit 2. A receiving circuit 6 that amplifies the output of the mixer 5 is connected to the mixer 5 that performs mixing with the mixer 5 .

すなわち、前記送信信号は、アンテナ3により電波とし
て放射され、この電波の目標物4による反射波は、アン
テナ3により受信される。このアンテナ3により受信ざ
れた反射波は、受信信号として送信信号の一部ミキサ5
によりミキシングされ、ミキサ5は受信信号及び送信信
号の周波数差に相当Tルヒート周波fi(f b) (
例,tハ100K H z)を有するビート信号を出力
する。
That is, the transmission signal is radiated as a radio wave by the antenna 3, and the reflected wave of this radio wave by the target object 4 is received by the antenna 3. The reflected wave received by the antenna 3 is used as a received signal to be sent to a mixer 5 as a part of the transmitted signal.
The mixer 5 generates a heating frequency fi(f b) corresponding to the frequency difference between the received signal and the transmitted signal.
For example, a beat signal having a frequency of 100 KHz) is output.

このビート周波数fbぱ、目標物4の距liIDに比例
する値である。すなわち、第4図(b)に示すように、
送信信号及び受信信号は、立ち上り時間Tに対する偏移
帯域輻ΔFの比である勾配のスロープを有しているため
、送信信号と受信信号の間の時間差τに対する送信信号
及び受信信号のミキシングに係る周波数f,の比は、該
スロープの勾配に一致する。ここで、送信信号と受信信
号の間の時間差では、目標物4に対する反射径路長2D
に係る電波伝達時間であるため、光速2をCとした場合
には、 τ=2D/C の関係が成立する。一方、前記のようにfb/τ=ΔF
/T であるため、従って、 f,=(ΔF − 2 D)/ (T − C)ocD
となり、ビート周波数fbは距離Dに比例する。
This beat frequency fb is a value proportional to the distance liID of the target object 4. That is, as shown in FIG. 4(b),
Since the transmitted signal and the received signal have a slope that is the ratio of the shift band intensity ΔF to the rise time T, the mixing of the transmitted signal and the received signal is related to the time difference τ between the transmitted signal and the received signal. The ratio of frequencies f, corresponds to the slope of the slope. Here, the time difference between the transmitted signal and the received signal is the reflection path length 2D with respect to the target object 4.
Since it is the radio wave transmission time related to On the other hand, as mentioned above, fb/τ=ΔF
/T, therefore, f,=(ΔF − 2 D)/(T − C)ocD
Therefore, the beat frequency fb is proportional to the distance D.

すなわち距lllIIDはΔF,Tを既知としてfbの
計測により求まる。
That is, the distance lllIID is found by measuring fb with ΔF and T known.

(発明が解決しようとする課題) しかしながら、従来のFM−CWレーダによれば、偏移
帯域幅ΔFの決定には一定振幅の直線状スロープを有す
る連続的な変調信号を用いているが、送信回路の発振定
数が温度特性あるいは経年変化等により変動した場合、
送信周波数が変動するという問題があった。送信周波数
の変動によりΔFがシフトした場合にも対応できるよう
にマイクロ波回路部には広帯域特性が要求され、設計お
よび調整が困難であった。特にマイクロ波回路部のうち
逓倍器の製造、調整上に大きな問題となっていた。
(Problem to be Solved by the Invention) However, according to the conventional FM-CW radar, a continuous modulation signal having a linear slope of constant amplitude is used to determine the shift bandwidth ΔF; If the oscillation constant of the circuit changes due to temperature characteristics or aging,
There was a problem that the transmission frequency fluctuated. The microwave circuit section is required to have wideband characteristics in order to cope with shifts in ΔF due to fluctuations in the transmission frequency, making design and adjustment difficult. In particular, this has been a major problem in the manufacture and adjustment of the multiplier in the microwave circuit section.

本発明は、このような問題点を解決することを課題とし
てなされたものであり、送信周波数の変動を防止するこ
とである。
The present invention has been made to solve such problems, and is to prevent fluctuations in the transmission frequency.

(課題を解決するための手段) 前記目的を達成するために、本発明は、送イε信号の周
波数変調を測定用変調信号、最低周波数で休止した変調
信号及び距離校正用変調信号(最高周波数決定用変調信
号)により所定の時間毎に切替えて交互に行い、送信周
波数を、基準となる別の周波数(低い周波数)により決
定される最低送イ8周波数と最高送信周波数に自動調整
するようにしたもので、以下実施例につき図面により詳
細に説明する。
(Means for Solving the Problems) In order to achieve the above object, the present invention modulates the frequency of the transmitted ε signal by using a measurement modulation signal, a modulation signal that pauses at the lowest frequency, and a distance calibration modulation signal (the highest frequency The transmission frequency is automatically adjusted to the lowest transmission frequency and the highest transmission frequency determined by another frequency (low frequency) that serves as a reference. Embodiments will be described in detail below with reference to the drawings.

(実施例) 第1図に本発明の一実施例に係るFM−CWレーダの送
信周波数自動調整回路を用いたレーダシステムの構成を
示す。第3図に示した従来例と同様な構成には同一の符
号を付し、説明を省略する。
(Embodiment) FIG. 1 shows the configuration of a radar system using an automatic transmission frequency adjustment circuit for an FM-CW radar according to an embodiment of the present invention. Components similar to those of the conventional example shown in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted.

第1図において、11は信号切替器、l2は変調電圧補
正器、13は分周器、14は信号切替器、21は混合器
、22は基準水晶発振器、23は周波数弁別器、24は
サンプルホールド回路、3lは遅延回路、32は混合器
、33は周波数弁別器、34はサンプルホールド回路で
ある。
In FIG. 1, 11 is a signal switch, l2 is a modulation voltage corrector, 13 is a frequency divider, 14 is a signal switch, 21 is a mixer, 22 is a reference crystal oscillator, 23 is a frequency discriminator, and 24 is a sample. 31 is a hold circuit, 3l is a delay circuit, 32 is a mixer, 33 is a frequency discriminator, and 34 is a sample and hold circuit.

この実施例においては、変調器1には測定用変調信号、
最低送信周波数決定用変調信号及び、最高送信周波数決
定用変調信号が{g号切替器11を介して加えられる。
In this embodiment, the modulator 1 includes a measurement modulation signal,
A modulation signal for determining the lowest transmission frequency and a modulation signal for determining the highest transmission frequency are added via the {g signal switch 11.

又、送信回′Is2には、変調M1が変調電圧補正器1
2を介して接続されている。
Further, in the transmission circuit 'Is2, the modulation M1 is connected to the modulation voltage corrector 1.
Connected via 2.

すなわち、送イε回路2に供給される変調信号F(1)
は、第2図(a)に示されるように、予め設定された測
定用変調信号、最低送信周波数決定用変調信号及び、最
高送信周波数決定用変調信号とが信号切替Wllにより
切替えられ、交互に出現した信号が、変調電圧補正器1
2により補正された信号である。送信回路2においては
、従来例と同様にこの変調イ3号F(t)により周波数
変調された送信信号が出力される。
In other words, the modulated signal F(1) supplied to the transmission ε circuit 2
As shown in FIG. 2(a), a preset measurement modulation signal, a minimum transmission frequency determination modulation signal, and a maximum transmission frequency determination modulation signal are switched by a signal switching Wll and alternately The signal that appears is modulated voltage corrector 1
This is a signal corrected by 2. In the transmitting circuit 2, a transmitting signal frequency-modulated by this modulation A3 F(t) is outputted, as in the conventional example.

一方、送信回路2の一部の信号、例えば該送信回路2の
原発振信号(例えば380MHz帯)は、分周M13に
よりさらに低い周波数に変換され、信号切替器14を介
して、混合器21及び遅延回路31、混合器32とに並
列に接続されている。
On the other hand, a part of the signal of the transmitting circuit 2, for example, the original oscillation signal of the transmitting circuit 2 (for example, 380 MHz band) is converted to a lower frequency by the frequency division M13, and then sent to the mixer 21 and It is connected in parallel to a delay circuit 31 and a mixer 32.

混合器21には、最低送信周波数決定用変調信号の期間
(第2の時間領域)、一定の周波数の信号が入力される
。一方、この混合器2lには基準水晶発振器22が接続
されており、該基準水晶発振器22の周波数との差周波
数(fb)が出力される。
A signal of a constant frequency is input to the mixer 21 during the period (second time domain) of the modulation signal for determining the lowest transmission frequency. On the other hand, a reference crystal oscillator 22 is connected to this mixer 2l, and a difference frequency (fb) from the frequency of the reference crystal oscillator 22 is output.

この周波数の信号は周波数弁別器23に入力される。周
波数弁別器23では中心周波数と入力周波数の差に比例
した電圧を出力し、サンプルホールド回路24に入力す
る。そしてサンプルホールド回路24は、前記fs号切
替器11の信号切替に伴い前記周波数弁別器23の出力
を誤差電圧として保持する。
A signal of this frequency is input to the frequency discriminator 23. The frequency discriminator 23 outputs a voltage proportional to the difference between the center frequency and the input frequency, and inputs it to the sample hold circuit 24. Then, the sample and hold circuit 24 holds the output of the frequency discriminator 23 as an error voltage as the fs signal switch 11 switches the signal.

前記サンプルホールド回路24には変調電圧補正器12
が接続されており、前記誤差電圧により最低送信周波数
は、前記基準水晶発振&22により決定される周波数へ
自動制御される。
The sample and hold circuit 24 includes a modulation voltage corrector 12.
is connected, and the lowest transmission frequency is automatically controlled by the error voltage to the frequency determined by the reference crystal oscillation &22.

一方、混合M32には、最高送信周波数決定用変調信号
の期間(第3の時間領域)、直線状スロープを有する連
続的な変調信号により周波数変調された信号と、該信号
が前記遅延回路3lにより既知の時間遅延を受けた信号
とが入力され、結果としてその差周波数(fc)が出力
ざれる。この周波数の信号は、周波数弁別W33へ入力
される。周波数弁別器33では、中心周波数と入力周波
数の差に比例した電圧を出力し、サンプルホールド回路
34に入力する。そして、サンプルホールド回路34は
前記信号切替器11の信号切替に伴い前記屑波数弁別#
33の出力を誤差電圧として保持する。
On the other hand, the mixing M32 includes a signal frequency-modulated by a continuous modulation signal having a linear slope during the period (third time domain) of the modulation signal for determining the highest transmission frequency, and a signal that is frequency-modulated by a continuous modulation signal having a linear slope. A signal with a known time delay is input, and as a result, the difference frequency (fc) is output. A signal of this frequency is input to frequency discrimination W33. The frequency discriminator 33 outputs a voltage proportional to the difference between the center frequency and the input frequency, and inputs it to the sample and hold circuit 34. Then, the sample hold circuit 34 performs the waste wave number discrimination # as the signal switching device 11 switches the signal.
The output of 33 is held as an error voltage.

前記サンプルホールド回路34には、変調電圧補正器l
2が接続ざれており、前記電圧により最高送信周波数は
、前記遅延回路31の遅延時間に基づいて決定される周
波数へ自動制御される。
The sample and hold circuit 34 includes a modulation voltage corrector l.
2 are connected, and the highest transmission frequency is automatically controlled by the voltage to a frequency determined based on the delay time of the delay circuit 31.

このようにして第lの時間領域における距#潤定は、第
2、第3の時間領域で決定された最低周波数、最高周波
数を基準として行われることになる。
In this way, the distance determination in the l-th time domain is performed based on the lowest frequency and the highest frequency determined in the second and third time domains.

(発明の効果) 以上述べたように本発明によれば、送信周波数が自動制
御されるので、送信回路の渥度変化や経年変化等による
送信周波数変動がなくなり、マイクロ波回路部の設計、
調整が容易となる。また、偏移帯域輻ΔFが一定となる
ため、前記ΔFの関数として測定される距HDの誤差も
無くなる。
(Effects of the Invention) As described above, according to the present invention, since the transmission frequency is automatically controlled, there is no fluctuation in the transmission frequency due to changes in the transmitting circuit, changes over time, etc., and the design of the microwave circuit section is improved.
Adjustment becomes easy. Further, since the shift band intensity ΔF is constant, the error in the distance HD measured as a function of the ΔF is also eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例に係るサーボスロープFM−
CWレーダ方式を用いたレーダシステムの構成図、第2
図は、第1図に示されたレーダシステムの動作図であっ
て、第2図(a)は変調信号のチャート図、第2図(b
)は、送{3信号と受信信号とのタイξングを示すチャ
ート図、第3図は、従来のサーボスロープ式FM−CW
レーダ方式を用いたレーダシステムの構成図、第4図は
、第3図に示されたレーダシステムの動作図であって、
第4図(a)は、変調信号を示すチャート図、第4図(
b)は、送信イ3号及び受信信号のタイミングを示すチ
ャート図である。 1・・・変調藩、2・・・送イε回路、6・・・受信回
路、l1・・・イ3号切替器、12・・・変調電圧補正
器、21・・・混合器、22・・・基準水晶発振器、2
3・・・周波数弁別器、31・・・遅延回路、32・・
・混合器、33・・・周波数弁別器。
FIG. 1 shows a servo slope FM- according to an embodiment of the present invention.
Configuration diagram of a radar system using the CW radar method, Part 2
The figures are operation diagrams of the radar system shown in Fig. 1, in which Fig. 2 (a) is a chart of a modulated signal, and Fig. 2 (b) is a diagram of the operation of the radar system shown in Fig. 1.
) is a chart showing the tying of the transmit {3 signal and the received signal, FIG. 3 is a conventional servo slope type FM-CW.
FIG. 4 is a configuration diagram of a radar system using a radar system, and is an operational diagram of the radar system shown in FIG.
FIG. 4(a) is a chart showing the modulation signal, FIG.
b) is a chart showing the timing of the transmission A3 and the received signal. DESCRIPTION OF SYMBOLS 1... Modulation block, 2... Transmission A ε circuit, 6... Receiving circuit, l1... A3 switch, 12... Modulation voltage corrector, 21... Mixer, 22 ...Reference crystal oscillator, 2
3... Frequency discriminator, 31... Delay circuit, 32...
- Mixer, 33... frequency discriminator.

Claims (1)

【特許請求の範囲】[Claims] 一定振幅の直線状スロープを有する連続的な変調信号に
より周波数変調された送信信号を電波として放射し、該
送信信号の一部と目標物からの反射波を含む受信信号を
混合して周波数差(f_b)から目標物までの距離を測
定するFM−CWレーダにおいて、前記送信信号の1サ
イクル内を所定時間ごとに逐次切り替える手段と、第1
の時間領域に、前記周波数差(f_b)を検出して距離
信号を出力する手段と、第2の時間領域に、周波数変調
を最低周波数で休止させ該最低周波数と基準周波数との
周波数差(f_r)を検出し、該周波数差(f_r)を
既知の周波数へ制御することにより最低送信周波数を決
定する手段と、第3の時間領域に、所定距離に対応する
遅延により生成された周波数差(f_c)を検出し、該
周波数差(f_c)を既知の周波数へ制御することによ
り周波数偏移幅を定め、前記最低送信周波数の決定に基
づき最高周波数を決定する手段とから成り、前記第2、
第3の時間領域で決定された最低送信周波数と最高送信
周波数を基にして前記第1の時間領域での距離測定を行
うように構成したことを特徴とするFM−CWレーダの
送信周波数自動調整回路。
A transmission signal frequency-modulated by a continuous modulation signal having a linear slope of constant amplitude is radiated as a radio wave, and a part of the transmission signal is mixed with a reception signal including a reflected wave from a target object to generate a frequency difference ( In the FM-CW radar that measures the distance from f_b) to a target, means for sequentially switching within one cycle of the transmission signal at predetermined time intervals;
means for detecting the frequency difference (f_b) and outputting a distance signal in a time domain, and means for stopping frequency modulation at the lowest frequency and detecting the frequency difference (f_r) between the lowest frequency and the reference frequency in a second time domain. ) and controlling the frequency difference (f_r) to a known frequency to determine the lowest transmission frequency; ), and determining a frequency deviation width by controlling the frequency difference (f_c) to a known frequency, and determining the highest frequency based on the determination of the lowest transmission frequency,
Automatic transmission frequency adjustment of the FM-CW radar, characterized in that it is configured to perform distance measurement in the first time domain based on the lowest transmission frequency and the highest transmission frequency determined in the third time domain. circuit.
JP18809289A 1989-07-20 1989-07-20 Transmission frequency automatic adjusting circuit for fm-cw radar Pending JPH0353186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18809289A JPH0353186A (en) 1989-07-20 1989-07-20 Transmission frequency automatic adjusting circuit for fm-cw radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18809289A JPH0353186A (en) 1989-07-20 1989-07-20 Transmission frequency automatic adjusting circuit for fm-cw radar

Publications (1)

Publication Number Publication Date
JPH0353186A true JPH0353186A (en) 1991-03-07

Family

ID=16217564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18809289A Pending JPH0353186A (en) 1989-07-20 1989-07-20 Transmission frequency automatic adjusting circuit for fm-cw radar

Country Status (1)

Country Link
JP (1) JPH0353186A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05509169A (en) * 1991-04-18 1993-12-16 エンドレス ウント ハウザー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ウント コンパニー Method and device for distance measurement using reflected beam method
JP2002156447A (en) * 2000-11-20 2002-05-31 Wire Device:Kk Sweep oscillation device and fmcw distance measuring instrument
JP2007147473A (en) * 2005-11-29 2007-06-14 New Japan Radio Co Ltd Standing wave radar and distance measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05509169A (en) * 1991-04-18 1993-12-16 エンドレス ウント ハウザー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ウント コンパニー Method and device for distance measurement using reflected beam method
JP2002156447A (en) * 2000-11-20 2002-05-31 Wire Device:Kk Sweep oscillation device and fmcw distance measuring instrument
JP2007147473A (en) * 2005-11-29 2007-06-14 New Japan Radio Co Ltd Standing wave radar and distance measuring method

Similar Documents

Publication Publication Date Title
KR100487756B1 (en) Radar apparatus
US4107679A (en) Frequency modulator for high-precision range measurements
US4008475A (en) Stabilizing and calibration circuit for FM-CW radar ranging systems
US4714873A (en) Microwave noise measuring apparatus
JPH09119977A (en) Filling-level measuring method of liquid
JPH0122911B2 (en)
JP2001524207A (en) Sensor device operating method and sensor device
US4071844A (en) Frequency control for frequency agile pulse radar
US6041083A (en) Method and system for tuning resonance modules
JPH0353186A (en) Transmission frequency automatic adjusting circuit for fm-cw radar
JP2001356164A (en) Correcting method for nonlinearity in microwave radar system
US7095366B2 (en) High-frequency oscillation apparatus, radio apparatus, and radar
JP2002156447A (en) Sweep oscillation device and fmcw distance measuring instrument
JP3705560B2 (en) FM-CW radar
JP2000046932A (en) Fm-cw radar apparatus
JP2510003B2 (en) Fading simulator and method of setting pseudo propagation path of test signal by it
JP3565646B2 (en) FM-CW radar
US4394628A (en) Modulation systems
JPH07209413A (en) Servo slope type fm-cw type rader
US3363249A (en) X-band r. f. test set employing a single tuning control
JPH06289129A (en) Distance measuring device
SU742828A1 (en) Quartz resonator parameter meter
JPS62177467A (en) Microwave distance measuring instrument
Schonrock et al. X-band homodyne network analyzer using a broadband computer-controlled SSB-modulator
JPH0854586A (en) Light source for optical frequency sweeping