JPH0353181Y2 - - Google Patents

Info

Publication number
JPH0353181Y2
JPH0353181Y2 JP2201183U JP2201183U JPH0353181Y2 JP H0353181 Y2 JPH0353181 Y2 JP H0353181Y2 JP 2201183 U JP2201183 U JP 2201183U JP 2201183 U JP2201183 U JP 2201183U JP H0353181 Y2 JPH0353181 Y2 JP H0353181Y2
Authority
JP
Japan
Prior art keywords
voltage
circuit
current conversion
conversion circuit
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2201183U
Other languages
Japanese (ja)
Other versions
JPS59127174U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2201183U priority Critical patent/JPS59127174U/en
Publication of JPS59127174U publication Critical patent/JPS59127174U/en
Application granted granted Critical
Publication of JPH0353181Y2 publication Critical patent/JPH0353181Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、静電容量を測定するブリツジ測定
回路に関するものである。
[Detailed Description of the Invention] This invention relates to a bridge measurement circuit that measures capacitance.

工業計測分野において、静電容量測定は被測定
物の位置・形状・性質そしてそれらの変化等を検
出する有力な手段の一つである。ところで、工業
計測分野における静電容量測定は、回路素子の静
電容量測定とは異なり、広汎な用途に適合する回
路が少ないのが現状である。工業計測分野におけ
る静電容量測定に要求されることは、第一に、完
全な連続自動測定を行なえる必要があり、第二
に、比較的大きな個有容量を有する被測定物の微
少変化分のみを検出できる必要があり、第三に、
その変化分を広範囲に測定でき且つ直線性の良い
ことが要求され、第四に、一端が接地された非平
衡のキヤパシタンスであつても測定できる必要が
あり、第五に、湿気・水分或いはその他の工業薬
品の影響で並列に大きなコンダクタンスが重復し
ていることが多いので、それらの影響を受けずに
アドミタンスベクトルの虚数項のみを検出する必
要がある。
In the field of industrial measurement, capacitance measurement is one of the powerful means of detecting the position, shape, properties, and changes in these of objects to be measured. Incidentally, capacitance measurement in the field of industrial measurement is different from capacitance measurement of circuit elements, and currently there are few circuits that are suitable for a wide range of uses. The requirements for capacitance measurement in the industrial measurement field are, firstly, the ability to perform completely continuous automatic measurements, and secondly, the ability to measure small changes in the measured object, which has a relatively large individual capacitance. Third, it must be possible to detect only
It is required to be able to measure the change over a wide range and to have good linearity.Fourthly, it is necessary to be able to measure even unbalanced capacitance with one end grounded.Fifthly, it is necessary to be able to measure even unbalanced capacitance that is grounded at one end. Because large conductances often overlap in parallel due to the influence of industrial chemicals, it is necessary to detect only the imaginary term of the admittance vector without being affected by these.

第二の要求を満足する最も有力な方法として
は、ブリツジを用いることであり、事実手動調整
が可能である場合は、ブリツジによつて他の要求
を満足しながら静電容量を測定することは容易で
あるが、自動測定に限定されると、簡単なブリツ
ジ測定法によつてはいずれかの要求に抵触し、複
雑なサーボ回路を設けるか、変成器ブリツジを構
成する必要がある。しかしながら、工業計測にお
いては、信頼性の確保のため、複雑となるサーボ
回路は極力避けることが望ましく、他方、厳重な
静電シールドと巻線の平衡を要求される変成器ブ
リツジは量産に不適当である。
The most likely way to satisfy the second requirement is to use a bridge; in fact, if manual adjustment is possible, it is not possible to measure capacitance with a bridge while satisfying the other requirements. Although simple, when limited to automatic measurement, the simple bridge measurement method conflicts with some requirements and requires the provision of a complex servo circuit or the construction of a transformer bridge. However, in industrial measurement, it is desirable to avoid complex servo circuits as much as possible to ensure reliability, and on the other hand, transformer bridges, which require strict electrostatic shielding and winding balance, are unsuitable for mass production. It is.

以上の事情から、工業計測分野では、限定され
た対象に使用する場合は別として、広汎な対象に
用いる静電容量測定には、LC共振回路の特性を
利用したものか、定電流による充放電特性を利用
したものが一般的であつたが、前者は回路のQを
小さくできないため第三の要求を満足できず、後
者は第五の要求を満足できない。
For these reasons, in the industrial measurement field, apart from cases where it is used on a limited number of objects, capacitance measurement used on a wide range of objects requires either a method that utilizes the characteristics of an LC resonant circuit, or a method that uses constant current charging and discharging. Although it was common to make use of the characteristics, the former cannot satisfy the third requirement because the Q of the circuit cannot be made small, and the latter cannot satisfy the fifth requirement.

この考案は、以上の点に鑑みなされたもので簡
素で性能が良く、しかも広汎な用途に適するキヤ
パシタンス測定回路を提供することを目的とする
ものである。
This invention was devised in view of the above points and aims to provide a capacitance measuring circuit that is simple, has good performance, and is suitable for a wide range of uses.

以下、この考案を添付図面に示す実施例に基づ
いて説明する。
This invention will be described below based on embodiments shown in the accompanying drawings.

まず、測定原理を述べると、第1図に示すよう
に、トランジスタQ1のエミツタには、アドミタ
ンスY1の負荷L1を接続する。トランジスタQ1
電流増幅率hfeが十分に大きければ、トランジス
タQ1の交流出力電流i1と交流入力電圧vには、 i1=Y1V ……(1) の関係が成立する。従つて、これは、定電流出力
特性を有する電圧電流変換回路となり、入力電圧
vを一定にすれば、アドミタンスY1の検出回路
として作用する。なお、この回路において直流動
作レベルを適正に定めて使用する場合、直流出力
電流レベルを定めるためのエミツタ負荷に定電流
素子を用いることにより、アドミタンスY1への
影響を排除できる。
First, to describe the principle of measurement, as shown in FIG. 1, a load L1 with an admittance Y1 is connected to the emitter of the transistor Q1 . If the current amplification factor hfe of the transistor Q 1 is sufficiently large, the following relationship holds true between the AC output current i 1 and the AC input voltage v of the transistor Q 1 : i 1 =Y 1V (1). Therefore, this becomes a voltage-current conversion circuit having constant current output characteristics, and if the input voltage v is kept constant, it functions as an admittance Y1 detection circuit. Note that when using this circuit with an appropriately determined DC operating level, the influence on admittance Y 1 can be eliminated by using a constant current element as an emitter load for determining the DC output current level.

また、第2図に示すように、第1図に示す回路
を2回路並列に接続し、入力電圧vを共通にすれ
ば、即ち、各トランジスタQ1,Q2のエミツタに
負荷L1,L2をそれぞれ接続したものを並列に接
続し、トランジスタQ1,Q2のベースに入力電圧
vを印加すれば、負荷L1,L2のアドミタンスL1
L2の差を出力電流i1,i2の差として検出できる。
Moreover, as shown in FIG. 2, if two circuits shown in FIG. 1 are connected in parallel and the input voltage v is made common, that is, loads L 1 and L 2 are connected in parallel and an input voltage v is applied to the bases of transistors Q 1 and Q 2 , the admittances L 1 and L 2 of loads L 1 and L 2 are
The difference in L 2 can be detected as the difference in output currents i 1 and i 2 .

次に、検出された交流出力電流の処理を説明す
ると、第3図aに示すように、2個のトランジス
タQ3,Q4を並列に接続し、トランジスタQ4のベ
ースを接地し、且つトランジスタQ3のベースに
制御入力信号Pとして正負に変化する制御パルス
Pを与えるように構成しておけば、トランジスタ
は飽和領域で動作するとスイツチ素子と働くこと
から、制御パルスPによつて切換わる切換スイツ
チ回路となり、その等価回路は第3図bのように
なる。尚、制御パルスPは、振幅が十分であれ
ば、正弦波でも実用的には同一の働きをするま
た、第4図に示すように、第3図aに示す回路を
2回路使用することにより、4個のトランジスタ
Q3,Q4,Q5,Q6で出力電流i3,i4を相互切換えし
て選択する相互切換スイツチ回路を構成すること
ができる。
Next, to explain the processing of the detected AC output current, as shown in FIG. 3a, two transistors Q 3 and Q 4 are connected in parallel, the base of transistor Q 4 is grounded, and If a control pulse P that changes between positive and negative is applied to the base of Q 3 as a control input signal P, the transistor acts as a switch element when operating in the saturation region, so the switching that is switched by the control pulse P is possible. This becomes a switch circuit, and its equivalent circuit is as shown in FIG. 3b. In addition, as long as the amplitude of the control pulse P is sufficient, a sine wave can have the same effect in practical terms.Also, as shown in Fig. 4, by using two circuits of the circuit shown in Fig. 3a, , 4 transistors
Q 3 , Q 4 , Q 5 , and Q 6 can constitute a mutual changeover switch circuit that mutually switches and selects output currents i 3 and i 4 .

そこで、第2図に示す回路と、第4図に示す回
路とをカスケード接続することによつて、第5図
に示すように、静電容量を測定するブリツジ回路
を構成することができる。即ち、第5図に示すよ
うに、トランジスタQ3〜Q6からなる切換回路1
の入力端子と、トランジスタQ1,Q2からなる電
圧電流変換回路2の出力端子とがカスケード接続
され、切換回路1の出力端子の一方は検出用抵抗
R1に、他方は検出用抵抗R2に接続され、電圧電
流変換回路2の検出端子の一方にアドミタンスY
の被測定物4を接続可能に設け、他方に基準キヤ
パシタC0を設けている。また、切換回路1の制
御入力B、即ち、トランジスタQ3,Q6のベース
回路に制御信号発生回路5が接続され、一方、電
圧電流変換回路2の検出出力a,bには、差動増
幅回路6が接続されている。この電圧電流変換回
路2のエミツター側には直流電流レベルを定める
ために直流電流を供給する補償回路3が設けられ
ており、補償回路3は3個のトランジスタQ7
Q9からなる。なお、上述したように、電圧電流
変換回路2には一定の交流電圧、が印加され、ま
た抵抗R1,R2の抵抗値は等しくしてある。
Therefore, by cascading the circuit shown in FIG. 2 and the circuit shown in FIG. 4, a bridge circuit for measuring capacitance can be constructed as shown in FIG. 5. That is, as shown in FIG. 5, a switching circuit 1 consisting of transistors Q 3 to Q 6
The input terminal of the switching circuit 1 and the output terminal of the voltage-current conversion circuit 2 consisting of transistors Q 1 and Q 2 are connected in cascade, and one of the output terminals of the switching circuit 1 is connected to a detection resistor.
The other is connected to the detection resistor R 2 , and the admittance Y is connected to one of the detection terminals of the voltage-current conversion circuit 2.
The object to be measured 4 is connected thereto, and a reference capacitor C 0 is provided on the other side. Further, a control signal generation circuit 5 is connected to the control input B of the switching circuit 1, that is, the base circuit of the transistors Q 3 and Q 6 , while the detection outputs a and b of the voltage-current conversion circuit 2 are connected to a differential amplifier. A circuit 6 is connected. A compensation circuit 3 is provided on the emitter side of the voltage-current conversion circuit 2 to supply a DC current to determine the DC current level, and the compensation circuit 3 includes three transistors Q 7 -
Consists of Q9 . As described above, a constant AC voltage is applied to the voltage-current conversion circuit 2, and the resistance values of the resistors R 1 and R 2 are set to be equal.

従つて、電圧電流変換回路2へ交流電圧Vを印
化した際に、アドミタンスY及び基準コンデンサ
C0に流れる電流i,i0は第6図に示すように、交
流電圧vよりも位相は90゜進んだ波形となるから、
制御パルスPとして交流電圧vよりも位相の90進
んだ方形パルス又は十分に振幅の大きい正弦波
を、例えば制御信号発生回路5に、周知のデイジ
タルまたはアナログ移相回路等を用いて、前記印
加交流電圧Vから生成し、切換回路1へ加える
と、抵抗R1,R2に流れる電流i1i2は、第7図に示
すように、半サイクル毎に電流iとi0とが入れ換
つた波形となる。ゆえに、電流i1,i2を抵抗値の
等しい抵抗R1,R2によつて電圧v1,v2に変換し、
電圧v1,v2の差を差動増幅回路等によつて求め、
その差を適当な波形整形回路で平滑すれば、アド
ミタンスYと基準コンデンサC0とのサセプタン
ス成分の差に比例した直流電圧を得ることができ
るので、この直流電圧に基準コンデンサC0のキ
ヤパシタンスを加算することによつて、被測定物
の静電容量を検出できる。
Therefore, when the AC voltage V is applied to the voltage-current conversion circuit 2, the admittance Y and the reference capacitor
As shown in Fig. 6, the currents i and i0 flowing through C0 have a waveform whose phase is 90° ahead of the AC voltage v.
As the control pulse P, a rectangular pulse whose phase is 90 ahead of the AC voltage v or a sine wave with a sufficiently large amplitude is applied to the control signal generation circuit 5 using a well-known digital or analog phase shift circuit, for example. When generated from the voltage V and applied to the switching circuit 1, the current i 1 i 2 flowing through the resistors R 1 and R 2 is generated by switching the currents i and i 0 every half cycle, as shown in Figure 7. It becomes a waveform. Therefore, currents i 1 and i 2 are converted into voltages v 1 and v 2 by resistors R 1 and R 2 of equal resistance value,
Find the difference between voltages v 1 and v 2 using a differential amplifier circuit, etc.
By smoothing the difference with an appropriate waveform shaping circuit, it is possible to obtain a DC voltage proportional to the difference in susceptance component between the admittance Y and the reference capacitor C 0. Add the capacitance of the reference capacitor C 0 to this DC voltage. By doing so, the capacitance of the object to be measured can be detected.

なお、第5図に示す回路は、一種の位相同期検
波回路であるから、アドミタンスYにコンダクタ
ンス成分があつたとしても、第8図に示すように
電流i1,i2となつて最終出力の直流レベルには現
われないので、工業用静電容量検出器として良好
な特性を有し、第(1)式に示すように直線性は維持
できる。
The circuit shown in Fig. 5 is a type of phase-locked detection circuit, so even if there is a conductance component in the admittance Y, it becomes currents i 1 and i 2 as shown in Fig. 8, and the final output is Since it does not appear at the DC level, it has good characteristics as an industrial capacitance detector, and linearity can be maintained as shown in equation (1).

また、トランジスタQ1,Q2,Q7,Q8の不平衡
や、温度変化による不平衡等によつて、トランジ
スタQ7,Q8に流れる直流電流I1,I2が平衡してい
なくても、切換回路1で切換えているため、第9
図に示すように、電流i1,i2に均等に配分され両
者の差を検出するから直流電流i1,i2による不平
衡は打消され、最終出力は影響を受けず精度の高
い検出が行なえる。
Also, the DC currents I 1 and I 2 flowing through the transistors Q 7 and Q 8 may not be balanced due to unbalance among the transistors Q 1 , Q 2 , Q 7 , and Q 8 or unbalance due to temperature change. is also switched by switching circuit 1, so the 9th
As shown in the figure, since the currents are evenly distributed to i 1 and i 2 and the difference between them is detected, the unbalance caused by the DC currents i 1 and i 2 is canceled out, and the final output is not affected and highly accurate detection is possible. I can do it.

以上の実施例において、切換回路1及び電圧電
流変換回路2においてトランジスタQ1〜Q6はオ
ペアンプ等を用いた他の半導体素子を利用しても
よい。
In the above embodiments, the transistors Q 1 to Q 6 in the switching circuit 1 and the voltage-current conversion circuit 2 may be other semiconductor devices using operational amplifiers or the like.

この考案は、以上のとおり、一方の入力端子を
いずれか一方の出力端子に、他方の入力端子を他
方の出力端に切換え可能に接続する切換回路と、
電圧を電流に変換してアドミタンスを検出する検
出部を2個有する電圧電流変換回路とをカスケー
ド接続し、且つ電圧電流変換回路の一方に基準キ
ヤパシタを、他方に被測定物を接続し、電圧電流
変換回路に交流電圧を加えると共に切換回路を所
定周期で切換えるようにしたから、切換回路の入
力電流の差を平滑すれば被測定物のサセプタンス
成分となるため、非常に簡単な回路で被測定物の
キヤパシタンスを測定でき、しかも電圧、電流変
換回路を用いたため、広汎なキヤパシタを測定で
きるという利点もある。
As described above, this invention includes a switching circuit that switchably connects one input terminal to one of the output terminals and the other input terminal to the other output terminal;
A voltage-current conversion circuit that has two detection units that convert voltage to current and detect admittance is connected in cascade, and a reference capacitor is connected to one side of the voltage-current conversion circuit, and a device under test is connected to the other. Since we applied an AC voltage to the conversion circuit and switched the switching circuit at a predetermined period, smoothing the difference in the input current of the switching circuit becomes the susceptance component of the measured object. It also has the advantage of being able to measure a wide range of capacitors because it uses a voltage/current conversion circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案原理を示す基本回路図、第2
図は第1図の応用回路図、第3図aはこの考案原
理を示す基本回路図、第3図bは第3図aの等価
回路図、第4図は第3図aの応用回路図、第5図
はこの考案の一例を示す回路図、第6図及び第7
図は被測定物がキヤパシタ成分のみからなる場合
の第5図の動作波形図、第8図は被測定物にコン
ダクト成分を含む場合の第5図の動作波形図、第
9図はトランジスタQ7、Q8の電流が不平衡で
ある場合を説明する動作波形図である。 1……切換回路、2……電圧電流変換回路、4
……被測定物、5……制御信号発生回路、6……
差動増幅回路、C0……基準コンデンサ、P……
制御入力信号、V……交流電圧。
Figure 1 is a basic circuit diagram showing the principle of this invention, Figure 2
The figure is an applied circuit diagram of Figure 1, Figure 3a is a basic circuit diagram showing the principle of this invention, Figure 3b is an equivalent circuit diagram of Figure 3a, and Figure 4 is an applied circuit diagram of Figure 3a. , Figure 5 is a circuit diagram showing an example of this invention, Figures 6 and 7 are
The figure shows the operating waveform diagram of Fig. 5 when the object to be measured consists of only a capacitor component, Fig. 8 shows the operating waveform diagram of Fig. 5 when the object to be measured contains a conductive component, and Fig. 9 shows the operation waveform of the transistor Q7, FIG. 7 is an operation waveform diagram illustrating a case where the current of Q8 is unbalanced. 1...Switching circuit, 2...Voltage-current conversion circuit, 4
...Object to be measured, 5...Control signal generation circuit, 6...
Differential amplifier circuit, C 0 ...Reference capacitor, P ...
Control input signal, V...AC voltage.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 2つの入力端子と2つの出力端子を有し、一方
の入力端子がいずれか一方の出力端子に、他方の
入力端子が他方の出力端子に切換可能に接続され
る切換回路1と、電圧を電流に変換してアドミタ
ンスを検出する検出部を2個有する電圧電流変換
回路2とをカスケード接続し、且つ電圧電流変換
回路2の一方に基準コンデンサC0を、他方に被
測定物4を接続し、電圧電流変換回路2に交流電
圧Vを印加すると共に、切換回路1に、前記印加
交流電圧Vより位相の90゜進んだ制御入力信号P
を入力して前記切換回路1を交互に切換える制御
信号発生回路5を接続し、前記電圧電流変換回路
2の検出出力a,bに、前記基準コンデンサC0
と被測定物4のサセプタンス成分に比例した前記
出力差を出力する差動増幅回路6を接続したこと
を特徴とするキヤパシタンス測定回路。
A switching circuit 1 has two input terminals and two output terminals, one input terminal is switchably connected to one of the output terminals, and the other input terminal is switchably connected to the other output terminal. A voltage-current conversion circuit 2 having two detection units for detecting admittance is connected in cascade, and a reference capacitor C 0 is connected to one side of the voltage-current conversion circuit 2, and an object to be measured 4 is connected to the other side of the voltage-current conversion circuit 2. An AC voltage V is applied to the voltage-current conversion circuit 2, and a control input signal P whose phase is 90° ahead of the applied AC voltage V is applied to the switching circuit 1.
A control signal generating circuit 5 is connected to input the voltage to alternately switch the switching circuit 1, and the reference capacitor C 0 is connected to the detection outputs a and b of the voltage-current conversion circuit 2.
and a differential amplifier circuit 6 which outputs the output difference proportional to the susceptance component of the object to be measured 4.
JP2201183U 1983-02-16 1983-02-16 Capacitance measurement circuit Granted JPS59127174U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2201183U JPS59127174U (en) 1983-02-16 1983-02-16 Capacitance measurement circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2201183U JPS59127174U (en) 1983-02-16 1983-02-16 Capacitance measurement circuit

Publications (2)

Publication Number Publication Date
JPS59127174U JPS59127174U (en) 1984-08-27
JPH0353181Y2 true JPH0353181Y2 (en) 1991-11-20

Family

ID=30153127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2201183U Granted JPS59127174U (en) 1983-02-16 1983-02-16 Capacitance measurement circuit

Country Status (1)

Country Link
JP (1) JPS59127174U (en)

Also Published As

Publication number Publication date
JPS59127174U (en) 1984-08-27

Similar Documents

Publication Publication Date Title
US3815020A (en) Capacitance/inductance distance measurement device
US4243933A (en) Capacitance measurement apparatus
US3165694A (en) Average signal value measuring means using storage means alternately connected to the signal and a d.c. measuring means
US3530379A (en) Capacitance measuring apparatus utilizing voltage ramps of predetermined slope
US4737706A (en) Capacitance measuring circuit
US3034044A (en) Electrical bridge
US3448378A (en) Impedance measuring instrument having a voltage divider comprising a pair of amplifiers
JPH0353181Y2 (en)
JPH057582Y2 (en)
NL8302593A (en) DEVICE FOR MEASURING TEMPERATURE.
JPH0351748Y2 (en)
EP0131024A1 (en) Capacitance measuring circuit.
US3611124A (en) Measuring circuit including switching means for charging a capacitance with alternate polarities in each switching cycle
US3076129A (en) Millivolt inverter
US4047104A (en) Ohmmeter for circuits carrying unknown currents
JP2589817Y2 (en) LCR tester
JPH0635195Y2 (en) Time interval measuring circuit
SU535840A1 (en) Digital megohmmeter
JPH0537248Y2 (en)
JPS5769237A (en) Temperature and humidity sensing device
JPS6023993Y2 (en) Hall element residual voltage adjustment circuit
JPH036035Y2 (en)
JPH0643741Y2 (en) Improved resistance meter
SU712775A1 (en) Automatic meter of complex resistance components
SU1734041A1 (en) Converter of clr-parameters of two-terminal networks