JPH0353140A - Differential pressure transmitter - Google Patents

Differential pressure transmitter

Info

Publication number
JPH0353140A
JPH0353140A JP18830389A JP18830389A JPH0353140A JP H0353140 A JPH0353140 A JP H0353140A JP 18830389 A JP18830389 A JP 18830389A JP 18830389 A JP18830389 A JP 18830389A JP H0353140 A JPH0353140 A JP H0353140A
Authority
JP
Japan
Prior art keywords
differential pressure
pressure
valve
transmission medium
zero point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18830389A
Other languages
Japanese (ja)
Inventor
Ichiro Wada
一郎 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18830389A priority Critical patent/JPH0353140A/en
Publication of JPH0353140A publication Critical patent/JPH0353140A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To easily adjust the zero point in a remote place by opening/closing a three- way valve consisting of an equalizing valve and stop valves with a valve driving mechanism of low power. CONSTITUTION:A differential pressure detecting element 23 is attached to a medium passage 21 in a differential pressure transmitter main body 20, and the passage 21 is filled up with a pressure transmission medium 20 and is provided with partition diaphragms 24a and 24b. Extension pipes 26a and 26b are connected to pressure receiving flanges 25a and 25b and are filled up with the pressure transmission medium, and remote seal diaphragms 27a and 27b are provided in end parts of pipes 26a and 26b to isolate the medium from process fluids A and B. Pipes 26a and 26b are provided with stop valves 29a and 29b, and a by-pass pipe 28 is provided with an equalizing valve 29c. A driving signal generating means 33 drives valve driving mechanisms 30a to 30c, and the equalizing valve 29c and stop valves 29a and 29b are normally closed and opened respectively to detect the differential pressure between fluids A and B by the element 23; and at the time of zero point adjustment, the equalizing valve 29c is opened to set the differential pressure to zero after stop valves 29a and 29b are closed, and the output of the element 23 is used to perform the zero point adjustment.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は遠隔操作で自動的に零点調整を行う圧力伝送器
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an improvement in a pressure transmitter that automatically performs zero point adjustment by remote control.

(従来の技術) 一般に、この種の差圧伝送器は、第8図に示すようにブ
ロック1の両側部に跨がって連通ずる圧力伝達媒体通路
2を遮るように取り付けられた差圧検出素子3と、前記
長穴2等にシリコーンオイル,エチレングリコール等の
圧力伝達媒体4a,4bを充填するために前記ブロック
1の両側凹状部分に液密に張着してなる隔壁ダイヤフラ
ム5a,5bと、前記ブロック1両側部に隔壁ダイヤフ
ラム5a,5bを挟むようにボルトナット6で固定され
た受圧フランジ7a,7bとから成る圧力伝送器本体8
を有し、この圧力伝送器本体8の各受圧フランジ7a,
7bの流体導入口9a,9bにそれぞれプロセス配管1
0a,10bが接続され、このプロセス配管10a.1
0bの他端側から導入するプロセス流体A,プロセス流
体Bの圧力P,,P2が隔壁ダイヤフラム5a,5bお
よび圧力伝達媒体4a,4bを介して差圧検出素子3に
印加される構成となっている。なお、11・・・はブロ
ック1と受圧フランジ7a,7bとを液密にシールする
パッキン、12は信号線用穴、13は差圧検出素子3で
検出した差圧検出信号を伝送する信号線、14はハーメ
チツクシールである。また、隔壁ダイヤフラム5a,5
bのほぼ中間位置に対応するブロック1内に配置されて
いるが、例えばブロック1の両側面から伸びる2つの長
穴2をブロック内部を通ってブロック上部に導き、この
ブロック上部においてかかる長穴2と連絡する如く設け
た部屋を2分する如く差圧検出素子3を配置した構成そ
の他同様の測定原理を用いた種々の構成のものがある。
(Prior Art) In general, this type of differential pressure transmitter is a differential pressure transmitter that is installed so as to block a pressure transmission medium passage 2 communicating across both sides of a block 1, as shown in FIG. an element 3, and partition diaphragms 5a, 5b that are fluid-tightly attached to concave portions on both sides of the block 1 in order to fill the long holes 2, etc. with pressure transmission media 4a, 4b such as silicone oil, ethylene glycol, etc. , a pressure transmitter main body 8 consisting of pressure receiving flanges 7a and 7b fixed to both sides of the block 1 with bolts and nuts 6 so as to sandwich the partition diaphragms 5a and 5b.
and each pressure receiving flange 7a of this pressure transmitter main body 8,
Process piping 1 is connected to the fluid inlet ports 9a and 9b of 7b, respectively.
0a, 10b are connected, and this process piping 10a. 1
The pressures P, P2 of process fluid A and process fluid B introduced from the other end side of 0b are applied to the differential pressure detection element 3 via partition wall diaphragms 5a, 5b and pressure transmission media 4a, 4b. There is. In addition, 11... is a packing that liquid-tightly seals the block 1 and the pressure receiving flanges 7a, 7b, 12 is a hole for a signal line, and 13 is a signal line that transmits the differential pressure detection signal detected by the differential pressure detection element 3. , 14 are hermetic seals. Moreover, the partition diaphragms 5a, 5
For example, two elongated holes 2 extending from both sides of the block 1 are guided to the upper part of the block through the inside of the block, and the elongated holes 2 are placed in the upper part of the block. There are various configurations using the same measurement principle, such as a configuration in which the differential pressure detection element 3 is arranged so as to divide a room established so as to communicate with the room into two parts.

しかし、以上のような差圧伝送器の場合、経年変化や過
大圧力等によって永久歪が生じ、これが原因で零点ドリ
フトを起こすことがある。
However, in the case of the differential pressure transmitter as described above, permanent distortion occurs due to aging, excessive pressure, etc., and this may cause zero point drift.

そこで、上記差圧伝送器においては、予め据え付け時に
両プロセス配管10a,10bの間にバイパス配管15
を掛け渡し、これら配管10a,10b,15.にスト
ップ弁16a,16bおよび均圧弁16cから成る三岐
弁を取り付け、先ず、手動でストップ弁16a,16b
を閉めた後、均圧弁16cを開けて両流体A,Bの圧力
を均一にし、このとき得られる差圧検出素子3の出力を
用いて図示しない信号変換部にて零点調整を行い、この
零点調整後、今度は逆に均圧弁16cを閉じ、引き続き
,ストップ弁16a,16bを開けることにより、本来
の差圧測定の状態に設定する。
Therefore, in the above-mentioned differential pressure transmitter, a bypass pipe 15 is installed between both process pipes 10a and 10b in advance during installation.
These pipes 10a, 10b, 15. Attach a three-way valve consisting of stop valves 16a, 16b and pressure equalizing valve 16c to the
After closing, the equalizing valve 16c is opened to equalize the pressures of both fluids A and B, and the output of the differential pressure detection element 3 obtained at this time is used to perform zero point adjustment in a signal converter (not shown). After the adjustment, the pressure equalizing valve 16c is closed and the stop valves 16a and 16b are subsequently opened to set the original differential pressure measurement state.

なお、第9A図は第8図の構成を模式的に表した図、第
9B図は過圧で応動する過圧防止弁17a,17bを設
けた従来の一般的な差圧伝送器の模式図である。
In addition, FIG. 9A is a diagram schematically representing the configuration of FIG. 8, and FIG. 9B is a schematic diagram of a conventional general differential pressure transmitter provided with overpressure prevention valves 17a and 17b that respond to overpressure. It is.

(発明が解決しようとする課題) ところで、近年 省力化,零点調整作業の能率アップ等
の観点から遠隔地から必要な信号を送出して弁駆動機構
例えば電動機或いは圧縮空気等を用いて三岐弁を操作す
ることが要望されている。
(Problems to be Solved by the Invention) In recent years, in order to save labor and improve the efficiency of zero point adjustment work, it has become possible to send necessary signals from a remote location and operate a three-way valve using a valve drive mechanism such as an electric motor or compressed air. It is requested to operate.

しかし、この三岐弁は、プロセス流体A,Bの圧力を直
接受け、かつ、これらの流体A,Bの圧力P,,P2の
値が大きい場合には、対大気圧とP1或いは対大気圧と
P2との圧力差に十分対応できるように大電力で弁駆動
機構を駆動しなければならない。因みに、例えば P r − 1 0 1 k g / c m 2P 
2− 1 0 0 k g / c m ”である場合
、P,−P2−1にも拘らず大気に対して101kg/
Cm2 100kg/cm2の駆動力をもって気密シー
ルを行った三岐弁の駆動部分を動かすことになり、相当
大きな駆動電力を必要とする。
However, this three-way valve directly receives the pressure of process fluids A and B, and when the pressures P and P2 of these fluids A and B are large, the pressure between the atmospheric pressure and P1 or the atmospheric pressure The valve drive mechanism must be driven with a large amount of electric power to sufficiently cope with the pressure difference between P2 and P2. By the way, for example, P r - 101 kg / cm 2P
2-100 kg/cm”, 101 kg/cm against the atmosphere despite P, -P2-1
The driving part of the airtightly sealed three-way valve is moved with a driving force of 100 kg/cm2, which requires a considerable amount of driving power.

また、プロセス流体A,Bの中にゴミや砂,錆屑等を含
む場合がしばしばあるが、これら不要物が前記三枝弁の
シール部分に挟まり弁自体に漏れが生じ、これが原因と
なって誤った零点調整を行なってしまうことがある。特
に、遠隔操作の場合には無人であるために異常が生じて
もそれを発見することが非常に難しく、それだけに信頼
性の高い零点調整が望まれている。
In addition, process fluids A and B often contain dust, sand, rust, etc., and these unnecessary substances can get caught in the seal part of the three-pronged valve, causing leakage in the valve itself, which can cause errors. You may end up making a zero point adjustment. In particular, in the case of remote control, it is very difficult to detect any abnormality because it is unmanned, and therefore highly reliable zero point adjustment is desired.

本発明は上記実情に鑑みてなされたもので、遠隔地より
低電力駆動で容易に零点調整を行い得、かつ、プロセス
流体にゴミ.砂等を含んでいても零点調整に影響を与え
ることがない差圧伝送器を提供することを目的とする。
The present invention has been made in view of the above circumstances, and allows zero point adjustment to be easily performed from a remote location with low power drive, while also preventing dust from entering the process fluid. It is an object of the present invention to provide a differential pressure transmitter that does not affect zero point adjustment even if it contains sand or the like.

[発明の構成] (課題を解決するための手段) 先ず、請求項1記載の発明は上記課題を解決するために
、差圧伝送器の各隔壁ダイヤフラムの外側より延長され
た配管に充填された圧力伝達媒体と前記プロセス流体と
を隔離するリモートシールダイヤフラムと、前記複数の
延長配管およびこれら延長配管の間に掛け波されたバイ
パス配管に設けられた均圧弁およびストップ弁から成る
三岐弁と、この三岐弁を駆動するための低電力駆動の弁
駆動機構と、外部からの零点調整指令を受けて前記弁駆
動機構を介して前記ストップ弁を閉止すると共に前記均
圧弁を開閉することによりり得られる前記差圧検出素子
の出力を零点調節する零点調整手段とを設けた構成であ
る。
[Structure of the Invention] (Means for Solving the Problems) First, in order to solve the above problems, the invention as claimed in claim 1 is characterized in that the pipes extending from the outside of each bulkhead diaphragm of a differential pressure transmitter are filled with a remote seal diaphragm that isolates a pressure transmission medium from the process fluid; a three-way valve consisting of a pressure equalization valve and a stop valve provided in the plurality of extension pipes and bypass pipes interposed between the extension pipes; A low-power valve drive mechanism is used to drive the three-way valve, and upon receiving a zero point adjustment command from the outside, the stop valve is closed via the valve drive mechanism, and the pressure equalization valve is opened and closed. This configuration is provided with a zero point adjusting means for zero point adjusting the output of the differential pressure detection element obtained.

次に、請求項2記載の発明は、請求項1記載の発明のよ
うに差圧伝送器本体外部に設けたものと異なり、差圧伝
送器本体内部の差圧検出素子の両側より伸びる前記圧力
伝達媒体通路に掛け渡されたバイパス通路に均圧弁を設
け、または前記圧力伝達媒体通路およびバイパス通路に
ストップ弁および均圧弁から成る三岐弁を設け、さらに
これら弁を駆動するための低電力駆動の弁駆動機構を差
圧伝送器本体に取り付け、全体としてコンパクトで零点
調節を可能とする構成である。
Next, the invention according to claim 2 provides that the pressure extending from both sides of the differential pressure detecting element inside the differential pressure transmitter main body is different from the one provided outside the differential pressure transmitter main body as in the invention according to claim 1. A pressure equalization valve is provided in the bypass passage spanning the transmission medium passage, or a three-way valve consisting of a stop valve and a pressure equalization valve is provided in the pressure transmission medium passage and the bypass passage, and a low power drive for driving these valves is provided. The valve drive mechanism is attached to the differential pressure transmitter body, and the structure is compact as a whole and allows zero point adjustment.

(作用) 従って、請求項1および2記載の発明は以上のような手
段を講じたことにより、常時,つまり、プロセス流体の
差圧測定時,均圧弁閉,ストップ弁開の状態に設定され
ているので、各プロセス流体の圧力はリモートシールダ
イヤフラムおよび第2の圧力伝達媒体で伝達され、さら
に差圧伝送器本体内の隔壁ダイヤフラムおよび第1の圧
力伝達媒体を介して前記差圧検出素子に加えられるので
、この差圧検出素子により2つのプロセス流体の差圧を
測定できる。
(Function) Therefore, by taking the above-described measures, the invention according to claims 1 and 2 allows the pressure equalizing valve to be set to the closed state and the stop valve to be open at all times, that is, when measuring the differential pressure of the process fluid. Since the pressure of each process fluid is transmitted through the remote seal diaphragm and the second pressure transmission medium, it is further applied to the differential pressure sensing element via the bulkhead diaphragm and the first pressure transmission medium within the differential pressure transmitter body. Therefore, the differential pressure between the two process fluids can be measured by this differential pressure detection element.

そして、零点調整時、零点調整指令を送出すると、その
指令をうけて弁駆動機構でストップ弁を閉止した後、均
圧弁を開閉することにより、両延長配管内または両圧力
伝達媒体通路内の圧力が等しくなり、いわゆる差圧零の
状態となる。そこで、このときの差圧検出素子の出力を
用いて信号変換分の出力を零とすることにより零点調整
を行うものである。
When a zero point adjustment command is sent during zero point adjustment, the valve driving mechanism closes the stop valve in response to the command, and then opens and closes the pressure equalizing valve to reduce the pressure in both extension pipes or both pressure transmission medium passages. become equal, resulting in a so-called zero differential pressure state. Therefore, zero point adjustment is performed by setting the output of the signal conversion portion to zero using the output of the differential pressure detection element at this time.

(実施例) 以下、請求項1記載の本発明の実施例について第1図を
参照して説明する。同図において20は模式的に表した
差圧伝送器本体であって、この差圧伝送器本体20内部
には圧力伝達媒体通路21に充填された圧力伝達媒体2
2を遮るように差圧検出素子23が取付けられ、かつ、
この差圧検出素子23の両側より伸びる圧力伝達媒体通
路21内に充填される圧力伝達媒体22.22を隔離す
るために隔壁ダイヤフラム24a.24bが張着されて
いる。25a,25bは受圧フランジである。
(Example) Hereinafter, an example of the present invention according to claim 1 will be described with reference to FIG. In the figure, 20 is a differential pressure transmitter main body schematically shown, and inside this differential pressure transmitter main body 20, a pressure transmitting medium 2 is filled in a pressure transmitting medium passage 21.
A differential pressure detection element 23 is installed so as to block 2, and
In order to isolate the pressure transmission medium 22.22 filled in the pressure transmission medium passage 21 extending from both sides of the differential pressure detection element 23, a partition wall diaphragm 24a. 24b is attached. 25a and 25b are pressure receiving flanges.

この隔壁ダイヤフラム24a,24bの外側,つまり受
圧フランジ2 5 a ,  2 5 bには所定長さ
の延長配管26a,26bが接続され、この延長配管2
6a,26b内には同様に圧力伝達媒体が充填されてい
る。そして、延長配管26a,26bの端部には配管内
部の圧力伝達媒体を液密にシールし、かつ、プロセス流
体A,Bから隔離するために耐蝕性のリモートシールダ
イヤフラム27a,27bが取付けられている。
Extended piping 26a, 26b of a predetermined length is connected to the outside of the partition diaphragms 24a, 24b, that is, the pressure receiving flanges 25a, 25b.
6a and 26b are similarly filled with a pressure transmission medium. Corrosion-resistant remote seal diaphragms 27a and 27b are attached to the ends of the extension pipes 26a and 26b to liquid-tightly seal the pressure transmission medium inside the pipes and isolate them from the process fluids A and B. There is.

前記延長配管26a,26bにはバイパス配管28が掛
け渡され、これら配管26a,26b,28には三岐弁
が設けられている。この三岐弁は、延長配管26a,2
6bに設けたストップ弁29a,29bおよびバイパス
配管28に設けた均圧弁29cをもって構成されている
。これらの弁29a〜29cは弁駆動機構としての例え
ばアクチュエータ30a〜30cにより開閉駆動される
。なお、31a,3lb,32a,32bはダイヤフラ
ム24a.24b,27a,27bの片寄りを検出する
ためのダイヤフラム位置検出器である。
A bypass pipe 28 spans the extension pipes 26a, 26b, and these pipes 26a, 26b, 28 are provided with three-way valves. This three-way valve has extension pipes 26a, 2
6b, and a pressure equalizing valve 29c provided in the bypass pipe 28. These valves 29a to 29c are driven to open and close by, for example, actuators 30a to 30c as valve drive mechanisms. In addition, 31a, 3lb, 32a, 32b are diaphragms 24a. This is a diaphragm position detector for detecting deviation of 24b, 27a, and 27b.

33は駆動信号発生手段であって、これは外部から零点
調整指令を受けて所定の順序でアクチュエータ30a〜
30cを駆動制御し、また位置検出器31a,31b,
32a,32bから片寄り検出信号を受けて必要な信号
,例えば外部へ警報信号を出力するとか、またはプロセ
ス配管の流体が空になった時の情報により全部の弁29
a〜29Cを開とする指令を出して自然バランスにより
ダイヤフラム24a,24b.27a,27bを元に戻
すか、或いは差圧検出素子23の出力から片寄り方向と
反対方向の差圧が生じたことを検出したとき、3つの弁
のうち2つの弁を開いて残りの弁を高速で閉一開一閉一
開・・・を繰り返しながら片寄りの有るダイヤフラムを
理想位置に戻してもよい。
33 is a drive signal generating means, which receives a zero point adjustment command from the outside and operates the actuators 30a to 30a in a predetermined order.
30c, and position detectors 31a, 31b,
32a, 32b and outputs a necessary signal, such as an alarm signal to the outside, or all valves 29 based on information when the fluid in the process piping is empty.
A to 29C are commanded to open, and due to natural balance, the diaphragms 24a, 24b. 27a and 27b, or when it is detected from the output of the differential pressure detection element 23 that a differential pressure in the direction opposite to the one-sided direction has occurred, two of the three valves are opened and the remaining valves are closed. You may return the deviated diaphragm to the ideal position by repeating closing, opening, closing, opening, etc. at high speed.

34は差圧検出信号23の出力からプロセス流体A,B
の圧力差に比例する信号に変換する信号変換部、35は
零調整部であって、駆動信号発生手段33からの指令に
基づいて信号変換部34の出力を零とする機能をもって
いる。
34 is the process fluid A, B based on the output of the differential pressure detection signal 23.
A signal conversion section 35 that converts the signal into a signal proportional to the pressure difference is a zero adjustment section and has a function of setting the output of the signal conversion section 34 to zero based on a command from the drive signal generation means 33.

次に、上記差圧伝送器の動作について説明する。Next, the operation of the differential pressure transmitter will be explained.

常時は駆動信号発生手段33からの指令に基づいてスト
ップ弁29a,29bが開き、均圧弁29cが閉の状態
に設定されている。その結果、プロセス流体Aの圧力P
1はリモートシールダイヤフラム27a1開状態のスト
ップ弁29a1圧力伝達媒体通路26Hの圧力伝達媒体
、隔壁ダイヤフラム24a1圧力伝達媒体通路21の圧
力伝達媒体22を経て差圧検出素子23の一方の面に印
加される。一方、プロセス流体Bの圧力P2はリモート
シールダイヤフラム27b1開状態のストップ弁2つb
1圧力伝達媒体通路26bの圧力伝達媒体、隔壁ダイヤ
フラム24b1圧力伝達媒体通路21の圧力伝達媒体2
2を経て差圧検出素子23の他方の面に印加される。こ
こで、差圧検出素子2.3は両プロセス流体A,Bの圧
力差(PI  F2)に比例する信号を出力し信号変換
部34に送出する。この信号変換部34は差圧検出素子
23からの信号を適宜な信号に変換した後、遠隔地のセ
ンター等へ送出する。
Normally, the stop valves 29a and 29b are set to open based on a command from the drive signal generating means 33, and the pressure equalizing valve 29c is set to a closed state. As a result, the pressure P of process fluid A
1 is applied to one surface of the differential pressure detection element 23 via the remote seal diaphragm 27a1, the stop valve 29a1 in the open state, the pressure transmission medium of the pressure transmission medium passage 26H, and the pressure transmission medium 22 of the partition wall diaphragm 24a1, the pressure transmission medium passage 21. . On the other hand, the pressure P2 of the process fluid B is the same as that of the two stop valves b in the open state of the remote seal diaphragm 27b1.
1 Pressure transmission medium in pressure transmission medium passage 26b, partition diaphragm 24b1 Pressure transmission medium 2 in pressure transmission medium passage 21
2 to the other surface of the differential pressure detection element 23. Here, the differential pressure detection element 2.3 outputs a signal proportional to the pressure difference (PI F2) between both process fluids A and B, and sends it to the signal conversion section 34. The signal converter 34 converts the signal from the differential pressure detection element 23 into an appropriate signal, and then sends the signal to a remote center or the like.

ところで、駆動信号発生手段33は、外部指令を受けて
零点調整であると判断したとき、先ずアクチュエータ3
0a,30bへ所定電力の駆動信号を付与してストップ
弁29a.29bを閉とした後、引き続き、アクチュエ
ータ30cを介して均圧弁29cを開とする。その結果
、両圧力伝達媒体配管26a,26bが連通され、両配
管26a,26b内の圧力が等しくなるので、この時の
差圧検出素子23の出力を信号変換器34の測定回路部
分で測定する。しかる後、所定時間後,駆動信号発生手
段33から今度はアクチュエータ30cを介して均圧弁
29Cを閉とする指令を発生する。同様に差圧検出素子
23の出力を信号変換部3、4で測定するが、このとき
零点調整部35にて信号変換部34の出力を零とする処
理を行う。
By the way, when the drive signal generating means 33 receives an external command and determines that zero point adjustment is to be performed, the drive signal generating means 33 first activates the actuator 3.
A drive signal of a predetermined power is applied to the stop valves 29a, 30b to operate the stop valves 29a. After closing the pressure equalizing valve 29b, the pressure equalizing valve 29c is subsequently opened via the actuator 30c. As a result, both pressure transmission medium pipes 26a and 26b are communicated with each other, and the pressures in both pipes 26a and 26b become equal, so the output of the differential pressure detection element 23 at this time is measured by the measurement circuit part of the signal converter 34. . Thereafter, after a predetermined period of time, the drive signal generating means 33 generates a command to close the pressure equalizing valve 29C via the actuator 30c. Similarly, the output of the differential pressure detection element 23 is measured by the signal conversion sections 3 and 4, but at this time, the zero point adjustment section 35 performs processing to make the output of the signal conversion section 34 zero.

なお、信号変換部部34がディジタル回路の場合にはイ
ニシャライズを行う形式の零点調整でもよい。
Note that if the signal converter section 34 is a digital circuit, zero point adjustment may be performed in the form of initialization.

この零点調整後、駆動信号発生手段33はストップ弁2
9a,29bを開とする信号を出力し、本来の差圧測定
状態に入る。
After this zero point adjustment, the drive signal generating means 33
It outputs a signal to open 9a and 29b and enters the original differential pressure measurement state.

次に、請求項2記載の発明の実施例について第2図ない
し第4図を参照して説明する。第2図は全体を模式的に
表した図、第3図は差圧伝送器本体を模式的に表した図
、第4図は第3図に示す差圧伝送器本体の具体的な構成
を示す図である。すなわち、この差圧伝送器は、差圧伝
送器本体20内に零点調整機能を組込んだもので、具体
的には第2図に示すごとく差圧検出素子23の両側から
伸びる圧力伝達媒体通路21にバイパス通路41を形成
するとともに、圧力伝達媒体通路21側にストップ弁2
9a,29b1バイパス通路41側に均圧弁29cを設
け、いわゆる圧力伝送機本体20内部に三岐弁を内蔵さ
せ、また各弁29a〜29cに対応するアクチュエータ
30a〜30cを差圧伝送機本体20に取り付けてなる
構成である。42a,42bは過圧防止弁である。
Next, an embodiment of the invention according to claim 2 will be described with reference to FIGS. 2 to 4. Figure 2 is a diagram schematically representing the entire body, Figure 3 is a diagram schematically representing the main body of the differential pressure transmitter, and Figure 4 shows the specific configuration of the main body of the differential pressure transmitter shown in Figure 3. FIG. That is, this differential pressure transmitter has a zero point adjustment function built into the differential pressure transmitter main body 20, and specifically, as shown in FIG. A bypass passage 41 is formed in the pressure transmission medium passage 21, and a stop valve 2 is provided on the pressure transmission medium passage 21 side.
9a, 29b1 A pressure equalizing valve 29c is provided on the bypass passage 41 side, a so-called three-way valve is built inside the pressure transmitter main body 20, and actuators 30a to 30c corresponding to each valve 29a to 29c are installed in the differential pressure transmitter main body 20. It is configured by attaching it. 42a and 42b are overpressure prevention valves.

第4図は上記差圧伝送機本体20の内部構成を示す図で
あって、ブロック43の左側端部から所定長さ右側方向
に圧力伝達媒体通路21が形成され、かつ、この通路2
1を遮るように差圧検出素子23を取り付けた圧人プッ
シュ44が嵌合されている。45はハーメチックシール
、46は差圧検出素子23から外部へ導出されている信
号線である。
FIG. 4 is a diagram showing the internal structure of the differential pressure transmitter main body 20, in which a pressure transmission medium passage 21 is formed from the left end of the block 43 in a predetermined length in the right direction.
A presser pusher 44 to which a differential pressure detection element 23 is attached is fitted so as to block the pressure difference detecting element 23. 45 is a hermetic seal, and 46 is a signal line led out from the differential pressure detection element 23.

さらに、ブロック43の上部から所定間隔をもって真下
に向かって少なくとも前記圧力伝達媒体通路21を横切
るように媒体通路47a,47bが形威され、またかか
る媒体通路47a,47bの下端部からブロック43両
側面へ連通ずるように狭幅の媒体通路48a,48bが
形成されている。また、前記両媒体通路47a,47b
と連絡するようにバイパス通路41が形威され、かつ、
両媒体通路47a,47bの中間に位置してブロック上
部から真下に向けてバイパス通路41に突き当たるよう
に該バイパス通路41より広幅の媒体通路47cが形成
されている。そして、これら媒体通路47a,47bに
は先端にストップ弁29a.29bを付設したノルマン
オープン形アクチュエータ30a,30bが液密に取付
けられ、同様に媒体通路47cには均圧弁29cを付設
したノルマンクローズ形アクチュエータ30cが液密に
取付けられている。これらアクチュエータ30a〜30
・Cにおいてaはソレノイドコイル、bはコイル励磁線
、Cは強磁性体、dは固定金具、eはスプリング、fは
ブランジャである。
Further, medium passages 47a and 47b are formed at a predetermined interval from the upper part of the block 43 and extend directly downward to cross at least the pressure transmission medium passage 21, and from the lower end of the medium passages 47a and 47b, both sides of the block 43 are formed. Narrow media passages 48a, 48b are formed to communicate with the media. Further, both medium passages 47a and 47b
A bypass passage 41 is formed so as to communicate with the
A medium passage 47c, which is wider than the bypass passage 41, is formed so as to be located between the two medium passages 47a, 47b and directly downward from the top of the block, but against the bypass passage 41. These medium passages 47a, 47b are provided with stop valves 29a. Norman open type actuators 30a and 30b equipped with pressure equalizing valve 29b are mounted in a fluid-tight manner, and similarly, a Norman closed-type actuator 30c equipped with a pressure equalizing valve 29c is fluid-tightly mounted in the medium passage 47c. These actuators 30a to 30
- In C, a is a solenoid coil, b is a coil excitation wire, C is a ferromagnetic material, d is a fixture, e is a spring, and f is a plunger.

49はボールシール、50は封止体である。49 is a ball seal, and 50 is a sealing body.

なお、本実施例の動作は第1図と同様であるので省略す
る。
Note that the operation of this embodiment is the same as that shown in FIG. 1, so a description thereof will be omitted.

従って、請求項1,2記載の発明の実施例によれば、圧
力伝達媒体通路26a,26b,21およびバイパス通
路28.41にストップ弁29a,29b1均圧弁29
cからなる三岐弁を設けたので、これら弁29a〜29
cを開閉制御するアクチュエータ30a〜30cは従来
と異なって弁の両側に差圧がかかっていることにより低
電力で十分に駆動させることができる。また、プロセス
流体A,B中にゴミや砂等が含まれている場合でも,リ
モートシールダイヤフラム27a,27bや隔壁ダイヤ
フラム24a.24bで完全に阻止され、弁29a〜2
9cに挟まることがなくなる。さらに、零点調整時,駆
動信号発生手段33からの指令により、アクチュエータ
30a,30bを介してストップ弁29a,29cを閉
じ、またアクチュエータ30cを介して均圧弁29cを
開いた状態で零点調整を行い、その後、所定時間後に再
度閉じたときに弁の動作の状況等により零点が多少移動
したとしても物理的に零点であることには変わりがない
。この点を零点と見なして回路上で認識させる如く構成
してもよく、またアクチュエータ30cを介して均圧弁
29cを開き、零調整を行わずに所定時間後に再度閉じ
たときに差圧検出素子23から得られる出力をもって信
号変換部34の出力を零とするので、均圧弁29cの開
時,閉時で差圧検出素子23の出力が異なっても確実に
零点調整を行うことができる。なお、言うまでもないが
、イニシャライズ等の零点認識動作は上位のコンピュー
タシステムで行うように構成してもよい。さらに、ダイ
ヤフラム27a,27b.24 a,24bの片寄りを
検出する位置検出器31a,3lb,32a,32bを
設け、片寄り検出時に駆動信号発生手段33により警報
信号を発するとか、必要に応じて所定の順序で弁操作を
行なうことにより、速やかにダイヤフラムの片寄りを修
正できる。
Therefore, according to the embodiment of the invention described in claims 1 and 2, the stop valves 29a, 29b1 and the pressure equalizing valve 29 are provided in the pressure transmission medium passages 26a, 26b, 21 and the bypass passages 28, 41.
Since a three-way valve consisting of c is provided, these valves 29a to 29
The actuators 30a to 30c that control the opening and closing of the valves 30a to 30c can be sufficiently driven with low electric power because a differential pressure is applied to both sides of the valve, unlike the conventional actuators. Furthermore, even if the process fluids A and B contain dust, sand, etc., the remote seal diaphragms 27a and 27b and the partition wall diaphragm 24a. 24b, and the valves 29a-2
No more getting caught in 9c. Furthermore, when adjusting the zero point, the stop valves 29a and 29c are closed via the actuators 30a and 30b, and the zero point adjustment is performed with the pressure equalizing valve 29c opened via the actuator 30c, according to a command from the drive signal generating means 33, Thereafter, when the valve is closed again after a predetermined period of time, even if the zero point moves a little due to the operating conditions of the valve, it is still physically the zero point. The configuration may be such that this point is regarded as the zero point and recognized on the circuit. Alternatively, when the pressure equalizing valve 29c is opened via the actuator 30c and closed again after a predetermined time without performing zero adjustment, the differential pressure detection element 23 Since the output of the signal converter 34 is set to zero with the output obtained from the pressure equalizing valve 29c, zero point adjustment can be performed reliably even if the output of the differential pressure detection element 23 differs when the pressure equalizing valve 29c is opened and closed. It goes without saying that zero point recognition operations such as initialization may be performed by a host computer system. Furthermore, diaphragms 27a, 27b. Position detectors 31a, 3lb, 32a, and 32b are provided to detect the deviation of 24a and 24b, and when the deviation is detected, the drive signal generating means 33 issues an alarm signal or operates the valves in a predetermined order as necessary. By doing so, the deviation of the diaphragm can be quickly corrected.

なお、本発明は上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

すなわち、上記実施例では2つのストツプ弁29g,2
9bを用いたが、第5図に示すように片方例えば29a
だけを設けたものでもよい。
That is, in the above embodiment, two stop valves 29g, 2
9b was used, but one side, for example 29a, was used as shown in FIG.
It is also possible to have only one.

また、第6図に示すようにストップ弁29a,29bを
除去し、均圧弁29cのみを設けた構成であってもよい
。さらに、差圧検出素子23は一般的にシリコンダイヤ
フラムを用いるが、シリコンダイヤフラムに代えて静電
容量検出素子やその他従来一般に使用されている種々の
検出素子を用いてもよい。また、弁駆動機構はアクチュ
エー夕に限るものでないこと、また弁はその種類をとわ
ない。例えばソレノイド式でなく、摺動式平板バルブ、
回転式バルブ、ボールバルブ等を用いても同様に構成で
きる。、 さらに、外部から駆動信号発生手段33に対して零点調
整指令を与える手段として、例えば第7図に示すように
プロセス配管51にオリフィスプレート52を設けると
ともに、このオリフィスプレート52を挟んでその上流
側および下流側との間に差圧計53を設け、プロセス配
管51の差圧なしの状態を検出し、或いは液検出器54
を設けてプロセス配管51内にプロセス流体が無いこと
を検出し、この検出信号を遠隔地のセンターまたは駆動
信号発生手段33に供給することにより行ってもよい。
Alternatively, as shown in FIG. 6, the stop valves 29a and 29b may be removed and only the pressure equalizing valve 29c provided. Furthermore, the differential pressure detection element 23 generally uses a silicon diaphragm, but instead of the silicon diaphragm, a capacitance detection element or other various detection elements commonly used in the past may be used. Further, the valve drive mechanism is not limited to an actuator, and the types of valves are not limited. For example, instead of a solenoid type, a sliding flat plate valve,
A similar configuration can be made using a rotary valve, a ball valve, or the like. Furthermore, as a means for externally giving a zero point adjustment command to the drive signal generating means 33, an orifice plate 52 is provided in the process piping 51 as shown in FIG. A differential pressure gauge 53 is provided between the process piping 51 and the downstream side to detect a state where there is no differential pressure in the process piping 51, or a liquid detector 54 is installed between the process piping 51 and the downstream side.
This may be done by providing a controller to detect the absence of process fluid in the process piping 51 and supplying this detection signal to a remote center or drive signal generating means 33.

なお、差圧伝送器本体20の中間位置に差圧検出素子2
3を設けたが、圧力伝達媒体22を適宜例えば差圧伝送
器本体20の上部又は下部に導き、その上部又は下部に
部屋を設け、この部屋を2分する如く差圧検出素子23
を設けた構成でも良い。
Note that a differential pressure detection element 2 is installed at an intermediate position of the differential pressure transmitter main body 20.
3, the pressure transmission medium 22 is guided as appropriate, for example, to the upper or lower part of the differential pressure transmitter main body 20, a chamber is provided in the upper or lower part, and the differential pressure detection element 23 is inserted so as to divide this chamber into two.
A configuration with .

その他、本発明はその要旨を逸脱しない範囲で種々変形
して実施できる。
In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

[発明の効果] 以上説明したように本発明によれば、遠隔地より低電力
駆動で容易に零点調整でき、またプロセス流体にゴミ,
砂等を含んでいても零点調整に影響を与えることがない
差圧伝送器を提供できる。
[Effects of the Invention] As explained above, according to the present invention, the zero point can be easily adjusted from a remote location with low power drive, and the process fluid is free from dust and dust.
It is possible to provide a differential pressure transmitter that does not affect zero point adjustment even if it contains sand or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は請求項1記載の発明に係わる差圧伝送器の一実
施例を示す概略構成図、第2図ないし第4図は請求項2
記載の発明に係わる差圧伝送器の一実施例を説明するた
めの図であって、第2図は概略構成図、第3図は差圧伝
送器本体を等価的に表した図、第4図は差圧伝送器・本
体内部の具体的な構成断面図、第5図および第6図は請
求項2記載の発明の他の実施例を説明する概略構成図、
第7図は請求項3記載の発明の実施例を説明する図、第
8図は従来の差圧伝送器の概略構成図、第9A図は第8
図の等価構成図、第9B図は過圧防止弁を設けた等価構
成図である。 20・・・差圧伝送器本体、21・・・圧力伝達媒体通
路、22・・・圧力伝達媒体、23・・・差圧検出素子
、24a,24b−・・隔壁ダイヤフラム、26a,2
6b・・・延長配管、27a,27b・・・リモートシ
ールダイヤフラム、28・・・バイパス配管% 29a
.29b・・・ストップ弁、29c・・・均圧弁、30
a〜3 0 c−・・アクチュエー夕、31a,31b
,32a,32b・・・ダイヤフラム位置検出器、33
・・・駆動信号発生手段、34・・・信号変換部、35
・・・零調整部、41・・・バイパス通路、42a,4
2b・・・過圧防止弁、43・・・ブロック、51・・
・プロセス配管、 5 2・・・オリフィスプレート、 5 3・・・差圧計、 54・・・液検出器。
FIG. 1 is a schematic configuration diagram showing an embodiment of a differential pressure transmitter according to the invention as claimed in claim 1, and FIGS. 2 to 4 are as claimed in claim 2.
FIG. 2 is a schematic configuration diagram, FIG. 3 is a diagram equivalently representing the main body of the differential pressure transmitter, and FIG. The figure is a sectional view of the specific configuration inside the main body of the differential pressure transmitter, and FIGS. 5 and 6 are schematic configuration diagrams illustrating other embodiments of the invention as claimed in claim 2.
FIG. 7 is a diagram explaining an embodiment of the invention as claimed in claim 3, FIG. 8 is a schematic configuration diagram of a conventional differential pressure transmitter, and FIG.
FIG. 9B is an equivalent configuration diagram in which an overpressure prevention valve is provided. 20... Differential pressure transmitter main body, 21... Pressure transmission medium passage, 22... Pressure transmission medium, 23... Differential pressure detection element, 24a, 24b-... Partition diaphragm, 26a, 2
6b...Extension piping, 27a, 27b...Remote seal diaphragm, 28...Bypass piping% 29a
.. 29b...Stop valve, 29c...Pressure equalization valve, 30
a~30c-...actuator, 31a, 31b
, 32a, 32b... diaphragm position detector, 33
... Drive signal generation means, 34 ... Signal converter, 35
... Zero adjustment section, 41 ... Bypass passage, 42a, 4
2b...Overpressure prevention valve, 43...Block, 51...
・Process piping, 5 2... Orifice plate, 5 3... Differential pressure gauge, 54... Liquid detector.

Claims (3)

【特許請求の範囲】[Claims] (1)差圧伝送器本体内部に形成された圧力伝達媒体通
路内を遮るように差圧検出素子が取り付けられ、かつ、
この差圧検出素子の両側から伸びる前記圧力伝達媒体通
路内に充填された第1の圧力伝達媒体をそれぞれ隔壁ダ
イヤフラムで液密に封止し、プロセス流体の差圧を前記
隔壁ダイヤフラムおよび第1の圧力伝達媒体を介して前
記差圧検出素子で検出する差圧伝送器において、 前記各隔壁ダイヤフラムの外側より延長された配管に充
填された第2の圧力伝達媒体と前記プロセス流体とを隔
離するリモートシールダイヤフラムと、前記複数の延長
配管およびこれら延長配管の間に掛け渡されたバイパス
配管に設けられたストップ弁および均圧弁から成る三岐
弁と、この三岐弁を駆動するための低電力駆動の弁駆動
機構と、外部からの零点調整指令を受けて前記弁駆動機
構を介して前記ストップ弁を閉止すると共に前記均圧弁
を開閉することにより得られる前記差圧検出素子の出力
を用いて零点調整を行う零点調整手段とを備えてなるこ
とを特徴とする差圧伝送器。
(1) A differential pressure detection element is installed so as to block the pressure transmission medium passage formed inside the differential pressure transmitter main body, and
The first pressure transmission medium filled in the pressure transmission medium passage extending from both sides of the differential pressure detection element is liquid-tightly sealed by a partition diaphragm, and the differential pressure of the process fluid is transferred between the partition diaphragm and the first pressure transmission medium. In the differential pressure transmitter that detects the differential pressure with the differential pressure detection element via a pressure transmission medium, a remote that isolates the process fluid from a second pressure transmission medium filled in piping extending from the outside of each of the partition diaphragms; A three-way valve consisting of a seal diaphragm, a stop valve and a pressure equalization valve provided in the plurality of extension pipes and a bypass pipe extending between these extension pipes, and a low-power drive for driving the three-way valve. zero point using a valve drive mechanism and an output of the differential pressure detection element obtained by closing the stop valve via the valve drive mechanism and opening and closing the pressure equalization valve in response to a zero point adjustment command from the outside. A differential pressure transmitter comprising: zero point adjustment means for performing adjustment.
(2)差圧伝送器本体内部に形成された圧力伝達媒体通
路内を遮るように差圧検出素子が取り付けられ、かつ、
この差圧検出素子の両側から伸びる前記圧力伝達媒体通
路内に充填された圧力伝達媒体をそれぞれ隔壁ダイヤフ
ラムで液密に封止し、プロセス流体の差圧を前記隔壁ダ
イヤフラムおよび圧力伝達媒体を介して前記差圧検出素
子で検出する差圧伝送器において、 前記差圧伝送器本体内部の差圧検出素子の両側より伸び
る前記圧力伝達媒体通路に掛け渡されたバイパス通路に
設けられた均圧弁、または前記圧力伝達媒体通路および
バイパス通路に設けられた均圧弁およびストップ弁から
成る三岐弁と、これら弁を駆動するために前記差圧伝送
器本体に取り付けられた低電力駆動の弁駆動機構と、外
部からの零点調整指令を受けて弁駆動機構を介して前記
均圧弁を開き、または前記ストップ弁を閉止すると共に
前記均圧弁を開閉することにより得られる前記差圧検出
素子の出力を用いて零点調節を行う零点調整手段とを備
えたことを特徴とする差圧伝送器。
(2) A differential pressure detection element is installed so as to block the pressure transmission medium passage formed inside the differential pressure transmitter main body, and
The pressure transmission medium filled in the pressure transmission medium passage extending from both sides of the differential pressure detection element is liquid-tightly sealed by a partition diaphragm, and the differential pressure of the process fluid is transmitted through the partition diaphragm and the pressure transmission medium. In the differential pressure transmitter that detects the differential pressure with the differential pressure detecting element, a pressure equalizing valve provided in a bypass passage spanning the pressure transmission medium passage extending from both sides of the differential pressure detecting element inside the differential pressure transmitter main body; a three-way valve consisting of a pressure equalization valve and a stop valve provided in the pressure transmission medium passage and the bypass passage; a low-power valve driving mechanism attached to the differential pressure transmitter body for driving these valves; The zero point is adjusted using the output of the differential pressure detection element obtained by opening and closing the pressure equalizing valve via a valve drive mechanism in response to a zero point adjustment command from the outside, or by closing the stop valve and opening and closing the pressure equalizing valve. A differential pressure transmitter characterized by comprising: zero point adjustment means for adjusting.
(3)外部からの零点調整指令を出力する手段は、プロ
セス配管の流体の有無または圧力を検出するセンサーを
設け、このセンサーからの流体無しまたは所定の圧力条
件をもって出力するものである請求項1または2記載の
差圧伝送器。
(3) The means for outputting the zero point adjustment command from the outside is provided with a sensor that detects the presence or absence of fluid in the process piping or the pressure, and outputs the zero point adjustment command from the sensor when there is no fluid or under a predetermined pressure condition. Or the differential pressure transmitter described in 2.
JP18830389A 1989-07-20 1989-07-20 Differential pressure transmitter Pending JPH0353140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18830389A JPH0353140A (en) 1989-07-20 1989-07-20 Differential pressure transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18830389A JPH0353140A (en) 1989-07-20 1989-07-20 Differential pressure transmitter

Publications (1)

Publication Number Publication Date
JPH0353140A true JPH0353140A (en) 1991-03-07

Family

ID=16221252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18830389A Pending JPH0353140A (en) 1989-07-20 1989-07-20 Differential pressure transmitter

Country Status (1)

Country Link
JP (1) JPH0353140A (en)

Similar Documents

Publication Publication Date Title
US6848323B2 (en) Hydraulic actuator piston measurement apparatus and method
US4672728A (en) Pressure signal instrumentation having removable flanges and mounting method therefor
US4466290A (en) Apparatus for conveying fluid pressures to a differential pressure transducer
CN104949695B (en) Process variable transmitter with process variable sensor carried by process gasket
CN1447096A (en) Produce transformer and method for coupling working pressure to pressure sensor
EP1123476B1 (en) Manifold for use with dual pressure sensor units
KR20200047712A (en) Valves, valve diagnostic methods, and computer programs
US20080154436A1 (en) Control device for a pneumatically operated actuator
US5154207A (en) Pressure control valve and transducer package
CN108398218A (en) Air-tightness detection device and detection method
CN108332924A (en) The air-tightness detection device and detection method of valve port
KR100537484B1 (en) Device for diagonosing an air operated valve system
JPH0353140A (en) Differential pressure transmitter
US2879781A (en) Control apparatus
US20060016183A1 (en) Position control system for an adjusting member actuated by a pneumatic actuating drive
US5029610A (en) Flow-control type piezoelectric element valve
US20180031435A1 (en) Differential Pressure Transmitter With Intrinsic Verification
CN111894924A (en) Manual-automatic integrated control high-water-base high-pressure large-flow digital proportional direction valve
CN212839645U (en) Novel intelligence flow control valve
JP2879470B2 (en) Control valve with flow meter function
JPH0247326Y2 (en)
JPH0450743A (en) Differential pressure transmitter
GB2239689A (en) Pressure reducing valve with static balance
CN211778298U (en) Pilot-operated open-loop control proportional flow valve
JPH06221885A (en) Eddy flowmeter