JPH0352955B2 - - Google Patents

Info

Publication number
JPH0352955B2
JPH0352955B2 JP62185565A JP18556587A JPH0352955B2 JP H0352955 B2 JPH0352955 B2 JP H0352955B2 JP 62185565 A JP62185565 A JP 62185565A JP 18556587 A JP18556587 A JP 18556587A JP H0352955 B2 JPH0352955 B2 JP H0352955B2
Authority
JP
Japan
Prior art keywords
strain
fermentation
yeast
beet molasses
sugar beet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62185565A
Other languages
Japanese (ja)
Other versions
JPS63240775A (en
Inventor
Kazuo Saito
Hitoshi Shimoii
Shunichi Sato
Makoto Tadenuma
Kyoshi Yoshizawa
Kazuhito Morya
Chikashi Izumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOTSUKAIDO TOGYO KK
KOKUZEICHO CHOKAN
Original Assignee
HOTSUKAIDO TOGYO KK
KOKUZEICHO CHOKAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOTSUKAIDO TOGYO KK, KOKUZEICHO CHOKAN filed Critical HOTSUKAIDO TOGYO KK
Priority to US07/139,786 priority Critical patent/US4910144A/en
Publication of JPS63240775A publication Critical patent/JPS63240775A/en
Publication of JPH0352955B2 publication Critical patent/JPH0352955B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用方法) この発明は、例えば甜菜糖蜜を原料とするアル
コールの生産においてアルコール発酵力の高い酵
母菌株に関するものである。 (従来の技術) 甘蔗糖蜜はアルコール発酵の原料或はパン酵母
培養等多方面に利用されている。 これに対して甜菜から砂糖を分離した後に排出
される甜菜糖蜜は、現在のところ飼料用添加物と
して利用されているに過ず、その用途は限られて
いる。 甜菜糖蜜の用途拡大の一つとしてアルコール発
酵によるスピリツツの生産が考えられるが、本発
明者等は先に、サツカロマイセス
(Saccharomyces)属セレエヴイジエ
(cerevisiae)に属する凝集性の180株(国税庁醸
造試験所番号)及びキラー性の909−1株(国税
庁醸造試験所番号)の2株の酵母菌株が甜菜糖蜜
並びに甘蔗糖蜜に対して優れたアルコール発酵力
を示すことを見出した。 (発明が解決しようとする問題点) しかし、酵母菌株を使用して工業的にアルコー
ル発酵によりアルコール生産を行なわせる場合、
野生酵母に対するキラー性、及び凝集性等が要求
されるが、上記酵母菌株はキラー性、凝集性何れ
か一方の性質しか有していない。 (問題点を解決するための手段) この発明は、上記実情に鑑み、甜菜糖蜜を原料
としてアルコール発酵を行なわせた場合にもアル
コール分及び発酵歩合が高く、しかもキラー性、
凝集性何れの性質をも兼備えた酵母菌株を見出す
べく鋭意実験と研究を重ねた結果、サツカロマイ
セス(Saccharomyces)属セレエヴイジエ
(cerevisiae)H−1株で表示される酵母菌株及
びその変異株であつてサツカロマイセス
(Saccharomyces)属セレエヴイジエ
(cerevisiae)M−9株で表示される酵母菌株が
上述の目的に適う酵母菌株であることを見出した
ものである。 この発明に係るサツカロマイセス
(Saccharomyces)属セレエヴイジエ
(cerevisiae)H−1株及びM−9株は、工業技
術院微生物工業技術研究所に微工研菌寄第8885号
及び微工研菌寄第9401号として寄託されている。 上記H−1株はサツカロマイセス
(Saccharomyces)属セレエヴイジエ
(cerevisiae)の909−1株とサツカロマイセス
(Saccharomyces)属セレエヴイジエ
(cerevisiae)の180株を親株とするもので、親株
である909−1株(2倍体)はヘテロタリツクな
キラー酵母であり、サツカロマイセス
(Saccharomyces)属セレエヴイジエ
(cerevisiae)の180株(2倍体)はホモタリツク
な凝集性酵母であり、H−1株の製造は次の要領
で行なう。 キラー性酵母であるサツカロマイセス
(Saccharomyces)属セレエヴイジエ
(cerevisiae)の909−1株(ヘテロタリツク、2
倍体)を胞子形成させ、細胞壁溶解酵素
(Zymolyase100T)で胞子を露出分散させた後、
完全培地(YPDプレート)上でコロニーを生育
させる。生育したコロニーについて甜菜糖蜜によ
るアルコール発酵力が発酵後半の生存率等でスク
リーニングし、優れた半数体(接合型a)を分離
した。これをA−4株とする。 一方、凝集性酵母であるサツカロマイセス
(Saccharomyces)属セレエヴイジエ
(cerevisiae)の180株(完全ホモタリツク、2倍
体)を胞子形成させ、形成した子のう胞子4分子
の各々に上記A−4株を胞子対細胞(spore to
cell)で直接接合させる。約1/2の確立で接合す
るが、この接合子の形成を確認しつつ、この接合
子を完全培地上で培養し、コロニーの数株を得
る。これらの接合株について甜菜糖蜜によるアル
コール発酵力と発酵後半の生存率でスクリーニン
グを行ない、その中で発酵力及び発酵後半の生存
率の高い株を選択した。これがこの発明に係るH
−1株である。 このH−1株の「“The Yeast”a
taxonomic study 3rd ed(N.J.W.Kreger−van
Rij編)」によるタキソノミツクテスト
(TAXONOMIC TESTS)の結果は下記に示す
通りである。 胞子形成(Spore Formation):陽性 糖類の発酵:グルコース、ガラクトース、スクロ
ース、マルトース、ラフイノースいずれも陽性 炭素源の資化性:グルコース、ガラクトース、ス
クロース、マルトース、トレハロース、ラフイ
ノース、α−メチル−D−グルコサイドいずれ
も陽性、メレチトース、DL−乳酸いずれも弱
陽性 硝酸塩の資化性:なし ビタミン要求性:なし 37℃における生育:あり 10%食塩培地における生育:あり これによりH−1株はサツカロマイセス
(Saccharomyces)属セレエヴイジエ
(cerevisiae)であると、同定された。 更に、本願発明者等は上記H−1株より優れた
発酵力の強い酵母を得る目的で研究を行なつた。 即ち、本願発明者等の研究によれば、甜菜糖蜜
のアルコール発酵後の蒸留廃液(以下、ウエスト
と略す)中で酵母を培養すると死滅していくとい
う現象が認められた。 これは、ウエスト中に何等かの増殖阻害物質が
存在すると考えられるが、その阻害物質に耐性の
あるH−1株の変異株を取得することによつて、
よりアルコール発酵力の強い酵母が取得できると
の結論に達した。 そこで、H−1株の変異株であるM−9株の製
法は次の要領で行なう。 即ち、H−1株を甜菜糖蜜のアルコール発酵後
のウエスト中で培養を繰返し、培養後の菌体をウ
エスト寒天培地に接種し、培養してコロニーを生
育させる。生育したコロニーについて甜菜糖蜜に
よるアルコール発酵力や発酵後半の生存率等でス
クリーニングし、優れた株を分離した。これをW
−9株とする。 更に、W−9株を2−デオキシグルコース
(2DOG)入り甜菜糖糖蜜中で培養を繰返し、培
養後の菌株を2DOG入り甜菜糖蜜寒天培地に接種
し、培養してコロニーを生育させる。これによつ
てカタボライトリプレツシヨンが解除されたコロ
ニーが得られる。このコロニーについて再び甜菜
糖蜜によるアルコール発酵力が発酵後半の生存率
等でスクリーニングし、優れた発酵力を持つ株を
分離した。これがこの発明に係るM−9株であ
る。 このM−9株について前記H−1株と同様なタ
キソノミツクテストを行なつたところ前記同様な
結果が得られた。 この結果M−9株はサツカロマイセス
(Saccharomyces)属セレエヴイジエ
(cerevisiae)であつて、H−1株の変異株であ
ると同定された。 (発明の効果) 更に、本願発明者等の研究によればH−1株及
びM−9株には甜菜糖蜜等に優れたアルコール発
酵力を示すと共に、凝集性、キラー性、連続利用
性、発酵力の再現性等についても優れた性質を有
している。特に、M−9株は凝集性及び連続利用
性、発酵力の再現性について親株であるH−1株
より優れた性質を有している。 なお、上記菌株を利用してアルコール生産を行
なう場合の原料としては、甜菜糖蜜の他に、甘蔗
糖蜜、甘藷、馬鈴薯、とうもろこし、キヤツサ
バ、米、農産廃棄物、およびこれらの加水分解物
等を使用することができる。また、この発明に係
る菌株はキラー性があるので、滅菌工程を簡略化
し、例えば無蒸煮物を原料とすることもできる。
アルコール発酵のための上記菌株の使用量は、原
料の種類により異なるが、甜菜糖蜜を原料とした
回分発酵の場合、105〜108cells/mlの植菌量でよ
く、また連続利用の場合も105〜109cells/mlの槽
内菌体濃度でよい。 更に、アルコール発酵条件は、一般にPH4〜
6、温度は25〜37℃(好ましくは30℃付近)であ
る。 アルコール発酵方法は、撹拌槽による回分発酵
法でも連続利用法でもよい。回分法で行なう場合
は主にスピリツツ等の生産に適し、連続法の場合
は主に燃料アルコールの生産に適する。 なお、この発明に係るH−1株及びM−9株は
凝集沈降性がよいので、連続利用法を使用した場
合、高濃度仕込の発酵を行なうことができ、また
沈降槽も特別な分離手段を設けることなく、コン
パクトなものにすることができるなどの利点があ
る。 (実施例) 以下、この発明の実施例を示す。 実施例 1 (H−1株の育種法) キラー性酵母であるサツカロマイセス
(Saccharomyces)属セレエヴイジエ
(cerevisiae)909−1株(ヘテロタリツク2倍
体)を胞子形成培地(酢酸カリウム1%、イース
トエキス0.2%、グルコース0.2%、寒天2%)で
胞子形成させる。形成した子のう胞子4分子につ
いて細胞壁溶解酵素(Zymolyase100T)で胞子
を露出分散させた後、マイクロマニプレータで解
剖し、完全培地(イーストエキス1%、ペプトン
2%、グルコース2%、寒天2%)に接種、培養
し、生育したコロニーについて下記の条件で発酵
テストを行なつた。 [発酵テストの条件] 前培養:甜菜糖蜜を全糖分10%、PH5.0、
KH2PO4を700ppmとなるように培養培地を調整
し、オートクレーブ後、保存スラントより一白金
耳接種し、30℃、2日間振とう培養を行なう。 発酵試験:甜菜糖蜜を全糖分24%、PH5.0にな
るように培養培地を調整し、オートクレーブを行
ない、その250mlに前培養酵母懸濁液を4.0×
107cells/mlとなるように接種した。 発酵力の最も優れ、しかも発酵後半でも生存率
の高いA−4株を取得した。 一方、サツカロマイセス(Saccharomyces)
属セレエヴイジエ(cerevisiae)の180株(完全
ホモタリツク、2倍体)を胞子形成培地上で培養
し、形成した子のう胞子4分子の各々と上記A−
4株とを胞子対細胞(spore to cell)で直接接
合させる。これを30℃程度の温度で完全培地上で
培養し、顕微鏡下で接合子の形成を経時的に確認
して接合子を形成したものを性的交雑(mating)
した株として選択し、再び上記の発酵テストを行
ない、その中で発酵力及び発酵後半の生存率の高
い株を選択した。このようにしてH−1株を得
た。 上記製法によるH−1株製造と同程度の発酵力
を有する菌株の出現率は70%以上である。 実施例 2 (甜菜糖蜜を原料とする30℃でのH−1株によ
るエタノール発酵テスト) 前培養:実施例1と同じ 発酵試験:甜菜糖蜜を全糖分24%、PH5.0、
KH2PO4700ppmに培養培地調整した。この培養
培地を用い、1000ml容発酵瓶(実仕込量500ml)
内でH−1株を、培養温度30℃、PH5.0、緩速撹
拌(100〜200rpm)、嫌気条件下で培養し、エタ
ノール発酵を行なつた。 比較のためH−1株の親株である909−1株、
A−4株、180株を同一条件下でエタノール発酵
を行なわせた。この結果を第1図及び第2図に示
す。 第1,2図の結果から親株909−1株について
は、エタノール生産速度は比較的速いが、3日後
で12V/V%と頭打ちになり、菌体生存率も急速
に下降する。 これに対して909−1株より分離したA−4株
は3日以降もエタノール生産速度は下降しない
が、エタノールの生産は12.5V/V%程度に留ま
つている。 一方、180株は立ちあがりがやや遅れているが、
5日後でも徐々にではあるが、エタノールを生産
しており、生存率も極めて高いが、エタノールの
生産は12V/V%に留まつている。 これに対してH−1株は初期エタノール生産速
度が909−1株、A−4株、180株を上廻り、しか
もエタノールの生産は5日後で13V/V%に達す
る。したがつて最終エタノール濃度も909−1株、
180株より短時間内に1V/V%上廻る結果とな
る。 実施例 3 (甘蔗糖蜜を原料とする30℃でのH−1株によ
るエタノール発酵テスト) 前培養:2%YM培地(市販品Difco社製、
YM broth)をオートクレーブ後、保存スラント
より一白金耳接種し、30℃、2日間振とう培養を
行なう。 発酵試験:甘蔗糖蜜を全糖分24%、PH5.0にな
るように培養培地を調整し、助成剤として
(NH42SO40.1%、KH2PO40.1%を加え、オート
クレーブ後、その250mlに前培養酵母懸濁液を4.0
×107cells/mlとなるようにH−1株を接種して
エタノール発酵を行なつた。 比較のため909−1株、180株と従来甘蔗糖蜜ア
ルコール発酵の実用株として使用されてきた台研
(Taiken)396株を同一条件下で行なわせた。こ
の結果を第3図に示す。 第3図より明らかなように、甘蔗糖蜜を同一糖
濃度の甜菜糖蜜とを比べると、上記何れの酵母菌
株を使用したエタノール発酵テストにおいても発
酵の立ちあがりは極めて速く、3日後に13V/V
%以上になつた。 このうち、H−1株、909−1株、180株は従来
の実用株であるTaiken396株に比べて立ちあがり
が速く、特にこの発明に係るH−1株は立ちあが
りが速いことが明らかとなつた。 実施例 4 (H−1株の凝集沈降テスト) H−1株並びに対照として909−1株を、温度
30℃、嫌気条件、撹拌下で培養したとき、撹拌時
の培養液及び撹拌終了後1分間静置後の培養液に
ついて濁度(O.D:波長660nm、10mmセルによる
吸光度)と培養液中に占る菌体の容量百分率
(V/V%)を以下に示す。 濁度(0.D) 撹拌時(0.D) 静置1分後(0.D) H−1株8.56 0.12 909−1株8.44 7.20 培養液に占る菌体の容量百分率(%) 撹拌時(%) 静置1分後(%) H−1株100 5(95%は上澄み) 909−1株100 98(2%は上澄み) 以上の結果より明らかなように、909−1株を
使用した場合撹拌終了後1分間静置しても懸濁状
態にあつたが、H−1株においては撹拌を停止す
ると、直ちに凝集沈降し、1分以内に完全に沈降
分離した。この場合、菌体は沈降圧密されて培養
液全容積の1/10以下となり、上澄みは菌体を含ま
ず透明となり、強い凝集力を示す。 このH−1株の性質により、培養後の菌体分離
工程において、遠心分離機やセパレータ等の機器
を使用することなく、単に静置するだけで、数分
のうちに培養液から菌体分離が可能となり、直ち
に上澄み液は蒸留工程等へ送り、沈降菌体はリサ
イクルして再利用することが可能となる。 実施例 5 (H−1株の連続利用性) 前培養:甜菜糖蜜を全糖分10%、PH5.0、
KH2PO4が700ppm含まれるように培養培地を調
整後、スラントから1白菌耳接種、30℃、2日間
振とう培養する。 発酵試験:全糖分28%、PH5.0に調整した甜菜
糖蜜250mlへ初発菌数が5×107cells/mlとなるよ
うに前培養液20mlを接種し、30℃で撹拌し、4日
間発酵させ、発酵後、上澄みを捨て再び上記甜菜
糖蜜を添加し、発酵を行なわせ、この操作を4回
繰り返して行なつた。 発酵は、全て発酵栓を付けて嫌気条件の下で行
ない、撹拌はマグネテツクスターラー約200rpm
で行なつた。
(Industrial Application Method) The present invention relates to a yeast strain with high alcohol fermentation ability in the production of alcohol using, for example, sugar beet molasses as a raw material. (Prior Art) Cane molasses is used in many ways, such as as a raw material for alcohol fermentation or for culturing baker's yeast. On the other hand, sugar beet molasses discharged after sugar is separated from sugar beets is currently only used as a feed additive, and its uses are limited. One possible expansion of the use of sugar beet molasses is the production of spirits through alcoholic fermentation, but the present inventors have previously identified 180 flocculant strains belonging to the genus Saccharomyces cerevisiae (National Tax Agency Brewing Laboratory No. ) and the killer strain 909-1 (National Tax Agency Brewing Laboratory number) were found to exhibit excellent alcoholic fermentation ability for sugar beet molasses and cane molasses. (Problems to be solved by the invention) However, when producing alcohol by industrial alcohol fermentation using yeast strains,
Killer properties against wild yeast, flocculating properties, etc. are required, but the above-mentioned yeast strains only have either killer properties or flocculating properties. (Means for Solving the Problems) In view of the above-mentioned circumstances, the present invention provides that even when alcoholic fermentation is performed using sugar beet molasses as a raw material, the alcohol content and fermentation ratio are high, and the killer property and
As a result of intensive experiments and research to find a yeast strain that has both properties of flocculation, we found that the yeast strain represented by the strain H-1 of cerevisiae of the genus Saccharomyces and its mutants. It has been discovered that a yeast strain represented by Saccharomyces cerevisiae strain M-9 is a yeast strain suitable for the above purpose. The Saccharomyces genus cerevisiae strains H-1 and M-9 according to this invention have been submitted to the National Institute of Microbiology, Agency of Industrial Science and Technology as No. 8885 and No. 9401. It has been deposited as. The above H-1 strain has parent strains 909-1 of Saccharomyces cerevisiae and 180 of Saccharomyces cerevisiae, and the parent strain 909-1 (2x The 180 strain (diploid) of cerevisiae belonging to the genus Saccharomyces is a homothallic flocculent yeast. The H-1 strain is produced as follows. 909-1 strain (heterotallik, 2
After sporulating the spores (ploid) and exposing and dispersing the spores with cell wall lytic enzyme (Zymolyase 100T),
Grow colonies on complete medium (YPD plates). The grown colonies were screened based on their ability to ferment alcohol using sugar beet molasses, survival rate in the second half of fermentation, etc., and excellent haploids (mating type a) were isolated. This will be referred to as A-4 stock. On the other hand, 180 strains (completely homothallic, diploid) of the flocculating yeast cerevisiae of the genus Saccharomyces were sporulated, and the above A-4 strain was spore-paired to each of the four ascospore molecules formed. cells (spore to
(cell) to join directly. Mating occurs with a probability of approximately 1/2, but while confirming the formation of zygotes, these zygotes are cultured on a complete medium to obtain several colonies. These hybrid strains were screened for their ability to ferment alcohol using sugar beet molasses and their survival rate in the second half of fermentation, and among them, strains with high fermentation ability and survival rate in the second half of fermentation were selected. This is H according to this invention.
-1 stock. This H-1 strain “The Yeast”a
taxonomic study 3rd ed (NJWKreger−van
The results of the TAXONOMIC TESTS (edited by Rij) are shown below. Spore Formation: Positive Fermentation of sugars: Glucose, galactose, sucrose, maltose, raffinose All positive Carbon source assimilation: Glucose, galactose, sucrose, maltose, trehalose, raffinose, α-methyl-D-gluco Both sides are positive, both meletitose and DL-lactic acid are weakly positive Nitrate assimilation: None Vitamin requirement: None Growth at 37℃: Yes Growth in 10% saline medium: Yes As a result, H-1 strain is Saccharomyces ) was identified as belonging to the genus cerevisiae. Furthermore, the present inventors conducted research with the aim of obtaining a yeast with strong fermentation power superior to the above-mentioned strain H-1. That is, according to the research conducted by the inventors of the present application, a phenomenon was observed in which when yeast is cultured in distilled waste liquid (hereinafter abbreviated as waste) after alcoholic fermentation of sugar beet molasses, it becomes extinct. It is thought that some kind of growth-inhibiting substance exists in the waist, but by obtaining a mutant strain of the H-1 strain that is resistant to that inhibitor,
The conclusion was reached that yeast with stronger alcoholic fermentation power could be obtained. Therefore, the method for producing M-9 strain, which is a mutant strain of H-1 strain, is carried out as follows. That is, strain H-1 is repeatedly cultured in waste after alcohol fermentation of sugar beet molasses, and the cultured cells are inoculated onto a waste agar medium and cultured to grow a colony. The grown colonies were screened for their ability to ferment alcohol using sugar beet molasses and their survival rate in the second half of fermentation, and excellent strains were isolated. This is W
-9 stocks. Furthermore, the W-9 strain is repeatedly cultured in sugar beet molasses containing 2-deoxyglucose (2DOG), and the cultured strain is inoculated onto a sugar beet molasses agar medium containing 2DOG and cultured to grow colonies. As a result, a colony in which catabolite repression has been released is obtained. This colony was screened again for its ability to ferment alcohol using sugar beet molasses based on its survival rate in the second half of fermentation, and strains with excellent fermentation ability were isolated. This is the M-9 strain according to this invention. When the M-9 strain was subjected to the same taxonomic test as the H-1 strain, similar results were obtained. As a result, the M-9 strain was identified as a genus Saccharomyces cerevisiae and a mutant strain of the H-1 strain. (Effect of the invention) Furthermore, according to research by the present inventors, the H-1 strain and the M-9 strain exhibit excellent alcoholic fermentation ability for sugar beet molasses, etc., as well as flocculating properties, killer properties, continuous usability, It also has excellent properties such as reproducibility of fermentation power. In particular, strain M-9 has superior properties to strain H-1, which is the parent strain, in terms of flocculation, continuous utilization, and reproducibility of fermentation power. In addition to sugar beet molasses, raw materials for alcohol production using the above bacterial strains include cane molasses, sweet potato, potato, corn, mackerel, rice, agricultural waste, and their hydrolysates. can do. Furthermore, since the strain according to the present invention has killer properties, the sterilization process can be simplified and, for example, non-cooked products can be used as raw materials.
The amount of the above bacterial strain used for alcohol fermentation varies depending on the type of raw material, but in the case of batch fermentation using sugar beet molasses as the raw material, an inoculum amount of 10 5 to 10 8 cells/ml is sufficient, and in the case of continuous use. The cell concentration in the tank may be 10 5 to 10 9 cells/ml. Furthermore, alcohol fermentation conditions generally range from PH4 to
6. The temperature is 25 to 37°C (preferably around 30°C). The alcohol fermentation method may be a batch fermentation method using a stirring tank or a continuous fermentation method. The batch method is mainly suitable for the production of spirits, and the continuous method is mainly suitable for the production of fuel alcohol. In addition, since the H-1 strain and M-9 strain according to this invention have good flocculation and sedimentation properties, when using a continuous utilization method, high concentration fermentation can be carried out, and the sedimentation tank also requires special separation means. It has the advantage that it can be made compact without the need for a (Example) Examples of the present invention will be shown below. Example 1 (Breeding method for strain H-1) A killer yeast, Saccharomyces genus Cerevisiae strain 909-1 (heterotrich diploid) was grown in a sporulation medium (potassium acetate 1%, yeast extract 0.2%). , glucose 0.2%, agar 2%). After exposing and dispersing the 4 molecules of ascospores formed, the spores were dissected using a micromanipulator and placed in a complete medium (1% yeast extract, 2% peptone, 2% glucose, 2% agar). Fermentation tests were conducted on the inoculated, cultured, and grown colonies under the following conditions. [Fermentation test conditions] Pre-culture: Sugar beet molasses with a total sugar content of 10%, pH 5.0,
The culture medium was adjusted to contain KH 2 PO 4 at 700 ppm, and after autoclaving, one platinum loopful was inoculated from the storage slant and cultured with shaking at 30°C for 2 days. Fermentation test: Adjust the culture medium so that the total sugar content of sugar beet molasses is 24% and pH 5.0, autoclave it, and add the pre-cultured yeast suspension to 250ml at 4.0x.
The cells were inoculated at 10 7 cells/ml. We obtained strain A-4, which has the best fermentation ability and has a high survival rate even in the second half of fermentation. On the other hand, Saccharomyces
180 strains (completely homothallic, diploid) of the genus Cerevisiae were cultured on a sporulation medium, and each of the four ascospore molecules formed and the above A-
The four strains are directly mated by spore to cell. This is cultured on a complete medium at a temperature of about 30°C, and the formation of zygotes is confirmed over time under a microscope. Those that have formed zygotes are sexually crossed (mating).
The above-mentioned fermentation test was carried out again, and among them, a strain with high fermentation power and high survival rate in the second half of fermentation was selected. In this way, strain H-1 was obtained. The appearance rate of strains having the same fermentation power as the H-1 strain produced by the above production method is 70% or more. Example 2 (Ethanol fermentation test using strain H-1 at 30°C using beet molasses as raw material) Preculture: Same as Example 1 Fermentation test: Sugar beet molasses with total sugar content of 24%, pH 5.0,
The culture medium was adjusted to contain 700 ppm of KH 2 PO 4 . Using this culture medium, use a 1000ml fermentation bottle (actual amount of preparation: 500ml).
Strain H-1 was cultured under anaerobic conditions at a culture temperature of 30° C., pH 5.0, slow stirring (100 to 200 rpm), and ethanol fermentation was performed. For comparison, 909-1 strain, which is the parent strain of H-1 strain,
A-4 strain and 180 strain were subjected to ethanol fermentation under the same conditions. The results are shown in FIGS. 1 and 2. From the results shown in Figures 1 and 2, the ethanol production rate of the parent strain 909-1 is relatively fast, but it reaches a plateau at 12V/V% after 3 days, and the cell survival rate also rapidly declines. On the other hand, the ethanol production rate of the A-4 strain isolated from the 909-1 strain did not decrease even after 3 days, but the ethanol production remained at about 12.5 V/V%. On the other hand, 180 stocks have been a little slow to rise, but
Even after 5 days, ethanol is being produced gradually, and the survival rate is extremely high, but ethanol production remains at 12V/V%. On the other hand, the initial ethanol production rate of the H-1 strain exceeds that of the 909-1 strain, the A-4 strain, and the 180 strain, and the ethanol production reaches 13 V/V% after 5 days. Therefore, the final ethanol concentration is also 909-1 strain,
The result will be 1V/V% higher than that of 180 stocks in a short time. Example 3 (Ethanol fermentation test using H-1 strain at 30°C using cane molasses as raw material) Preculture: 2% YM medium (commercial product manufactured by Difco,
After autoclaving YM broth, inoculate one platinum loopful from the storage slant and culture with shaking at 30°C for 2 days. Fermentation test: Adjust the culture medium so that cane molasses has a total sugar content of 24% and a pH of 5.0, add (NH 4 ) 2 SO 4 0.1% and KH 2 PO 4 0.1% as aids, and after autoclaving, 4.0 precultured yeast suspension to 250ml
H-1 strain was inoculated at ×10 7 cells/ml and ethanol fermentation was performed. For comparison, 909-1 strain, 180 strain, and Taiken 396 strain, which has been used as a practical strain for cane molasses alcohol fermentation, were tested under the same conditions. The results are shown in FIG. As is clear from Figure 3, when comparing cane molasses with sugar beet molasses of the same sugar concentration, fermentation started extremely quickly in the ethanol fermentation test using any of the yeast strains mentioned above, and after 3 days it reached 13V/V.
% or more. Among these, the H-1 strain, 909-1 strain, and 180 strain were found to rise faster than the conventional practical strain, Taiken396 strain, and the H-1 strain related to this invention was particularly quick to rise. . Example 4 (Coagulation sedimentation test of H-1 strain) H-1 strain and 909-1 strain as a control were
When cultured at 30°C, anaerobic conditions, and stirring, the turbidity (OD: absorbance at a wavelength of 660 nm and a 10 mm cell) and the absorption rate of the culture solution during stirring and after standing for 1 minute after stirring were determined. The volume percentage (V/V%) of bacterial cells is shown below. Turbidity (0.D) During stirring (0.D) After 1 minute of standing (0.D) H-1 strain 8.56 0.12 909-1 strain 8.44 7.20 Volume percentage of bacterial cells in culture solution (%) Stirring Time (%) After 1 minute of standing (%) H-1 strain 100 5 (95% is supernatant) 909-1 strain 100 98 (2% is supernatant) As is clear from the above results, 909-1 strain When used, it remained in a suspended state even if it was left to stand for 1 minute after stirring, but in the case of strain H-1, when stirring was stopped, it immediately flocculated and sedimented, and was completely sedimented and separated within 1 minute. In this case, the bacterial cells are sedimented and compacted to less than 1/10 of the total volume of the culture solution, and the supernatant does not contain bacterial cells and is transparent, exhibiting strong cohesive force. Due to the properties of this H-1 strain, the bacterial cells can be isolated from the culture solution within a few minutes by simply leaving it standing, without using equipment such as centrifuges or separators in the bacterial cell isolation process after culturing. This makes it possible to immediately send the supernatant liquid to a distillation process, etc., and to recycle and reuse the precipitated bacterial cells. Example 5 (Continuous utilization of H-1 strain) Pre-culture: Sugar beet molasses with a total sugar content of 10%, pH 5.0,
After adjusting the culture medium to contain 700 ppm of KH 2 PO 4 , one ear of white fungus was inoculated from the slant and cultured with shaking at 30°C for 2 days. Fermentation test: 20ml of preculture solution was inoculated into 250ml of sugar beet molasses adjusted to 28% total sugar and pH 5.0 so that the initial number of bacteria was 5 x 10 7 cells/ml, stirred at 30℃, and fermented for 4 days. After fermentation, the supernatant was discarded, the sugar beet molasses was added again, fermentation was carried out, and this operation was repeated four times. All fermentation is carried out under anaerobic conditions with a fermentation plug attached, and stirring is done using a magnetic stirrer at approximately 200 rpm.
I did it at

【表】 実施例 6 (H−1株のキラー性) 培養培地として全糖分24%、PH5.0の甜菜糖蜜
を用い、協会701号(K−701)を酵母数5×
108cells/mlと、H−1株を酵母数5×107cells/
mlとなる様に接種し、30℃で撹拌して混合培養し
て培養後1日後のK−701株の生菌数をβ−アラ
ニンプレートでカウントした。 また、対照として同一条件でK−701株のみを
接種、培養してその生菌数をカウントした。
[Table] Example 6 (Killer properties of strain H-1) Using sugar beet molasses with a total sugar content of 24% and a pH of 5.0 as a culture medium, Kyokai No. 701 (K-701) was cultured with 5 times the number of yeast.
10 8 cells/ml and H-1 strain at yeast number 5×10 7 cells/ml.
ml, mixed culture was carried out with stirring at 30°C, and one day after culturing, the number of viable bacteria of the K-701 strain was counted using a β-alanine plate. In addition, as a control, only the K-701 strain was inoculated and cultured under the same conditions, and the number of viable bacteria was counted.

【表】 以上の結果より明らかなように、接種時にはH
−1株の10倍存在していたK−701株は1日後で
約1/1000となり死滅して行くことがわかる。一
方H−1株の菌数は変わず、この結果H−1株に
他の酵母に対するキラー性があることが明らかと
なつた。 実施例 7 (M−9株の育種法) 実施例1で得られたキラー性凝集性酵母である
サツカロマイセス(Saccharomyces)属セレエ
ヴイジエ(cerevisiae)H−1株をウエスト培地
(TOC 50000PPM、全糖分2.5%、PH5.0)で培養
し、30℃での培養後の生存菌体を再び上記ウエス
ト培地に接種し培養を行ない、このプロセスを10
回繰返して行なつた。培養後の菌体をウエスト寒
天培地(寒天2%)に接種、30℃で培養し、生育
したコロニーについて下記の条件で発酵テストを
行なつた。 [発酵テストの条件] 前培養:甜菜糖蜜を全糖分10%、PH5.0、
KH2PO4を700ppmとなるように培養培地を調整
し、オートクレーブ後、保存スラントより一白金
耳接種し、30℃、2日間振とう培養を行なう。 発酵試験:甜菜糖蜜を全糖分24%、PH5.0にな
るように培養培地を調整し、オートクレーブを行
ない、その250mlに前培養酵母懸濁液を4.0×
107cells/mlとなるように接種した。 発酵力の最も優れ、しかも発酵後半でも生存率
の高いW−9株を取得した。 更に、甜菜糖蜜培地(全糖分10%PH
5.0KH2PO4700ppm)へ2−デオキシグルコース
を150ppmとなるように加え、W−9株を接種し、
培養を行なつた。培養後、上記組成の2−デオキ
シグリコース入り甜菜糖蜜寒天培地(寒天2%)
上に生育するコロニーを釣り、同一操作を繰返し
て3回行なう。培養後の菌体を上記寒天培地に接
種、培養し、生育したコロニーについて前述の条
件で発酵テストを行なつた。その結果発酵力の最
も優れ、しかも発酵後半でも生存率の高いM−9
株を取得した。 実施例 8 (甜菜糖蜜を原料とする30℃でのM−9株によ
るエタノール発酵テスト) 前培養:実施例7と同じ 発酵試験:甜菜糖蜜を全糖分24%、PH5.0、
KH2PO4700ppmに培養培地調整した。この培養
培地を用い、1000ml容発酵瓶(実仕込量500ml)
内でM−9株を、1×108ceus/mlとなるように
接種し、培養温度30℃、緩速撹拌(100〜
200rpm)、嫌気条件下で培養し、エタノール発酵
を行なつた。 比較のためM−9株の親株であるH−1株を同
一条件下でエタノール発酵を行なわせた。この結
果を第4図に示す。 この結果から親株については、エタノール生産
速度は、比較的速いが、5日後の12.8V/V%で
頭打ちとなつた。 これに対して、M−9株は、初期エタノール生
産速度がH−1株を上まわり、しかもエタノール
の生産は、5日後で13.5V/V%に達する。した
がつて、最終エタノール濃度もH−1株より短時
間のうちに1V/V%上まわる結果となつた。 また、発酵5日後の生菌数を下表に示す。
[Table] As is clear from the above results, H
It can be seen that the K-701 strain, which existed 10 times as much as the -1 strain, becomes about 1/1000 times as large and dies after one day. On the other hand, the number of bacteria of the H-1 strain remained unchanged, and as a result, it became clear that the H-1 strain had killer properties against other yeasts. Example 7 (Breeding method of M-9 strain) The killer flocculant yeast obtained in Example 1, Saccharomyces cerevisiae strain H-1, was grown in West medium (TOC 50000 PPM, total sugar content 2.5%). , PH5.0), and after culturing at 30°C, the viable bacterial cells were again inoculated into the West medium and cultured, and this process was repeated for 10 days.
I did it repeatedly. The cultured bacterial cells were inoculated onto West's agar medium (agar 2%), cultured at 30°C, and a fermentation test was conducted on the grown colonies under the following conditions. [Fermentation test conditions] Pre-culture: Sugar beet molasses with a total sugar content of 10%, pH 5.0,
The culture medium was adjusted to contain KH 2 PO 4 at 700 ppm, and after autoclaving, one platinum loopful was inoculated from the storage slant and cultured with shaking at 30°C for 2 days. Fermentation test: Adjust the culture medium so that the total sugar content of sugar beet molasses is 24% and pH 5.0, autoclave it, and add the pre-cultured yeast suspension to 250ml at 4.0x.
The cells were inoculated at 10 7 cells/ml. We obtained the W-9 strain, which has the best fermentation ability and has a high survival rate even in the second half of fermentation. Furthermore, sugar beet molasses medium (total sugar content 10% PH
2-deoxyglucose was added to 150 ppm (5.0 KH 2 PO 4 700 ppm), and the W-9 strain was inoculated.
Culture was carried out. After culturing, a sugar beet molasses agar medium containing 2-deoxyglycose (agar 2%) with the above composition was used.
Pick out the colony growing on top and repeat the same operation three times. The cultured bacterial cells were inoculated onto the above agar medium and cultured, and the grown colonies were subjected to a fermentation test under the conditions described above. As a result, M-9 has the best fermentation power and has a high survival rate even in the second half of fermentation.
Acquired stock. Example 8 (Ethanol fermentation test using strain M-9 at 30°C using beet molasses as raw material) Preculture: Same as Example 7 Fermentation test: Sugar beet molasses with total sugar content of 24%, pH 5.0,
The culture medium was adjusted to contain 700 ppm of KH 2 PO 4 . Using this culture medium, use a 1000ml fermentation bottle (actual amount of preparation: 500ml).
strain M-9 was inoculated at a concentration of 1 x 10 8 ceus/ml in a culture medium at a culture temperature of 30°C with slow stirring (100 -
200 rpm) under anaerobic conditions, and ethanol fermentation was performed. For comparison, the H-1 strain, which is the parent strain of the M-9 strain, was subjected to ethanol fermentation under the same conditions. The results are shown in FIG. From this result, the ethanol production rate of the parent strain was relatively fast, but reached a plateau at 12.8 V/V% after 5 days. On the other hand, the initial ethanol production rate of the M-9 strain exceeds that of the H-1 strain, and the ethanol production reaches 13.5 V/V% after 5 days. Therefore, the final ethanol concentration also exceeded that of the H-1 strain by 1 V/V% in a short period of time. In addition, the number of viable bacteria after 5 days of fermentation is shown in the table below.

【表】 この結果より明らかなように、M−9株は発酵
後半でもH−1株より7倍多い菌体が存在し、接
種時の菌数を維持していた。 実施例 9 (M−9株の連続利用性) M−9株を用い、回分発酵を繰返し実験を行な
つた。 前培養:実施例7と同じ 発酵試験:全糖分15%、PH5.0に調整した甜菜
糖蜜250mlへ初期菌数が1×108cells/mlとなるよ
うに前培養酵母懸濁液を接種し、30℃で撹拌し、
2日間発酵させ、発酵後10分静置し、上澄みを捨
て、再び上記糖濃度の甜菜糖蜜を添加し、回分発
酵を行なわせ、この操作を5回繰返して行なつ
た。 発酵は、全て発酵栓を付けて嫌気条件の下で行
ない、撹拌はマグネチツクスターラーで約
100rpm回転して行なつた。この結果を第5図及
び下表に示す。
[Table] As is clear from the results, the M-9 strain had 7 times more bacterial cells than the H-1 strain even in the latter half of fermentation, maintaining the number of bacteria at the time of inoculation. Example 9 (Continuous utilization of M-9 strain) Using the M-9 strain, experiments were conducted by repeating batch fermentation. Preculture: Same as Example 7 Fermentation test: The preculture yeast suspension was inoculated into 250ml of sugar beet molasses adjusted to 15% total sugar and pH 5.0 so that the initial bacterial count was 1 x 10 8 cells/ml. , stir at 30 °C,
The mixture was fermented for 2 days, left to stand for 10 minutes after fermentation, the supernatant was discarded, sugar beet molasses with the above sugar concentration was added again, batch fermentation was carried out, and this operation was repeated 5 times. All fermentation was carried out under anaerobic conditions with a fermentation stopper attached, and stirring was done using a magnetic stirrer.
This was done by rotating at 100 rpm. The results are shown in FIG. 5 and the table below.

【表】 第5図に明らかなように、連続利用により生産
されるアルコールは、糖濃度15%の場合安定して
おり、また上記表より酵母の生菌数は、接種時の
菌数を維持することが明らかとなつた。また、発
酵終了後短時間で、且つ静止するだけで容易に本
酵母は沈殿し、密度の高いスラリーを形成するた
め、短時間で、清澄な発酵液を得ることができ
る。
[Table] As is clear from Figure 5, alcohol produced through continuous use is stable at a sugar concentration of 15%, and from the table above, the number of viable yeast bacteria remains the same as the number at the time of inoculation. It became clear that Further, the present yeast easily precipitates and forms a highly dense slurry within a short period of time after the completion of fermentation and by simply standing still, so that a clear fermented liquid can be obtained in a short period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例2におけるエタノール生産の
経日変化を示す図、第2図は、同じく実施例2に
おける生菌数の経日変化を示す図、第3図は、実
施例3におけるエタノール生産の経日変化を示す
図、第4図は実施例8におけるエタノール生産の
経日変化を示す図、第5図は実施例9におけるア
ルコール発酵毎のエタノール生産の推移を示す図
である。
FIG. 1 is a diagram showing the daily change in ethanol production in Example 2, FIG. 2 is a diagram showing the daily change in the number of viable bacteria in Example 2, and FIG. 3 is a diagram showing the ethanol production in Example 3. FIG. 4 is a diagram showing daily changes in production. FIG. 4 is a diagram showing daily changes in ethanol production in Example 8. FIG. 5 is a diagram showing changes in ethanol production for each alcohol fermentation in Example 9.

Claims (1)

【特許請求の範囲】 1 サツカロマイセス(Saccharomyces)属セ
レエヴイジエ(cerevisiae)H−1株(微工研菌
寄第8885号)で表示されるアルコール発酵力の高
い酵母菌株。 2 サツカロマイセス(Saccharomyces)属セ
レエヴイジエ(cerevisiae)M−9株(微工研菌
寄第9401号)で表示されるアルコール発酵力の高
い酵母菌株。
[Scope of Claims] 1. A yeast strain with high alcohol fermentation ability represented by Saccharomyces genus Cerevisiae strain H-1 (Feikoken Bokuyori No. 8885). 2. A yeast strain with high alcohol fermentation ability represented by Saccharomyces genus cerevisiae strain M-9 (Feikoken Bibori No. 9401).
JP62185565A 1986-09-22 1987-07-27 Yeast strain having high alcohol fermentation power Granted JPS63240775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/139,786 US4910144A (en) 1987-07-27 1987-12-30 Yeast strain with high power to produce alcohol by fermentation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-222128 1986-09-22
JP22212886 1986-09-22

Publications (2)

Publication Number Publication Date
JPS63240775A JPS63240775A (en) 1988-10-06
JPH0352955B2 true JPH0352955B2 (en) 1991-08-13

Family

ID=16777603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62185565A Granted JPS63240775A (en) 1986-09-22 1987-07-27 Yeast strain having high alcohol fermentation power

Country Status (1)

Country Link
JP (1) JPS63240775A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108949596A (en) * 2018-08-22 2018-12-07 上海海洋大学 A kind of preparation of composite ferment and the application in freezing flour-dough production

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891505B2 (en) * 2011-06-21 2016-03-23 学校法人東京農業大学 Yeast and method for producing alcoholic fermentation broth from beet molasses using this yeast
JP2020039264A (en) * 2018-09-07 2020-03-19 国立大学法人 鹿児島大学 Yeast conjugation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108949596A (en) * 2018-08-22 2018-12-07 上海海洋大学 A kind of preparation of composite ferment and the application in freezing flour-dough production

Also Published As

Publication number Publication date
JPS63240775A (en) 1988-10-06

Similar Documents

Publication Publication Date Title
CA1174191A (en) Ethanol production
Lee et al. Kinetic studies on a flocculent strain of Zymomonas mobilis
US4443543A (en) Semibatch ethanol production
Skotnicki et al. Genetic alteration of Zymomonas mobilis for ethanol production
CN116769611A (en) Aspergillus strain for producing saccharifying enzyme, fermented grain fermentation method and application thereof
JPH0352955B2 (en)
CN114410523B (en) Strain combination for preparing black tea fungus and application thereof
EP0798382B1 (en) Novel strains of yeast of genus- saccharomyces species- cerevisiae and a process for the preparation of such strains of yeast
US4910144A (en) Yeast strain with high power to produce alcohol by fermentation
Pienasthika et al. A study of the effect of calcium chloride (CaCl2) and pH on the flocculation ability of Saccharomyces cerevisiae (NCYC 1195)
Patil et al. Novel supplements enhance the ethanol production in cane molasses fermentation by recycling yeast cell
Lima et al. Introduction of flocculation into industrial yeast, Saccharomyces cerevisiae saké, by protoplast fusion
KR900003740B1 (en) New saccharomyces cere visiae strain and method for fermentation by its strain
Côrte-Real et al. Deacidification of grape juice with derepressed mutants of the yeast Hansenula anomala
JPS6344880A (en) Novel flocculating yeast, production thereof and alcoholic fermentation method using said yeast
Rodriguez et al. Single cell protein from bagasse pith by a mixed bacterial culture
JP2006000025A (en) New yeast and method for producing sake therewith
JP4565137B2 (en) Novel yeast and method for obtaining the same
JPH0121757B2 (en)
KR840000748B1 (en) Process for preparing improved ethanol
Moriya et al. Ethanol fermentation of beet molasses by a yeast resistant to distillery waste water and 2-deoxyglucose
JPS61108378A (en) Novel agglutinative yeast and alcoholic fermentation process
Patil et al. Top and bottom yeasts together accelerate ethanol production in molasses fermentation
CN117897475A (en) Development of Yeast strains for ethanol production
JPS61108382A (en) Novel agglutinative yeast and alcoholic fermentation process