JPH0352910A - Acrylic polymer with multilayered structure - Google Patents

Acrylic polymer with multilayered structure

Info

Publication number
JPH0352910A
JPH0352910A JP18604389A JP18604389A JPH0352910A JP H0352910 A JPH0352910 A JP H0352910A JP 18604389 A JP18604389 A JP 18604389A JP 18604389 A JP18604389 A JP 18604389A JP H0352910 A JPH0352910 A JP H0352910A
Authority
JP
Japan
Prior art keywords
polymer
parts
weight
pts
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18604389A
Other languages
Japanese (ja)
Other versions
JP2593557B2 (en
Inventor
Genichi Tsuruta
嚴一 鶴田
Shinichi Nakayama
伸一 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1186043A priority Critical patent/JP2593557B2/en
Publication of JPH0352910A publication Critical patent/JPH0352910A/en
Application granted granted Critical
Publication of JP2593557B2 publication Critical patent/JP2593557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the title polymer having a specified granular size and capable of giving acrylic resin compositions excellent in transparency, impact resistance, temperature dependency for haze, etc., made up of each specific innermost rigid layer polymer, flexible layer polymer and outermost rigid layer polymer. CONSTITUTION:The objective polymer made up of (A) an innermost rigid layer polymer prepared by polymerization of a mixture of (1) 80-99 pts.wt. of methyl methacrylate. (2) 1-20 pts.wt. of a 1-8C alkyl acrylate and (3) a polyfunctional crosslinking agent and/or (4) a polyfunctional grafting agent, (B) a flexible layer polymer prepared by polymerization of a mixture of (5) 75-90 pts.wt. of a 4-8C alkyl acrylate, (6) 25-10 pts.wt. of an aromatic vinyl compound and 0-5 pts.wt. of the component (8) and/or 0.05-5 pts.wt. of the component (4) in the presence of the polymer A, and (C) an outermost rigid polymer prepared by polymerization of a mixture of 80-99 pts.wt. of the component (1) and 1-20 pts.wt. of the component (2) in the presence of the components A and B. The present polymer is 0.2-0.4mum in average granular size and 0.05-0.6 in the crosslinking index of the polymer A.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多層構造アクリル系重合体に関するものであ
って、さらに詳しくは、熱可塑性アクリル樹脂とブレン
ドして、透明性、耐衝撃性およびヘイズの温度依存性に
優れた熱可塑性アクリル樹脂組成物を得るために用いら
れる多屠構造アクリル系重合体に関するものである. [従来の技術] 一般に熱可塑性樹脂の耐衝撃性を改良する手段として、
いわゆるエラスマー成分を導入する方法が行われている
.そのような方法の一つとして、ジエン系エラストマー
の導入が一般的であるが、ジエン系エラストマーは耐候
性に極め−で劣るため屋外用途に対する方法としては適
当でない。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a multilayer structure acrylic polymer, and more specifically, it is blended with a thermoplastic acrylic resin to improve transparency, impact resistance and This article relates to a multi-structure acrylic polymer used to obtain a thermoplastic acrylic resin composition with excellent haze temperature dependence. [Prior Art] Generally, as a means of improving the impact resistance of thermoplastic resins,
A method of introducing a so-called elasmer component is being used. One such method is generally to introduce diene elastomers, but diene elastomers have very poor weather resistance and are therefore not suitable for outdoor applications.

耐候性を低下させることなく耐衝撃性を付与するために
、アクリル系エラストマーの導入が種々検討されている
.特にアクリル系エラストマーとして、多層構造を有す
るアクリル系重合体を用いた例が多数提案されている. 例えば、3Nもしくは4N以上の多層構造重合体と熱可
塑性重合体とのブレンドによって透明性を損なわずに耐
衝撃性を改良したちのく特公昭55− 27576号)
、3N構造を基本とし、かつこれらの各層間にほぼ定率
で変化する濃度勾配をもった中間層を有するもの(特公
昭58−1694号、特公昭59−36645号)、3
N構造を基本とし、中央軟質層と最外層の閏に一厘以上
の中間層を有するもの(特公昭59−36646号、特
公昭63−8983号〉、軟一硬一軟一硬の4N構造を
有するもの(特公昭62−41241号)などが提案さ
れている.[発明が解決しようとする課題ゴ このように、これまでアクリル樹脂が持つ好ましい特性
を保持したままでその他の欠点を改良する目的で、多層
構造を有するアクリル系重合体に関する多くの提案がな
されてきた.しかしながらこれらの方法は、耐応力白化
性の改良に間しては確かに効果が認められるものの、透
明性、耐衝撃性、ヘイズの温度依存性に間しては、なお
十分に溝足しうるものではなかった. 本発明の目的は、このような従来の多層構造アクリル系
道合体の有する欠点を改良し、アクリル樹脂本来の優れ
た透明性、流動加工性を有する上に耐衝撃性に優れ、ヘ
イズの温度依存性の低減されたアクリル樹脂組成物を提
供することにある.[課題を解決するための手段] 本発明者らは、耐衝撃性アクリル樹脂組成物の透明性、
耐衝撃性を改良するために鋭意検討を重ねた結果、特定
の多屠構造アクリル系重合体を用いることによって前記
の目的を達成しうろことを見出し、本発明を完成するに
至った. 即ち、本発明は、 (a)メチルメタクリレート80〜99重量部、アルキ
ル基の炭素数が1〜8のアルキルアクリレート1〜20
重量部、多官能性架橋剤および/または多官能性グラフ
ト剤からなる単量体混合物を重合して得られる最内硬質
層重合体、(b)上記最内硬質N1合体存在下に、アル
キル基の炭素数が4〜8のアルキルアクリレート75〜
90重量部、芳香族ビニル化合物25〜10重量部、多
官能性架橋剤0〜5lt量部および多官能性グラフト剤
0.05〜5重量部からなる単量体混合物を重合して得
られる軟質層重合体、(c)上記最内硬質層および軟質
層からなる重合体の存在下に、メチルメタクリレート8
0〜99重量部、アルキル基の炭素数が1〜8であるア
ルキルアクリレート1〜20重量部からなる単量体混合
物を重合して得られる最外硬質層重合体からなり、 (d)平均粒子径が0.2〜0.4μmであって、(e
)最内硬質層重合体の架橋指数が0.05〜0.6であ
る多層構造アクリル系重合体、 に閲するものである. 本発明における多/t’ll造アクリル系重合体はメチ
ルメタクリレート、アルキル基の炭素数が1〜8である
アルキルアクリレート、芳香族ビニル単重体と多官能性
架橋剤および/または多官能性グラフト剤から成る多層
構造アクリル系重合体である. 本発明における多層構造アクリル系重合体は逐次多段重
合によって製造されるが、重合方法としては乳化重合法
を用いるのが望ましい.しかし、特にこれに限定される
ことは無く、乳化重合後、最外層重合時に懸濁系へ転換
させる乳化M.濁重合法によっても製造しうる. ここで、アルキル基の炭素数が1〜8であるアルキルア
クリレートとしては、メチルアクリレ〜ト、エチルアク
リレート、n−プチルアクリレート2−エチルへキシル
アクリレート等が挙げられるがn−ブテルアクリレート
が好ましく用いられる.芳香族ビニル化合物としては、
スチレンおよび置換スチレン誘導体が挙げられ、スチレ
ンが好ましい. 多官能性架橋剤としては、ジビニルー化合物、ジアリル
化合物、ジアクリル化合物、ジメタクリル化合物などの
一般に知られている架橋剤が使用できるが、ポリエチレ
ングリコールジアクリレート(分子1i200〜600
)が好ましく用いられるまた、多官能性グラフト剤とし
ては、異なる官能基を有する多官能性単量体、例えば、
アクリル酸、メタクリル酸、マレイン酸、フマル酸のア
リルエステル等が挙げられ、アリルメタクリレートが好
ましく用いられる. 本発明の多屠構造アクリル系重合体の平均粒子径は0.
2〜0.4pmであり、0. 25〜0. 35 μm
が好ましい.平均粒子径が0.2μm未満の場合には、
耐衝撃性に劣り、0.4μmを越える場合には、透明性
に劣るものしか得られない. 本発明の多層構造アクリル系重合体における最内硬質層
重合体の架橋指数は0.05〜0.6であり、好まし゜
くは、0.1〜0.4である.架橋指数が0.05未一
溝の場合、および、0.6を越える場合には、耐衝撃性
に劣る.このように最内硬質層の性質が熱可塑性アクリ
ル樹脂繕成物の耐衝撃性に大きな影響を及ぼすことは、
従来の技術からはとうてい予想出来ないことである. 架橋指数は、メチルメタクリレート80〜99重量部、
アルキル基の炭素数が1〜8のアルキルアクリレート1
〜20重量部からなる単量体混合物を重合して最内硬質
層重合体を形成する際に、該混合物中の多官能性架橋剤
および/または多官能性グラフト剤のf!類と量を選ぶ
ことによって、制御しうる.即ち、多官能性架橋剤およ
び/または多官能性グラフト剤の量を増すと、架橋指数
は大きくなる.また、多官能性架橋剤および/または多
官能性グラフト剤の種類を変えても、架橋指数は変化す
る.ここで多官能性架橋剤および多官能性グラフト剤と
しては先に挙げたものが用いられる. 本発明の多層構造アクリル系重合体の製造には先に述べ
たように乳化重合法を用いることが有利であるが、各層
の重合体又は共重合体を形成させるkめの適切な重合温
度は、各層とも30〜120℃、好ましくは、50〜1
00−”Cの範囲で選ばれる.さらに、このような多層
構造重合体を形成させるためには、各単量体或は単量体
混合物を逐次添加して反応させることによって該重合体
を形成するのが可能な、いわゆるシード重合法を用いる
ことが有利である.この際、第271!!fl以降の重
合を行う場合に、新たな粒子が生成しないような条件を
選ぶ必要があるが、これは用いる乳化剤の量を臨界ミセ
ル濃度未溝にすることによって実現することができる.
また新たな粒子生成の有無は、雫子顕V&鏡による観察
によって確認することができる. 乳化重合に用いられる乳化剤については、特に制限は無
く、従来慣用されているものの中から任意のものを選ぶ
ことができる.例えば、長銀アルキルカルボン酸塩、ス
ルホコハク酸アルキルエステル塩、アルキルベンゼンス
ルホン酸塩などが挙げられる. また、この際用いられる重合間始剤については特に制限
は無く、通常用いられている水溶性の過硫酸塩、過ホウ
酸塩などの無機系開始剤を単独で或は亜硫酸塩、チオ硫
酸塩などを併用してレドックス開始剤系として用いるこ
ともできる.さらに油溶性の有機過酸化物/第l鉄塩、
有機過酸化物/ソジウムスルホキシレートのようなレド
ックス開始剤系も用いることができる. このような重合方法によって得られる多層構造アクリル
系重合体は、ボリマーラテックスの状態から公知の方法
によって、塩析、洗浄、乾燥等の処理を行うことにより
、粒子状固形物として得られる. 本発明の多層構造アクリル系重合体を熱可塑性アクリル
樹脂と1融混諌することによって、熱可塑性アクリル樹
N組成物を製造することができるここで用いる熱可塑性
アクリル樹脂は、公知の重合方法、例えば、塊状重合、
溶液重合、懸濁重合乳化重合などのいずれの方法で得ら
れたものでも良い. 多層構造アクリル系重合体の該組成物における比率は2
〜80m量部が好ましく、2重量部未満の場合は、耐衝
撃性が不足し、80重量部を越える場合には、色調に劣
るものしか得られない.アクリル樹脂組成物を製造する
ために混練する際に、安定剤、滑剤、染料、顔料等を必
要に応じて添加することができる. このようにして得られたアクリル樹脂組成物を射出成形
又は押出成形することにより、透明性、耐衝撃性に優れ
、ヘイズの温度依存性の低減された成形品を得ることが
できる. さらに、本発明の多層構造アクリル系重合体はメチルメ
タクリレート以外のアルキルメタクリレート、スチレン
、スチレン誘導体、アクリロニトリル、メタクリ口ニト
リル、塩化ビニル,.塩化ビニリデン等の単独あるいは
共重合体、さらに、ポリカーボネート、ボリアミド、ポ
リエステル等とブレンドして用いることもできる. [実施例] 以下、実施例により本発明をさらに詳細に説明するが、
本発明はこれにより何ら制限を受けるものでは無い.な
お、実施例・比較例における測定は以下の方法もしくは
測定機器を用いて行った.Izod衡撃強度;ASTM
  D256ヘイズ;積分球式へイズメーターを使用し
て、厚さ3mmの試験片の23℃及び70℃におけるヘ
イズを測定した.m果を下記の記号で示した. O  ヘイズ  5%未満 Q    //    5%以上、10%未溝Δ   
〃  】0%以上、20%未溝×   〃  20%以
上 平均粒子径;多眉構造アクリル系重合体のラテックスを
サンプリングして、固形分5 0 ppmになるように
水で希釈し、分光光度計を用いて波長550nmでの吸
光度を測定した.この値から、透過型電子顕微鏡写真よ
りラテックス粒子径を計測したサンプルについて同様に
吸光度を測定して作成した検1線を用いて、平均粒子径
を求めた. 架橋指数;最内硬質層の重合が完結した時に、ラテック
スをサンプリングし、塩析・洗浄・乾燥してパウダー状
の最内硬質層重合朱を得た。この重合体約2gにメチル
エチルケトン30一を加え、25℃で12時間漫潰後、
1時間振とうし、5℃、2300Orpmで1時間遠心
分離離した.上澄み液をデカンテーションして除いた後
、新たにメチルエチルケトン30dを加え25℃で1時
間間振とうし:.5℃、2300Orpmで1時間遠心
分離した.上澄み液を除き重量を秤量した(W.).そ
の後100℃で6時間真空乾燥し残留物の重量を秤量し
た(W2)次式により、架橋指数を算出した. また、実施例及び比較例において用いた略号は以下の化
合物を示す. MMA;メチルメタクリレート B A ; n−プチルアクリレート St;スチレン MA;メチルアクリレート ALMA;アリルメタクリレート PEGDA;ポリエチレングリコールジアクリレート(
分子量200又は600) n−OM;n−オクチルメル力ブタン HMB T ; 2−(2’−ヒドロキシ−59−メチ
ルフエニル)ペンゾトリアゾール 実施例1 内容fJI Clの還流冷却器付反応器に、イオン交換
水6 8 6 0rd、ジヘキシルスルホコハク酸ナト
リウム13.7gを投入し、25Orpmの回転数で攪
拌しながら、窒素雰囲気下75℃に昇温し、酸素の影響
が事実上無い状態にした.過硫酸アンモニウム0. 2
2 gを添加した後、MMA746g、BA 1 0 
g, HMB T0.23g及びALMA0.38gか
らなる混合物( n−1)のうち30%を一括添加し、
その直後から残りの70%を20分間かけてて連続的に
添加,し、添加終了後さらに60分間保持した. こうして得られた最内硬質N重合体のラテンクスを40
0g採取し、塩析・洗浄・乾燥したボリマーの架橋指数
を測定したところ0.2であった.次に、過5R酸アン
モニウム0.96gを添加した後BA99 0 g, 
S t 2 3 2 g, HMB T0.37g,A
LMA25.9gからなる混合物( IF−2)を13
0分間かけて連続的に添加し、添加終了後さらに180
分間保持した。
The introduction of acrylic elastomers has been variously investigated in order to impart impact resistance without reducing weather resistance. In particular, many examples using acrylic polymers with multilayer structures have been proposed as acrylic elastomers. For example, by blending a 3N or 4N or higher multilayer structure polymer with a thermoplastic polymer, the impact resistance is improved without impairing transparency.
, which is based on a 3N structure and has an intermediate layer between each of these layers with a concentration gradient that changes at an almost constant rate (Japanese Patent Publication No. 58-1694, Japanese Patent Publication No. 59-36645), 3
Those based on the N structure and having an intermediate layer of one or more thickness between the central soft layer and the outermost layer (Special Publication No. 59-36646, Special Publication No. 63-8983), 4N structure of one soft, one hard, one soft and one hard. (Japanese Patent Publication No. 62-41241) has been proposed. [Problems to be Solved by the Invention] In this way, it is possible to improve other disadvantages while retaining the favorable properties of acrylic resins. For this purpose, many proposals have been made regarding acrylic polymers with a multilayer structure.However, although these methods are certainly effective in improving stress whitening resistance, they have problems with transparency and impact resistance. However, the temperature dependence of acrylic resin and haze have not yet been sufficiently improved. The object of the present invention is to provide an acrylic resin composition that not only has excellent transparency and flow processability, but also has excellent impact resistance and reduced temperature dependence of haze. [Means for solving the problems] This invention The inventors have discovered that the transparency of impact-resistant acrylic resin compositions,
As a result of intensive studies to improve impact resistance, it was discovered that the above object could be achieved by using a specific multi-structure acrylic polymer, and the present invention was completed. That is, the present invention provides: (a) 80 to 99 parts by weight of methyl methacrylate, 1 to 20 parts of alkyl acrylate whose alkyl group has 1 to 8 carbon atoms;
parts by weight, an innermost hard layer polymer obtained by polymerizing a monomer mixture consisting of a polyfunctional crosslinking agent and/or a polyfunctional grafting agent, (b) an alkyl group in the presence of the innermost hard N1 polymer; Alkyl acrylate having 4 to 8 carbon atoms 75 to
A soft material obtained by polymerizing a monomer mixture consisting of 90 parts by weight, 25 to 10 parts by weight of an aromatic vinyl compound, 0 to 5 parts by weight of a polyfunctional crosslinking agent, and 0.05 to 5 parts by weight of a polyfunctional grafting agent. methyl methacrylate 8 in the presence of a layer polymer, (c) a polymer consisting of the innermost hard layer and soft layer;
(d) average particle The diameter is 0.2 to 0.4 μm, and (e
) A multilayer structure acrylic polymer in which the innermost hard layer polymer has a crosslinking index of 0.05 to 0.6. The poly/t'll-formed acrylic polymer in the present invention is methyl methacrylate, an alkyl acrylate whose alkyl group has 1 to 8 carbon atoms, an aromatic vinyl monomer, a polyfunctional crosslinking agent and/or a polyfunctional grafting agent. It is a multilayer structure acrylic polymer consisting of. The multilayer structure acrylic polymer in the present invention is produced by sequential multistage polymerization, but it is preferable to use emulsion polymerization as the polymerization method. However, there is no particular limitation to this, and after emulsion polymerization, the emulsion M. It can also be produced by the turbidity polymerization method. Here, examples of the alkyl acrylate whose alkyl group has 1 to 8 carbon atoms include methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, etc., but n-butyl acrylate is preferably used. .. As aromatic vinyl compounds,
Examples include styrene and substituted styrene derivatives, with styrene being preferred. As the polyfunctional crosslinking agent, commonly known crosslinking agents such as divinyl compounds, diallyl compounds, diacrylic compounds, and dimethacrylic compounds can be used.
) is preferably used. In addition, as the polyfunctional grafting agent, polyfunctional monomers having different functional groups, such as
Examples include allyl esters of acrylic acid, methacrylic acid, maleic acid, and fumaric acid, with allyl methacrylate being preferably used. The average particle diameter of the acrylic polymer of the present invention is 0.
2 to 0.4 pm, and 0. 25-0. 35 μm
is preferable. When the average particle diameter is less than 0.2 μm,
It has poor impact resistance, and if it exceeds 0.4 μm, only poor transparency can be obtained. In the multilayer structure acrylic polymer of the present invention, the innermost hard layer polymer has a crosslinking index of 0.05 to 0.6, preferably 0.1 to 0.4. If the crosslinking index is 0.05 or more, or if it exceeds 0.6, the impact resistance is poor. As described above, the properties of the innermost hard layer have a large effect on the impact resistance of thermoplastic acrylic resin repair products.
This is something that cannot be predicted using conventional technology. The crosslinking index is 80 to 99 parts by weight of methyl methacrylate,
Alkyl acrylate 1 whose alkyl group has 1 to 8 carbon atoms
When polymerizing a monomer mixture consisting of ~20 parts by weight to form the innermost hard layer polymer, the f! It can be controlled by choosing the type and amount. That is, increasing the amount of polyfunctional crosslinking agent and/or polyfunctional grafting agent increases the crosslinking index. Furthermore, the crosslinking index changes even if the type of polyfunctional crosslinking agent and/or polyfunctional grafting agent is changed. Here, as the polyfunctional crosslinking agent and polyfunctional grafting agent, those listed above are used. As mentioned above, it is advantageous to use the emulsion polymerization method to produce the multilayer structure acrylic polymer of the present invention, but the appropriate polymerization temperature for forming the polymer or copolymer of each layer is , 30 to 120°C for each layer, preferably 50 to 1
00-''C.Furthermore, in order to form such a multilayer structure polymer, the polymer can be formed by sequentially adding and reacting each monomer or monomer mixture. It is advantageous to use the so-called seed polymerization method, which allows the polymerization to be carried out.In this case, it is necessary to select conditions that will prevent the generation of new particles when polymerizing from the 271st!!fl onwards. This can be achieved by adjusting the amount of emulsifier used to below the critical micelle concentration.
In addition, the presence or absence of new particle generation can be confirmed by observation using a Shizukuko V and mirror. There are no particular restrictions on the emulsifier used in emulsion polymerization, and any emulsifier can be selected from conventionally used emulsifiers. Examples include long silver alkyl carboxylates, sulfosuccinic acid alkyl ester salts, and alkylbenzene sulfonates. In addition, there are no particular restrictions on the polymerization initiator used at this time, and commonly used water-soluble inorganic initiators such as persulfates and perborates may be used alone, or sulfites and thiosulfates may be used. It can also be used in combination with other substances as a redox initiator system. Furthermore, oil-soluble organic peroxide/ferrous salt,
Redox initiator systems such as organic peroxide/sodium sulfoxylate can also be used. The multilayered acrylic polymer obtained by such a polymerization method is obtained as a particulate solid by subjecting the polymer latex state to salting out, washing, drying, etc. by known methods. A thermoplastic acrylic resin N composition can be produced by blending the multilayered acrylic polymer of the present invention with a thermoplastic acrylic resin.The thermoplastic acrylic resin used here can be prepared by a known polymerization method. For example, bulk polymerization,
It may be obtained by any method such as solution polymerization, suspension polymerization, or emulsion polymerization. The ratio of the multilayer acrylic polymer in the composition is 2
-80 m parts is preferable; if it is less than 2 parts by weight, the impact resistance will be insufficient, and if it exceeds 80 parts by weight, only poor color tone will be obtained. When kneading to produce an acrylic resin composition, stabilizers, lubricants, dyes, pigments, etc. can be added as necessary. By injection molding or extrusion molding the acrylic resin composition thus obtained, a molded article with excellent transparency and impact resistance and reduced temperature dependence of haze can be obtained. Furthermore, the multilayer structure acrylic polymer of the present invention may include alkyl methacrylates other than methyl methacrylate, styrene, styrene derivatives, acrylonitrile, methacrylic nitrile, vinyl chloride, . It can be used alone or as a copolymer of vinylidene chloride, or in a blend with polycarbonate, polyamide, polyester, etc. [Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited in any way by this. The measurements in Examples and Comparative Examples were performed using the following methods or measuring equipment. Izod impact strength; ASTM
D256 Haze: Using an integrating sphere haze meter, the haze of a 3 mm thick test piece was measured at 23°C and 70°C. The fruits are indicated by the following symbols. O Haze Less than 5% Q // 5% or more, 10% ungrooved Δ
〃 0% or more, 20% ungrooved × 〃 20% or more average particle diameter; sample the latex of the multi-eye structure acrylic polymer, dilute it with water to a solid content of 50 ppm, and measure it with a spectrophotometer. The absorbance at a wavelength of 550 nm was measured using a. From this value, the average particle diameter was determined using a detection line created by similarly measuring the absorbance of a sample whose latex particle diameter was measured from a transmission electron micrograph. Crosslinking index: When the polymerization of the innermost hard layer was completed, latex was sampled, salted out, washed, and dried to obtain a powdery innermost hard layer polymerized red. Add 30 parts of methyl ethyl ketone to about 2 g of this polymer, and after crushing at 25°C for 12 hours,
The mixture was shaken for 1 hour and centrifuged at 5°C and 2300 rpm for 1 hour. After removing the supernatant liquid by decantation, 30 d of methyl ethyl ketone was added and shaken at 25°C for 1 hour. Centrifugation was performed at 5°C and 2300 rpm for 1 hour. The supernatant liquid was removed and the weight was measured (W.). Thereafter, it was vacuum dried at 100°C for 6 hours, and the weight of the residue was weighed (W2).The crosslinking index was calculated using the following formula. In addition, the abbreviations used in Examples and Comparative Examples indicate the following compounds. MMA; methyl methacrylate BA; n-butyl acrylate St; styrene MA; methyl acrylate ALMA; allyl methacrylate PEGDA; polyethylene glycol diacrylate (
Molecular weight 200 or 600) n-OM; n-octylmerbutane HMB T; 2-(2'-hydroxy-59-methylphenyl)penzotriazole Example 1 Content fJI Cl was placed in a reactor with a reflux condenser and subjected to ion exchange. 6860 ml of water and 13.7 g of sodium dihexyl sulfosuccinate were added, and the temperature was raised to 75° C. under a nitrogen atmosphere while stirring at a rotational speed of 25 Orpm, so that there was virtually no influence of oxygen. Ammonium persulfate 0. 2
After adding 2 g, 746 g of MMA, BA 10
g, 30% of the mixture (n-1) consisting of 0.23 g of HMB T and 0.38 g of ALMA was added all at once,
Immediately after that, the remaining 70% was added continuously over a period of 20 minutes, and after the addition was completed, the mixture was held for an additional 60 minutes. The Latinx of the innermost hard N polymer thus obtained was 40
0g was collected, salted out, washed, and dried, and the crosslinking index of the polymer was measured and found to be 0.2. Next, after adding 0.96 g of ammonium per5R acid, BA990 g,
St 2 3 2 g, HMB T0.37g, A
A mixture (IF-2) consisting of 25.9 g of LMA was
Continuously add over 0 minutes, and then add 180 minutes after the addition is complete.
Hold for minutes.

次に、過硫散アンモニウム0.29gを添加した後MM
A7 1 1 g− BA9g,HMBT0.22g及
びn−OM1.44gからなる混合物( II−3)を
40分間かけて連続的に添加し、添加終了後さらに60
分間保持した.次いで、95℃に昇温し60分間保持し
た.. このようにして得られたラテックスを、少量採取し、吸
光度法により平均粒子径を求めたところ0.25μmで
あった。
Next, after adding 0.29 g of persulfurized ammonium, MM
A7 1 1 g - A mixture (II-3) consisting of 9 g of BA, 0.22 g of HMBT and 1.44 g of n-OM was added continuously over 40 minutes, and after the addition was completed, an additional 60 g of
It was held for a minute. Next, the temperature was raised to 95°C and held for 60 minutes. .. A small amount of the latex thus obtained was sampled, and the average particle diameter was determined by absorbance method and was found to be 0.25 μm.

残りのラテックスを3重量%硫酸ナトリウム温水溶液中
へ投入して、塩析・凝固させ、次いで、脱水・洗浄を繰
り返したのち乾燥し、多層構造アクリル系重合体(n)
を得た. この多層構造アクリル系重合体(II) 30重量部と
MMA/MA共重合体(I)[MMA/MA=97.5
/2.5重量比、η,i,/C=0.54d/g(0.
 30g / aクロロホルム溶液、25℃)]70i
it部とをヘンシエルミキサーにて20分間混合しk後
、30mmベント付2軸押出機(ナカタニ機械■製、A
型)を用いて240℃にてペレット化した.得られたペ
レットをインラインスクリュー射出成形機(東芝機械■
製、I S−75S型)を用いて成形度250℃、射出
圧力900kgf/cm”、金型温度50℃の条件で所
定の試験片を作製し、物性測定を行った。
The remaining latex was poured into a 3% by weight hot aqueous sodium sulfate solution for salting out and coagulation, followed by repeated dehydration and washing, followed by drying to form a multilayered acrylic polymer (n).
I got it. 30 parts by weight of this multilayer structure acrylic polymer (II) and MMA/MA copolymer (I) [MMA/MA=97.5
/2.5 weight ratio, η,i,/C=0.54d/g (0.
30g/a chloroform solution, 25°C)]70i
After mixing for 20 minutes with a Henschel mixer, the
The pellets were pelletized at 240°C using a mold. The obtained pellets are processed using an in-line screw injection molding machine (Toshiba Machine ■).
Predetermined test pieces were prepared using a molding degree of 250° C., an injection pressure of 900 kgf/cm”, and a mold temperature of 50° C., and their physical properties were measured.

得られた樹脂組成物は、透明性、ヘイズの温度依存性に
優れ、かつ耐衝撃性も良好であった.結果を表−1に示
す. 実施例2 実施例1において、( If−1)を構成する混合物に
おけるALMA量を0.76gとした以外.は実施例1
と全く同様にして実施した:結果を表一lに示す. 実施例3 実施例1において、( II−1)を構成する混合物に
おけるALMA量を1.89gとした以・外は実施例l
と全く同様にして実施した.結果を表−1に示す. 実施例4 実施例1において、( II−1)を構成する混合物を
MMA1243g,BA17g,HMBT0.38g及
びALMA1.25gとした以外は実施例1と全く同様
にして実施した。結果を表−1に示す.実施例5 実施例1において、イオン交換水を5 8 3 0dジ
ヘキシルスルホコハク酸ナトリウムを11.7g、( 
n−1)を構成する混合物をMMA2244g、BA2
2g,HMBT0.52g及びALMAO、86gとし
、その80%の連続添加時間を40分間とし( II−
2)を構成する混合物をBA841g,St1 9 7
 g, HMB T0.3!g及びALMA22.0g
とし、(II−3)を構成する混合物をMMA604g
BA8g,HMBT(L19g及びn−O M 1. 
84gとした以外は、実施例1と全く同様にして実施し
た。
The resulting resin composition had excellent transparency and temperature dependence of haze, and also had good impact resistance. The results are shown in Table 1. Example 2 Example 1 except that the amount of ALMA in the mixture constituting (If-1) was 0.76 g. is Example 1
The experiment was carried out in exactly the same manner as in 1. The results are shown in Table 1. Example 3 Same as Example 1 except that the amount of ALMA in the mixture constituting (II-1) was 1.89 g.
It was carried out in exactly the same way. The results are shown in Table 1. Example 4 Example 1 was carried out in exactly the same manner as in Example 1, except that the mixture constituting (II-1) was changed to 1243 g of MMA, 17 g of BA, 0.38 g of HMBT, and 1.25 g of ALMA. The results are shown in Table 1. Example 5 In Example 1, 5830d ion-exchanged water, 11.7g of sodium dihexyl sulfosuccinate, (
The mixture constituting n-1) was mixed with 2244 g of MMA and BA2
2g of HMBT, 0.52g of HMBT, and 86g of ALMAO, and the continuous addition time of 80% was 40 minutes (II-
2) The mixture constituting BA841g, St197
g, HMB T0.3! g and ALMA22.0g
and the mixture constituting (II-3) was mixed with 604 g of MMA.
BA8g, HMBT (L19g and n-O M 1.
It was carried out in exactly the same manner as in Example 1 except that the weight was 84 g.

結果を表−1に示す. 比較例l 実施例lにおいて、( II−1)を構成する混合物に
ALMAを 使用しない以外は実施例1と全く同様にし
て実施した.結果を表−1に示す。
The results are shown in Table 1. Comparative Example 1 Example 1 was carried out in exactly the same manner as Example 1 except that ALMA was not used in the mixture constituting (II-1). The results are shown in Table-1.

比較例2 実施例1において、( If−1)を構成する混合物に
おけるALMA量を15.1gとした以外は実施例1と
全く同様にして実施した.結果を表一lに示す. 比較例3 実施例1において、( II−1)の一部を一括添加と
せず、60分間かけて連続添加し、( If−2)を構
成する混合物をBA990g,St232g、HMBT
0.37g%ALMA13.0g及びPEODA1.5
9gとした以外は実施1と全く同様にして実施した.結
果を表−1に示す. このように、本発明の範囲を逸脱した場合には耐衝撃性
、透明性、ヘイズの温度依存性に優れた組成物を得るこ
とができない. [発明の効果] 本発明によれば、従来の多層構造アクリル系重合体が有
する欠点を改良し、アクリル樹脂本来の優れた透明性や
成形加工性を有する上に、耐衝撃性、 及びヘイズの温度依存性に優れたアクリル樹脂組成物を
提供することができる. 手 続 補 正 書 (自発) 平成2年1月2 3 日
Comparative Example 2 Comparative example 2 was carried out in exactly the same manner as in Example 1 except that the amount of ALMA in the mixture constituting (If-1) was changed to 15.1 g. The results are shown in Table I. Comparative Example 3 In Example 1, part of (II-1) was not added all at once, but was added continuously over 60 minutes, and the mixture constituting (If-2) was added to 990 g of BA, 232 g of St, and HMBT.
0.37g%ALMA13.0g and PEODA1.5
The experiment was carried out in exactly the same manner as in Example 1, except that the amount was changed to 9g. The results are shown in Table 1. As described above, if the scope of the present invention is exceeded, a composition with excellent impact resistance, transparency, and temperature dependence of haze cannot be obtained. [Effects of the Invention] According to the present invention, the drawbacks of conventional multilayer acrylic polymers are improved, and in addition to having the excellent transparency and moldability inherent to acrylic resins, they also have excellent impact resistance and haze. An acrylic resin composition with excellent temperature dependence can be provided. Procedural amendment (voluntary) January 23, 1990

Claims (1)

【特許請求の範囲】 (a)メチルメタクリレート80〜99重量部、アルキ
ル基の炭素数が1〜8のアルキルアクリレート1〜20
重量部、多官能性架橋剤および/または多官能性グラフ
ト剤からなる単量体混合物を重合して得られる最内硬質
層重合体、 (b)上記最内硬質層重合体存在下に、アルキル基の炭
素数が4〜8のアルキルアクリレート75〜90重量部
、芳香族ビニル化合物25〜10重量部、多官能性架橋
剤0〜5重量部および多官能性グラフト剤0.05〜5
重量部からなる単量体混合物を重合して得られる軟質層
重合体、(c)上記最内硬質層および軟質層からなる重
合体の存在下に、メチルメタクリレート80〜99重量
部、アルキル基の炭素数が1〜8であるアルキルアクリ
レート1〜20重量部からなる単量体混合物を重合して
得られる最外硬質層重合体からなり、 (d)平均粒子径が0.2〜0.4μmであって、(e
)最内硬質層重合体の架橋指数が0.05〜0.6であ
る多層構造アクリル系重合体。
Scope of Claims: (a) 80 to 99 parts by weight of methyl methacrylate, 1 to 20 parts of alkyl acrylate whose alkyl group has 1 to 8 carbon atoms;
parts by weight, an innermost hard layer polymer obtained by polymerizing a monomer mixture consisting of a polyfunctional crosslinking agent and/or a polyfunctional grafting agent; (b) in the presence of the innermost hard layer polymer, an alkyl 75 to 90 parts by weight of an alkyl acrylate whose group has 4 to 8 carbon atoms, 25 to 10 parts by weight of an aromatic vinyl compound, 0 to 5 parts by weight of a polyfunctional crosslinking agent, and 0.05 to 5 parts by weight of a polyfunctional grafting agent.
(c) 80 to 99 parts by weight of methyl methacrylate, a soft layer polymer obtained by polymerizing a monomer mixture consisting of parts by weight, and (c) a polymer consisting of the innermost hard layer and soft layer. The outermost hard layer consists of a polymer obtained by polymerizing a monomer mixture consisting of 1 to 20 parts by weight of alkyl acrylate having 1 to 8 carbon atoms, and (d) has an average particle diameter of 0.2 to 0.4 μm. and (e
) A multilayer structure acrylic polymer in which the innermost hard layer polymer has a crosslinking index of 0.05 to 0.6.
JP1186043A 1989-07-20 1989-07-20 Multi-layer acrylic polymer Expired - Lifetime JP2593557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1186043A JP2593557B2 (en) 1989-07-20 1989-07-20 Multi-layer acrylic polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1186043A JP2593557B2 (en) 1989-07-20 1989-07-20 Multi-layer acrylic polymer

Publications (2)

Publication Number Publication Date
JPH0352910A true JPH0352910A (en) 1991-03-07
JP2593557B2 JP2593557B2 (en) 1997-03-26

Family

ID=16181400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1186043A Expired - Lifetime JP2593557B2 (en) 1989-07-20 1989-07-20 Multi-layer acrylic polymer

Country Status (1)

Country Link
JP (1) JP2593557B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354810A (en) * 1992-02-26 1994-10-11 Asahi Kasei Kogyo Kabushiki Kaisha Acetal resin composition
JP2000248142A (en) * 1999-03-01 2000-09-12 Mitsubishi Rayon Co Ltd Resin composition
US6310137B1 (en) 1997-06-09 2001-10-30 Mitsubishi Rayon Co., Ltd. Acrylic polymer having multilayer structure and methacrylic resin composition containing the same
DE10043868A1 (en) * 2000-09-04 2002-04-04 Roehm Gmbh PMMA molding compounds with improved impact resistance
US6767967B2 (en) 2000-07-27 2004-07-27 Hitachi Chemical Co., Ltd. Pseudo cross-link type resin composition, molding material, sheet or film, and optical element obtained therefrom
US6903160B2 (en) 2001-06-05 2005-06-07 Hitachi Chemical Co., Ltd. Pseudocross-linking resin composition, molded materials, sheet or film made therefrom, and optical elements
CN1293140C (en) * 1998-02-05 2007-01-03 台湾塑胶工业股份有限公司 Poly-ethylene-halide resine compositions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527576A (en) * 1978-06-23 1980-02-27 Griswold Controls Counter flow preventing device
JPS59136313A (en) * 1983-01-10 1984-08-04 レ−ム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Impact resistant improver and molding compound containing same
JPS63254114A (en) * 1988-03-11 1988-10-20 Mitsubishi Rayon Co Ltd Production of methacrylic resin with high impact resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527576A (en) * 1978-06-23 1980-02-27 Griswold Controls Counter flow preventing device
JPS59136313A (en) * 1983-01-10 1984-08-04 レ−ム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Impact resistant improver and molding compound containing same
JPS63254114A (en) * 1988-03-11 1988-10-20 Mitsubishi Rayon Co Ltd Production of methacrylic resin with high impact resistance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354810A (en) * 1992-02-26 1994-10-11 Asahi Kasei Kogyo Kabushiki Kaisha Acetal resin composition
US6310137B1 (en) 1997-06-09 2001-10-30 Mitsubishi Rayon Co., Ltd. Acrylic polymer having multilayer structure and methacrylic resin composition containing the same
CN1293140C (en) * 1998-02-05 2007-01-03 台湾塑胶工业股份有限公司 Poly-ethylene-halide resine compositions
JP2000248142A (en) * 1999-03-01 2000-09-12 Mitsubishi Rayon Co Ltd Resin composition
US6767967B2 (en) 2000-07-27 2004-07-27 Hitachi Chemical Co., Ltd. Pseudo cross-link type resin composition, molding material, sheet or film, and optical element obtained therefrom
US7295376B2 (en) 2000-07-27 2007-11-13 Hitachi Chemical Company, Ltd. Pseudo cross-link type resin composition, molding material, sheet or film, and optical element obtained therefrom
DE10043868A1 (en) * 2000-09-04 2002-04-04 Roehm Gmbh PMMA molding compounds with improved impact resistance
US6903160B2 (en) 2001-06-05 2005-06-07 Hitachi Chemical Co., Ltd. Pseudocross-linking resin composition, molded materials, sheet or film made therefrom, and optical elements

Also Published As

Publication number Publication date
JP2593557B2 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
JPS6017406B2 (en) Manufacturing method of multilayer structure acrylic resin molding material
CN102807721B (en) Impact modifier for polymethyl methacrylate resin having excellent impact strength and transparency and method of preparing the same
AU3535099A (en) Resin composition containing multilayered graft polymer
US6310137B1 (en) Acrylic polymer having multilayer structure and methacrylic resin composition containing the same
JPS60192754A (en) Thermoplastic resin composition
JPH03199213A (en) Acrylic polymer of multi-layer structure
JPH0352910A (en) Acrylic polymer with multilayered structure
JPS6221804B2 (en)
JPS6377963A (en) Thermoplastic resin composition
JPS6038418A (en) Impact resistance-improving agent and thermoplastic resin composition containing same
JPS5998156A (en) Acrylic resin composition having excellent heat resistance and impact resistance
JP2796595B2 (en) Multilayer polymer and resin composition
JPH0465848B2 (en)
JPH0832751B2 (en) Method for producing weather resistant, impact resistant acrylic resin granular composite
JP2854696B2 (en) Method for producing nitrile polymer composition
JPH02153962A (en) Thermoplastic acrylic resin composition
JPH0352909A (en) Acrylic polymer with multilayered structure
JPH05320457A (en) Acrylic resin composition
JPS6030698B2 (en) acrylic resin composition
JPS61181854A (en) Heat-resistant, impact-resistant thermoplastic resin composition
JPH0339095B2 (en)
JP2593557C (en)
JPH05186659A (en) Heat-resistant and impact-resistant resin composition
JPS6291517A (en) Thermoplastic graft polymer
JPH0745609B2 (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13