JPH0352905B2 - - Google Patents

Info

Publication number
JPH0352905B2
JPH0352905B2 JP7208985A JP7208985A JPH0352905B2 JP H0352905 B2 JPH0352905 B2 JP H0352905B2 JP 7208985 A JP7208985 A JP 7208985A JP 7208985 A JP7208985 A JP 7208985A JP H0352905 B2 JPH0352905 B2 JP H0352905B2
Authority
JP
Japan
Prior art keywords
electrolysis
decontamination
oxide film
monitoring
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7208985A
Other languages
Japanese (ja)
Other versions
JPS61231452A (en
Inventor
Akio Tanaka
Tsutomu Oonuma
Nobuo Yomo
Hidetoshi Akimoto
Toshio Yamadera
Koji Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP7208985A priority Critical patent/JPS61231452A/en
Publication of JPS61231452A publication Critical patent/JPS61231452A/en
Publication of JPH0352905B2 publication Critical patent/JPH0352905B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/42Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は表面に汚染酸化皮膜を有する放射性金
属廃棄物を電解液中で電解除染し、その時の除染
状況をモニタリングする方法に係り、特に電解除
染終了時の判定に好適な電解除染モニタリング方
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for decontaminating radioactive metal waste having a contaminated oxide film on its surface in an electrolytic solution and monitoring the decontamination status at that time. In particular, the present invention relates to a method for monitoring electrode removal dyeing that is suitable for determining when electrode dyeing is completed.

〔従来技術〕[Prior art]

例えば原子力発電所の定期検査や改造工事の際
には放射能汚染された酸化皮膜層を有する金属廃
棄物が多量に発生する。これらの放射性汚染金属
廃棄物は切断した後ドラム罐に充填し、原子力発
電所内に保管しても、その量は年々累積する。さ
らに廃炉解体時には発電所1基当り数万本にも達
すると言われている。この対策として放射能汚染
された金属廃棄物の酸化皮膜層を除去することに
よつて金属廃棄物をバツクグラウンドまで除染し
減容する方法が開発されている。それらはグラス
ト法などの機械的方法や有機酢などの除染液を用
いる化学的方法があるが除染効果、減容効果、装
置の簡略性の点で電解除染法が有望視されてい
る。一般に電解除染法はリン酸硫酸などの強酸電
解液を用いる方法であるが、液中に金属イオンが
蓄積してくると液が劣化し、そのつど液を更新し
なくてはならず液全体が二次廃棄物となり減容効
果が小さいという欠点がある。そこで液を容易に
再使用でき減容効果の大きい中性塩交番電解法が
提案されている(特開昭59−154400号公報参照)。
この方法は極性を交互に切り換える交番電解を行
うことで効果的に酸化皮膜を除去している。
For example, during periodic inspections and remodeling work of nuclear power plants, large amounts of metal waste with radioactively contaminated oxide film layers are generated. Even if these radioactively contaminated metal wastes are cut up, filled into drums, and stored within nuclear power plants, the amount accumulates year by year. Furthermore, it is said that when the reactor is decommissioned and dismantled, the number of pipes per power plant will reach tens of thousands. As a countermeasure to this problem, a method has been developed to decontaminate radioactively contaminated metal waste to the background level and reduce its volume by removing the oxide film layer of the metal waste. There are mechanical methods such as the Glast method, and chemical methods that use decontamination liquids such as organic vinegar, but the electrolytic decontamination method is seen as promising in terms of decontamination effect, volume reduction effect, and simplicity of equipment. . In general, the electrolytic dyeing method uses a strong acid electrolyte such as phosphoric acid sulfuric acid, but as metal ions accumulate in the solution, the solution deteriorates and the solution must be renewed each time. However, it has the disadvantage that the volume reduction effect is small because it becomes secondary waste. Therefore, a neutral salt alternating electrolysis method has been proposed which allows the liquid to be easily reused and has a large volume reduction effect (see Japanese Patent Laid-Open No. 154400/1983).
This method effectively removes the oxide film by performing alternating electrolysis in which the polarity is alternately switched.

しかし、この方法にあつても他の方法と同様、
除染対象物を電解液中に浸した状態で除染するた
めにオンラインで除染状況すなわち汚染酸化皮膜
の除去状況をモニタリングすることが難しいとい
う問題がある。このため、経験的に電解時間を推
定し、電解途中で除染対象物を電解液から取り出
し、水洗した後に放射能を測定する方法がとられ
ている。しかし、この方法では除染不十分な場合
には再度電解、水洗、モニタリングの作業を繰り
返さなくてはならず多大の時間を要するだけでな
く、作業者の被曝量増加につながるという問題が
ある。また、電解除染を安全側に過剰に行うと、
電解による二次廃棄物が必要以上に発生する問題
がある。そのため、放射能で汚染された酸化皮膜
の有無もしくはその量をオンラインでモニターす
る方法が強く望まれている。
However, with this method as with other methods,
Since the object to be decontaminated is decontaminated while immersed in an electrolytic solution, there is a problem in that it is difficult to monitor the decontamination status, that is, the removal status of the contaminated oxide film online. For this reason, a method is used in which the electrolysis time is estimated empirically, the object to be decontaminated is taken out of the electrolytic solution during the electrolysis, and the radioactivity is measured after washing with water. However, with this method, if decontamination is insufficient, the electrolysis, water washing, and monitoring operations must be repeated again, which not only takes a lot of time but also leads to an increase in the radiation exposure of workers. Also, if the electrolytic de-dyeing is carried out excessively on the safe side,
There is a problem in that more secondary waste is generated than necessary due to electrolysis. Therefore, there is a strong demand for a method for online monitoring of the presence or absence of radioactively contaminated oxide film or its amount.

このような要望に応える方法として特開昭59−
162445号公報には定電流パルスを印加する方法が
開示されている。この方法は対象物と対極間に周
期が数msの微少定電流パルスを印加しプローブ
を介して、対象物と溶液間の分極電位の応答を測
定するものである。しかし、この方法において
は、定電流パルス印加用電源、微少電圧測定器、
メモリー装置が必要なほか、通常は電解操作を一
担停止しなくてはならず、又、プローブを対象物
の汚染酸化皮膜近傍に事前に設置しなくてはなら
ず、装置、操作が複雑となる。
As a way to meet such demands, JP-A-59-
Publication No. 162445 discloses a method of applying constant current pulses. In this method, a minute constant current pulse with a period of several ms is applied between the object and a counter electrode, and the response of the polarization potential between the object and the solution is measured via a probe. However, in this method, a power supply for applying constant current pulses, a microvoltage measuring device,
In addition to requiring a memory device, the electrolytic operation must usually be stopped for a while, and the probe must be installed in advance near the contaminated oxide film of the object, making the device and operation complicated. Become.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、放射性金属廃棄物を電解除染
する際に、電解操作を継続した状態で、かつ簡便
に除染状況をモニタリングできる方法を提供する
ことにある。
An object of the present invention is to provide a method that can easily monitor the decontamination status while continuing the electrolysis operation when electrolytically decontaminating radioactive metal waste.

〔問題点を解決するための手段および作用〕[Means and actions for solving problems]

本発明は、放射性金属廃棄物表面の汚染酸化皮
膜をまず陰極電解し、その後定電流あるいは定電
圧で陽極電解を行うと、この時の電解時間に対す
る応答電圧波形あるいは応答電流波形が酸化皮膜
の有無もしくはその量によつて変化するのを実験
により確認し、この応答値を読みとることで除染
状況をモニタリングするように構成したものであ
る。
In the present invention, when a contaminated oxide film on the surface of radioactive metal waste is first subjected to cathodic electrolysis, and then anodic electrolysis is performed at a constant current or constant voltage, the response voltage waveform or response current waveform with respect to the electrolysis time at this time is determined whether or not there is an oxide film. Alternatively, the decontamination status can be monitored by confirming through experiments that the amount changes depending on the amount, and by reading this response value.

以下、本発明を図面に基づいて説明する。第2
図は硫酸ナトリウム溶液を電解液とし、対極に白
金電極を用いて、表面に酸化皮膜を有する炭素鋼
を試料として電解した場合の実験結果を示す。こ
の実験は電流密度を0.3A/cm2とし、まず、陰極
電解を10分間行つた後、電源を切り替えて陽極電
解を10分間行つた。その結果、図示のように陽極
電解時の前半では電圧が低い特異な応答電圧波形
が得られ、後半では一定の高い電圧値を示した。
一方、同じ条件で酸化皮膜のない炭素鋼について
行つた実験では第3図に示すように、陽極電解時
の電圧は前半、後半を通して、安定した一定の高
い電圧値を示した、以上のことから、陰極電解を
所定時間行つた後に、定電流での陽極電解を行え
ば、対象物の酸化皮膜の有無によつて陽極電解時
における応答電圧波形に大きな相違を生じること
がわかつた。
Hereinafter, the present invention will be explained based on the drawings. Second
The figure shows the results of an experiment in which carbon steel with an oxide film on its surface was electrolyzed using a sodium sulfate solution as the electrolyte and a platinum electrode as the counter electrode. In this experiment, the current density was set to 0.3 A/cm 2 , and cathodic electrolysis was first performed for 10 minutes, then the power source was switched and anodic electrolysis was performed for 10 minutes. As a result, as shown in the figure, a unique response voltage waveform was obtained in which the voltage was low in the first half during anodic electrolysis, and a constant high voltage value was obtained in the second half.
On the other hand, in an experiment conducted on carbon steel without an oxide film under the same conditions, as shown in Figure 3, the voltage during anodic electrolysis showed a stable and constant high voltage value throughout the first half and second half. It has been found that if anodic electrolysis at a constant current is performed after cathodic electrolysis for a predetermined period of time, the response voltage waveform during anodic electrolysis will vary greatly depending on the presence or absence of an oxide film on the object.

以上の現象が生ずる原因を推察すると次のよう
になる。
The reason why the above phenomenon occurs is as follows.

まず、陰極電解によつて、酸化皮膜は還元され
例えばFe2O3、Fe3O4は低位の酸化物であるFeO
やFeの変化する。これらFeOやFeは陽極電解で
は容易に溶解し、陽極電解を継続すると、次の
Fe2O3やFe3O4を主成分とする酸化皮膜の層が現
われる。したがつて、陽極電解時の前半では前記
還元されたFeOやFeが凹凸もしくはポーラス状
に試料の表面を形成するため、試料の表面積が増
加し、実効的な電流密度が低下し、分極電位が低
下する。その結果、電源電圧も低下すると推察さ
れる。次に陽極電解時の後半では、下層の酸化皮
膜が現われるため、分極電位が増加し、電源電圧
も増加する。
First, by cathodic electrolysis, the oxide film is reduced and, for example, Fe 2 O 3 and Fe 3 O 4 are reduced to FeO, which is a low-level oxide.
and Fe change. These FeO and Fe are easily dissolved by anodic electrolysis, and if anodic electrolysis is continued, the following
An oxide film layer consisting mainly of Fe 2 O 3 and Fe 3 O 4 appears. Therefore, in the first half of anodic electrolysis, the reduced FeO and Fe form an uneven or porous surface of the sample, which increases the surface area of the sample, lowers the effective current density, and lowers the polarization potential. descend. As a result, it is presumed that the power supply voltage will also decrease. Next, in the latter half of anodic electrolysis, the underlying oxide film appears, so the polarization potential increases and the power supply voltage also increases.

以上の現象は陽極電解を定電圧で行い、その時
の応答電流波形を検出しても確認できる。ただし
この場合には、陽極電解時の前半では、電流が高
い特異な応答電流波形が得られ、後半では安定し
た一定の低い電流値に落ちつく。
The above phenomenon can be confirmed by performing anodic electrolysis at a constant voltage and detecting the response current waveform at that time. However, in this case, in the first half of anodic electrolysis, a unique response current waveform with a high current is obtained, and in the second half, the current value settles to a stable and constant low current value.

したがつて、放射性金属廃棄物の電解除染を行
う場合においては、汚染酸化皮膜が徐々に除去さ
れるにつれていつたん陰極電解し次いで定電流も
しくは定電圧で陽極電解を行いその時の電圧変化
もしくは電流変化を各除染時間で経時的に追跡す
れば汚染酸化皮膜のモニタリングすなわち除染の
進行状況のモニタリングができる。さらに陰極電
解との陽極電解を繰り返す交番電解除染法におい
ては電解除染操作とモニタリングを同時に行うこ
とができるという大きな利点がある。
Therefore, when performing electrolytic decontamination of radioactive metal waste, as the contaminated oxide film is gradually removed, cathodic electrolysis is performed, followed by anodic electrolysis at constant current or constant voltage, and the voltage change or current at that time is By tracking changes over time at each decontamination time, it is possible to monitor the contaminated oxide film, that is, to monitor the progress of decontamination. Furthermore, the alternating electrode dyeing method in which cathodic electrolysis and anodic electrolysis are repeated has the great advantage that electrode dyeing operation and monitoring can be performed simultaneously.

第4図は電流密度0.3A/cm2、温度35℃で陰極
電解時間30秒、陽極電解時間30秒で電解液を
20wt%硫酸ナトリウム溶液として、汚染皮膜厚
30μmの試料を交番電解除染した時の電圧変化を
示したものである。図中、下段に示した数値は交
番電解のサイクル数を意味する。陽極電解時の電
圧波形に着目すると最初の1〜3サイクル目で前
記の特異な波形の徴候が見られる。6〜8サイク
ル目でその傾向が最も顕著に見られ、サイクル毎
の変化も激しい。以下、しだいに電圧波形は安定
し13〜14サイクル目では、安定したほぼ一定の電
圧値を示す。従つて、陽極電解時の電圧波形の変
化を数値化し、経時変化を追跡すれば汚染酸化皮
膜の除去状況すなわち除染モニタリングを行え
る。第5図は陽極電解開始3秒後の電圧値と陽極
電解終了時の電圧値との差を陽極電解時間で除し
た値、すなわち傾きaの相対値を経時的に求め、
酸化皮膜除去率との対応関係を示したものであ
る。酸化皮膜除去率100%と傾きaが一定値にな
る時点が良い一致を示している。
Figure 4 shows the electrolyte at a current density of 0.3 A/cm 2 and a temperature of 35°C with a cathode electrolysis time of 30 seconds and an anodic electrolysis time of 30 seconds.
Contaminated film thickness as 20wt% sodium sulfate solution
This figure shows the voltage change when a 30 μm sample was subjected to alternating voltage de-dying. In the figure, the numerical values shown at the bottom mean the number of cycles of alternating electrolysis. When paying attention to the voltage waveform during anodic electrolysis, signs of the above-mentioned peculiar waveform can be seen in the first 1 to 3 cycles. This tendency is most noticeable in the 6th to 8th cycles, and changes from cycle to cycle are also drastic. Thereafter, the voltage waveform gradually becomes stable, and at the 13th to 14th cycles, it shows a stable, almost constant voltage value. Therefore, by quantifying changes in the voltage waveform during anodic electrolysis and tracking changes over time, it is possible to monitor the removal status of the contaminated oxide film, that is, decontamination. Figure 5 shows the value obtained by dividing the difference between the voltage value 3 seconds after the start of anodic electrolysis and the voltage value at the end of anodic electrolysis by the anodic electrolysis time, that is, the relative value of the slope a, which is calculated over time.
It shows the correspondence relationship with the oxide film removal rate. There is good agreement between the oxide film removal rate of 100% and the point at which the slope a becomes a constant value.

第6図は傾きaの経時変化と放射能計数率との
対応関係を示したものである。交番電解除染によ
り放射能計数率は減少し、これにともなつて傾き
aも低下し、汚染終了時点で一定値になることが
わかつた。
FIG. 6 shows the correspondence between the change in slope a over time and the radioactivity count rate. It was found that the radioactivity count rate decreased due to the decontamination of the alternating current, and the slope a decreased accordingly, reaching a constant value at the end of the contamination.

このことにより、除染終了時をオンラインで把
握することができる。したがつて、電解除染を過
剰に行う必要がなく除染に伴い発生する二次廃棄
物量を低減できる。さらにはオンラインで除染モ
ニタリングができるため、被曝低減となる。
This allows the completion of decontamination to be ascertained online. Therefore, there is no need to perform electrical decontamination excessively, and the amount of secondary waste generated due to decontamination can be reduced. Furthermore, decontamination monitoring can be done online, reducing radiation exposure.

〔実施例〕〔Example〕

次に本発明の実施例を第1図に従つて説明す
る。第1図は中性塩交番電解除染装置に本法を適
用した例である。
Next, an embodiment of the present invention will be described with reference to FIG. Figure 1 shows an example in which this method is applied to a neutral salt alternating current dyeing device.

汚染酸化皮膜を有する放射性金属廃棄物21を
硫酸ナトリウム20wt%などの電解液23を満た
した電解槽22に浸し、対極24との間に直流電
源25から電流を通電し電解除染する。直流電源
25は交番発生器26を備えており極性を交互に
変える交番電解が可能な構成となつている。この
電解除染装置に本法のモニタリング装置を適用す
る場合には新たに電圧測定器27、演算器28を
付加するだけで良い。
Radioactive metal waste 21 having a contaminated oxide film is immersed in an electrolytic bath 22 filled with an electrolytic solution 23 such as 20 wt % sodium sulfate, and a current is applied between it and a counter electrode 24 from a DC power source 25 to decontaminate the waste. The DC power supply 25 is equipped with an alternating current generator 26 and is configured to perform alternating electrolysis in which the polarity is alternately changed. When applying the monitoring device of the present method to this electrodye dyeing device, it is sufficient to newly add a voltage measuring device 27 and a computing device 28.

放射性金属廃棄物21の汚染酸化皮膜層をモニ
タリングするには、交番電解の陽極電解時の電圧
変化を電圧測定器27によつて測定し、前述した
傾きaを演算器28によつて算出する。以上によ
つて、電解除染途中の汚染酸化皮膜厚さの減少量
すなわち、除染状況をリアルタイムに把握するこ
とができる。除染終了後は、演算器28から直流
電源25に信号を与え電解操作を終了する。
To monitor the contaminated oxide film layer of the radioactive metal waste 21, the voltage change during anodic electrolysis of alternating electrolysis is measured by the voltage measuring device 27, and the above-mentioned slope a is calculated by the calculator 28. As described above, the amount of decrease in the thickness of the contaminated oxide film during electrolytic decontamination, that is, the decontamination status can be grasped in real time. After the decontamination is completed, a signal is given from the computing unit 28 to the DC power supply 25 to complete the electrolysis operation.

なお、前記実施例においては、陽極電解時の電
圧波形の所定の傾きaを求めることにつき説明し
たが、これは電圧X時間の積分量変化を求めるよ
うにしてもよい。
In the embodiment described above, the predetermined slope a of the voltage waveform during anodic electrolysis is determined, but this may be done by determining the integral change in voltage x time.

また、陽極電解開始数秒後の電圧値(定電流制
御の場合)、または電流値(定電圧制御の場合)
を単純に検出し、この検出結果に基づき除染状況
をモニタリングするようにしてもよい。
Also, the voltage value (in the case of constant current control) or the current value (in the case of constant voltage control) several seconds after the start of anodic electrolysis.
may be simply detected and the decontamination status may be monitored based on the detection results.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、放射性金属廃棄物を電解除染
する際にオンラインできわめて簡便に除染状況を
モニタリングできる。特に交番電解除染の除染モ
ニタリング方法として好適である。
According to the present invention, it is possible to monitor the decontamination status online very easily when radioactive metal waste is decontaminated. It is particularly suitable as a decontamination monitoring method for decontamination of police boxes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本法の適用例を示す装置概略図、第2
図は酸化皮膜を有する試料の電圧変化図、第3図
は酸化皮膜のない試料の電圧変化図、第4図は交
番電解を行つた時の試料の電圧変化図、第5図は
傾きaの経時変化と酸化皮膜除去率との対応関係
を示す図、第6図は傾きaの経時変化と放射能計
数率との対応関係を示す図である。 21……放射性金属廃棄物、22……電解槽、
24……対極、25……直流電源、26……交番
発生器、27……電圧測定器、28……演算器。
Figure 1 is a schematic diagram of the device showing an example of application of this method, Figure 2
The figure is a voltage change diagram for a sample with an oxide film, Figure 3 is a voltage change diagram for a sample without an oxide film, Figure 4 is a voltage change diagram for a sample during alternating electrolysis, and Figure 5 is a voltage change diagram for a sample with an oxide film. FIG. 6 is a diagram showing the correspondence between the change over time and the oxide film removal rate, and FIG. 6 is a diagram showing the correspondence between the change over time in the slope a and the radioactivity count rate. 21... Radioactive metal waste, 22... Electrolytic cell,
24... Counter electrode, 25... DC power supply, 26... Alternating generator, 27... Voltage measuring device, 28... Arithmetic unit.

Claims (1)

【特許請求の範囲】 1 表面に汚染酸化皮膜を有する放射性金属廃棄
物を電解液中で電解除染し、その時の除染状況を
モニタリングする方法において、金属廃棄物をま
ず陰極電解し、しかる後、陽極で定電流もしくは
定電圧で電解し、この時の電解時間に対する電圧
応答値もしくは電流応答値を解析することにより
除染状況をモニタリングすることを特徴とする電
解除染モニタリング方法。 2 上記電解除染を陰極電解と陽極電解を繰り返
す交番電解で行うことにより電解除染とモニタリ
ングを同時に行うことを特徴とする特許請求の範
囲第1項に記載の電解除染モニタリング方法。
[Claims] 1. In a method of electrolytically decontaminating radioactive metal waste having a contaminated oxide film on its surface in an electrolytic solution and monitoring the decontamination status at that time, the metal waste is first subjected to cathodic electrolysis, and then An electrolytic decontamination monitoring method characterized by carrying out electrolysis at a constant current or constant voltage at an anode and monitoring the decontamination status by analyzing the voltage response value or current response value with respect to the electrolysis time at this time. 2. The method for monitoring electrode release dyeing according to claim 1, wherein the electrode release dyeing is carried out by alternating electrolysis in which cathodic electrolysis and anodic electrolysis are repeated, thereby performing electrode release dyeing and monitoring at the same time.
JP7208985A 1985-04-05 1985-04-05 Method for monitoring electrolytic decontamination Granted JPS61231452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7208985A JPS61231452A (en) 1985-04-05 1985-04-05 Method for monitoring electrolytic decontamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7208985A JPS61231452A (en) 1985-04-05 1985-04-05 Method for monitoring electrolytic decontamination

Publications (2)

Publication Number Publication Date
JPS61231452A JPS61231452A (en) 1986-10-15
JPH0352905B2 true JPH0352905B2 (en) 1991-08-13

Family

ID=13479327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7208985A Granted JPS61231452A (en) 1985-04-05 1985-04-05 Method for monitoring electrolytic decontamination

Country Status (1)

Country Link
JP (1) JPS61231452A (en)

Also Published As

Publication number Publication date
JPS61231452A (en) 1986-10-15

Similar Documents

Publication Publication Date Title
EP3491651B1 (en) Electrolytic treatment for nuclear decontamination
JP3481746B2 (en) Decontamination method of metal contaminated by radioactivity
US4701246A (en) Method for production of decontaminating liquid
JPH0352905B2 (en)
US7384529B1 (en) Method for electrochemical decontamination of radioactive metal
HUT57446A (en) Method for measuring radioactivity of metallic articles of articles containing cement
JPH03158800A (en) Electrolytic decontamination method for radioactive metallic waste
Partridge et al. Chemical decontamination of metals
JP2701631B2 (en) Method and apparatus for electrodischarge dyeing of radioactive metal waste
KR102273060B1 (en) Method for removing Mn in solution after SP-HyBRID decontamination and SP-HyBRID decontamination comprising the same
JP3010943B2 (en) Reduction chemical decontamination method for radioactive metal waste
JPH03231198A (en) Decontaminating method of radioactive metal waste
Gal et al. Decreasing Level Activities and Releasing Wastes: It’s Now Possible Thanks to a New Electrodecontamination Implementation
JPH0518918B2 (en)
JP2549165B2 (en) Decontamination method for radioactive waste
JP2653445B2 (en) Radioactive waste decontamination system
JPS60186799A (en) Method and device for electrolytically decontaminating radioactive contaminated metallic piping
JPS59162445A (en) Method for detecting metal oxide film
JPS647359B2 (en)
JPH02171697A (en) Chemical decontamination of stainless steel
JP2005140761A (en) Electrolytic decontamination method on lead material for shielding
JPH0527092A (en) Removal of contamination of radioactive metallic waste
JPH03273172A (en) Reference electrode and decontamination device for radioactive metal refuse
JPH06242295A (en) Method and device for decontaminating radioactive metal waste
JPS599599A (en) Method of decontaminating radioactive metal by electrolysis