JPH0352604B2 - - Google Patents

Info

Publication number
JPH0352604B2
JPH0352604B2 JP58009960A JP996083A JPH0352604B2 JP H0352604 B2 JPH0352604 B2 JP H0352604B2 JP 58009960 A JP58009960 A JP 58009960A JP 996083 A JP996083 A JP 996083A JP H0352604 B2 JPH0352604 B2 JP H0352604B2
Authority
JP
Japan
Prior art keywords
optical fibers
directions
cores
image processing
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58009960A
Other languages
Japanese (ja)
Other versions
JPS59136708A (en
Inventor
Iwao Kitazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP996083A priority Critical patent/JPS59136708A/en
Publication of JPS59136708A publication Critical patent/JPS59136708A/en
Publication of JPH0352604B2 publication Critical patent/JPH0352604B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2555Alignment or adjustment devices for aligning prior to splicing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、極めて高精度な永久持続を迅速且つ
自動的に行ない得るように企図した光フアイバの
融着接続装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an optical fiber fusion splicing apparatus designed to quickly and automatically perform permanent splicing with extremely high precision.

<従来の技術> 光フアイバの接続方法として従来から行なわれ
ているものに、接続後でも任意に分離することが
可能なコネクタによる方法と、接続後では分離す
ることができない永久接続(スプライシング)に
よる方法とがある。一般に、コネクタによるもの
は光フアイバの端面での反射損失があるため、永
久持続によるものよりもその接続損失の大きいこ
とが知られており、これらはその使用条件に応じ
て適宜使い分けされている。
<Prior art> Conventional methods for connecting optical fibers include a method using a connector that can be separated at will even after connection, and a method using a permanent connection (splicing) that cannot be separated after connection. There is a method. In general, connectors are known to have a greater connection loss than permanent connectors due to reflection loss at the end face of the optical fiber, and these are used as appropriate depending on the conditions of use.

ところで、長距離伝送路として使われることが
多い海底光ケーブル等の通信用光フアイバの永久
持続に際しては、経時劣化の虞の少ない融着接続
法が採用される。通常、光フアイバを相互に融着
接続する際には光フアイバの端面を同軸に突き合
わせたのち、放電加熱して融着接続するようにし
ていた。この場合、光の伝送にあずかるコアが光
フアイバに対して偏心していると、単にこの光フ
アイバを同軸に位置決めしただけでは最良の接続
状態にすることが不可能であり、この傾向はコア
径の小さな単一モード光フアイバにおいて特に顕
著に表れる。このため、一般には一方の光フアイ
バから他方の光フアイバへ光を通し、他方の光フ
アイバでの受光量が最大となるように二本の光フ
アイバの突き合わせ端部の相対位置を調整する方
法が採用されている。
By the way, in order to permanently maintain communication optical fibers such as submarine optical cables that are often used as long-distance transmission lines, a fusion splicing method is used, which is less likely to deteriorate over time. Normally, when optical fibers are fused and spliced to each other, the end surfaces of the optical fibers are coaxially abutted against each other, and then the fusion spliced is performed by electrical discharge heating. In this case, if the core that participates in light transmission is eccentric with respect to the optical fiber, it is impossible to achieve the best connection simply by positioning the optical fiber coaxially, and this tendency tends to change as the core diameter increases. This is particularly noticeable in small single mode optical fibers. For this reason, there is generally a method of passing light from one optical fiber to the other optical fiber and adjusting the relative position of the butt ends of the two optical fibers so that the amount of light received by the other optical fiber is maximized. It has been adopted.

<発明が解決しようとする問題点> 海底光ケーブルのようにすでに中継器等が光フ
アイバに連結されている場合には、一方の光フア
イバから他方の光フアイバへ光を通すような方法
を採用することが根本的に不可能であり、しかも
海底光ケーブルの接続は海上で行なわれることと
なるため、船舶の振動や海洋気象等による制約が
多くて良好な永久接続を行ない難い欠点があつ
た。
<Problems to be solved by the invention> When a repeater or the like is already connected to an optical fiber, such as in a submarine optical cable, a method is adopted in which light passes from one optical fiber to the other. This is fundamentally impossible, and since submarine optical cable connections are made at sea, there are many restrictions such as ship vibrations and ocean weather, making it difficult to establish a good permanent connection.

本発明はこのような知見に基づき、光フアイバ
を透過照明で観察した場合にコアの位置を正確に
把握することができる点に着目し、光フアイバの
永久持続を短時間のうちに高精度で自動的に行な
い得る装置を提供することを目的とする。
Based on this knowledge, the present invention focuses on the fact that the core position can be accurately determined when observing an optical fiber with transmitted illumination, and it is possible to maintain the optical fiber permanently in a short period of time with high precision. The purpose is to provide a device that can perform this automatically.

<問題点を解決するための手段> 本発明の光フアイバ自動接続装置は、永久持続
される二本の光フアイバの突き合わせ端部をその
対向方向及び当該対向方向に対してそれぞれ直角
な二つの方向に相対移動し得る位置決め駆動装置
と、前記二本の光フアイバの突き合わせ端部を加
熱融着する融着装置と、前記二本の光フアイバの
突き合わせ端部を前記二つの方向から透過照明す
る照明装置と、前記二本の光フアイバの突き合わ
せ端部を挟んでこれら照明装置の透過照明光と対
向状態でそれぞれ配置され且つ前記二本の光フア
イバの突き合わせ端部の透過画像を得る撮像装置
と、前記二本の光フアイバのレンズ作用と前記透
過画像における前記二本の光フアイバのコア・ク
ラツデイング間の屈折率差とによつて生じる輝度
分布からコア・クラツデイング境界の中央をコア
中心として求め、これより前記二つの方向に沿つ
た前記二本の光フアイバのコアの軸ずれを検出す
る画像処理装置と、この画像処理装置からの前記
二つの方向に沿つた前記コアの軸ずれ信号に基づ
いて前記二本の光フアイバのコアが同軸となるよ
うに前記位置決め駆動装置の作動を制御する制御
装置とからなるものである。
<Means for Solving the Problems> The optical fiber automatic connecting device of the present invention connects the abutted ends of two permanently sustained optical fibers in opposite directions and in two directions perpendicular to the opposite directions, respectively. a positioning drive device that can move relative to the two optical fibers, a fusing device that heats and fuses the butt ends of the two optical fibers, and an illumination device that transmits and illuminates the butt ends of the two optical fibers from the two directions. and an imaging device that is arranged opposite to the transmitted illumination light of these illumination devices across the abutted ends of the two optical fibers, and that obtains a transmitted image of the abutted ends of the two optical fibers; From the brightness distribution caused by the lens action of the two optical fibers and the refractive index difference between the core cladding of the two optical fibers in the transmitted image, the center of the core cladding boundary is determined as the core center; an image processing device that detects the axis misalignment of the cores of the two optical fibers along the two directions, and an image processing device that detects the axis misalignment of the cores along the two directions from the image processing device; and a control device that controls the operation of the positioning drive device so that the cores of the two optical fibers are coaxial.

<作用> 位置決め駆動装置に保持された二本の光フアイ
バの突き合わせ端部を照明装置により透過照明
し、これによつて得られる撮像装置からの透過画
像に基づき、画像処理装置が二本の光フアイバの
コアの軸ずれを相異なる二方向から検出し、この
軸ずれ信号に基づいて二本の光フアイバのコアが
同軸となるように制御装置が位置決め駆動装置の
作動を制御したのち、融着装置を作動して二本の
光フアイバの突き合わせ端部を加熱融着させる。
<Operation> The abutting ends of the two optical fibers held by the positioning drive device are illuminated by the illumination device, and based on the transmitted image from the imaging device obtained thereby, the image processing device detects the two beams of light. The axis misalignment of the fiber cores is detected from two different directions, and based on this axis misalignment signal, the control device controls the operation of the positioning drive device so that the cores of the two optical fibers are coaxial, and then the fusion is performed. The device is activated to heat and fuse the butt ends of the two optical fibers.

<実施例> 本発明による接続作業状態を表す第1図に示す
ように、相互に対応する固定台11と可動台(位
置決め駆動装置)12とにはそれぞれ光フアイバ
13,14を固定するための押え金具15が設け
られている。可動台12の押え金具15は光フア
イバ13,14の突き合わせ端部の対向方向及び
この対向方向に対してそれぞれ直角な二つの方向
に摺動自在となつており、本実施例の制御系統を
表す第2図に示すように、前記二つの方向の移動
は可動台12内に組み込まれた二つの駆動モータ
16,17の作動によつて行なわれ、前記対向方
向の移動も図示しない駆動源の作動によつて行な
われるようになつている。この可動台12の押え
金具15の駆動機構は従来からのものをそのまま
使用することができるし、固定台11も可動台1
2と同様な構成としても良いが、要するに二本の
光フアイバ13,14の突き合わせ端部の相対位
置を何らかの駆動源によつて任意に調整できさえ
すれば良いのである。この固定台11と可動台1
2との間には、光フアイバ13,14の突き合わ
せ端部を挟んで対向し且つここの部分を融着接続
する一対の放電電極(融着装置)18が設置さ
れ、更に光源19に接続する一対のライトガイド
20,21の投光端部がそれぞれ前記二つの方向
を向くように位置決めされている。光フアイバ1
3,14の突き合わせ端部を挟んでこれら一対の
ライトガイド20,21の投光端部と対向する一
対の顕微鏡22,23にはそれぞれテレビカメラ
24が装着されており、従つてこれらテレビカメ
ラ24はライトガイド20,21からの透過照明
光により前記二つの方向から光フアイバ13,1
4の突き合わせ端部を観察する状態となる。
<Example> As shown in FIG. 1 showing the state of connection work according to the present invention, a fixed base 11 and a movable base (positioning drive device) 12 corresponding to each other are provided with a structure for fixing optical fibers 13 and 14, respectively. A presser metal fitting 15 is provided. The presser metal fitting 15 of the movable base 12 is slidable in two directions, one in which the butt ends of the optical fibers 13 and 14 face each other and in two directions perpendicular to the opposite direction, representing the control system of this embodiment. As shown in FIG. 2, the movement in the two directions is performed by the operation of two drive motors 16 and 17 built into the movable table 12, and the movement in the opposite direction is also performed by the operation of a drive source (not shown). It is now being carried out by The drive mechanism of the presser fitting 15 of the movable base 12 can be the same as the conventional one, and the fixed base 11 can also be used as the movable base 1.
A configuration similar to 2 may be used, but in short, it is only necessary that the relative positions of the abutting ends of the two optical fibers 13 and 14 can be arbitrarily adjusted by some driving source. This fixed base 11 and movable base 1
A pair of discharge electrodes (fusion splicing device) 18 are installed between the optical fibers 13 and 14 to face each other across the abutting ends of the optical fibers 13 and 14, and to fusion splice these parts, and are further connected to a light source 19. The light emitting ends of the pair of light guides 20 and 21 are positioned so as to face the two directions, respectively. optical fiber 1
A television camera 24 is attached to each of the pair of microscopes 22 and 23 facing the light emitting ends of the pair of light guides 20 and 21 with the abutted ends of the light guides 20 and 21 in between. The optical fibers 13 and 1 are illuminated from the two directions by transmitted illumination light from the light guides 20 and 21.
The butt ends of No. 4 are now observed.

なお、本実施例では顕微鏡22,23とテレビ
カメラ24とを一対設けたが、本発明の他の一実
施例における光フアイバの突き合わせ端部近傍を
表す第3図に示すように、ライトガイド20,2
1のいずれか一方と対向する反射鏡25を傾けて
配置し、一方の顕微鏡22とテレビカメラ24だ
けで光フアイバ13,14の突き合わせ端部を異
なる二方向から観察するようにもできる。又、顕
微鏡22,23の代りに他の周知の拡大光学系を
用いることも当然可能である。
Although a pair of microscopes 22 and 23 and a television camera 24 are provided in this embodiment, as shown in FIG. ,2
By arranging the reflecting mirror 25 facing either one of the optical fibers 13 and 14 at an angle, the abutting ends of the optical fibers 13 and 14 can be observed from two different directions using only one of the microscopes 22 and the television camera 24. Also, it is of course possible to use other well-known magnifying optical systems in place of the microscopes 22 and 23.

前記テレビカメラ24からの出力は画像処理装
置26に入力されるが、透過画像の一例を表す第
4図に示すように、この画像処理装置26は二本
の光フアイバ13,14の前記二つの方向に沿つ
たコア13a,14aの軸ずれx,yを電気的に
検出して演算するものであり、周知のように光フ
アイバ13,14自体がシリンドリカルレンズと
して作用すること、及び光フアイバの輝度分布の
一例を表す第5図に示すように、得られる透過画
像には光フアイバ13,14のコア13a,14
aとクラツデイング13b,14bとの屈折率差
により明暗の差がこれらの境界部分に表れること
を利用しており、この状態は本実施例で設けたモ
ニタテレビジヨン27で観察することができる。
具体的には図示しないテレビ受像器上で垂直なサ
ンプリングラインS1、S2を設定し、このサンプリ
ングラインS1、S2に沿つて走査線の輝度分布を測
定してコア13a,14aとクラツデイング13
b,14bとの境界を検出し、この境界の中央を
コア13a,14aの中心位置としている。な
お、サンプリングS1、S2は光フアイバ13,14
の突き合わせ端部からそれぞれ100〜300マイクロ
メートルの位置に設定されている。サンプリング
ラインS1、S2に沿つた輝度分布は第5図に示すよ
うな分布であつて観測対象であるコア・クラツデ
イングの境界の輝度変化は極めてわずかである。
したがつて個々の境界の読み取りに誤差があつて
も、対称の位置にある2つの境界中央を読み取る
ことによりその誤差を小さくすることができる。
The output from the television camera 24 is input to an image processing device 26, and as shown in FIG. The axis deviation x, y of the cores 13a, 14a along the direction is electrically detected and calculated, and as is well known, the optical fibers 13, 14 themselves act as cylindrical lenses, and the brightness of the optical fibers As shown in FIG. 5, which shows an example of the distribution, the obtained transmission image shows the cores 13a and 14 of the optical fibers 13 and 14.
It takes advantage of the fact that a difference in brightness and darkness appears at the boundary between these parts due to the difference in refractive index between a and the claddings 13b and 14b, and this state can be observed on the monitor television 27 provided in this embodiment.
Specifically, vertical sampling lines S 1 and S 2 are set on a television receiver (not shown), and the brightness distribution of the scanning line is measured along the sampling lines S 1 and S 2 to determine the cores 13a and 14a. 13
The boundary between the cores 13a and 14b is detected, and the center of this boundary is set as the center position of the cores 13a and 14a. Note that sampling S 1 and S 2 are performed using optical fibers 13 and 14.
are set at 100 to 300 micrometers from the butt ends of each. The brightness distribution along the sampling lines S 1 and S 2 is as shown in FIG. 5, and the change in brightness at the boundary of the core cladding, which is the object of observation, is extremely small.
Therefore, even if there is an error in reading each boundary, the error can be reduced by reading the centers of two boundaries located at symmetrical positions.

前記画像処理装置26には前述した駆動モータ
16,17の作動を制御する制御装置28が接続
しており、画像処理装置26からの信号に基づい
て光フアイバ13,14のコア13a,13aの
中心が同軸となるように働くが、実際には画像処
理装置26の検出信号が零となるように機能する
差動回路である。つまり、駆動モータ16,17
が定速モータの場合には、制御装置28は軸ずれ
信号を駆動時間に置き換え、駆動モータ16,1
7の回転量が軸ずれ補正に必要な量と等しくなる
ような時間だけ駆動モータ16,17を回転させ
る。又、駆動モータ16,17がパルスモータの
場合には、制御装置28は軸ずれ信号をパルス数
に置き換え、駆動モータ16,17の回転量が軸
ずれ補正に必要な量と等しくなるようなパルス数
だけ駆動モータ16,17を回転させる。
A control device 28 for controlling the operation of the drive motors 16 and 17 described above is connected to the image processing device 26, and the centers of the cores 13a and 13a of the optical fibers 13 and 14 are controlled based on signals from the image processing device 26. Although it works so that the signals are coaxial, it is actually a differential circuit that functions so that the detection signal of the image processing device 26 becomes zero. In other words, the drive motors 16, 17
is a constant speed motor, the control device 28 replaces the axis deviation signal with a drive time, and the drive motor 16,1
The drive motors 16 and 17 are rotated for a period of time such that the amount of rotation of the motor 7 becomes equal to the amount necessary for correcting the axis deviation. In addition, when the drive motors 16 and 17 are pulse motors, the control device 28 replaces the axis deviation signal with the number of pulses, and generates a pulse such that the amount of rotation of the drive motors 16 and 17 is equal to the amount required for axis deviation correction. The drive motors 16 and 17 are rotated by the number of rotations.

従つて、押え金具15により二本の光フアイバ
13,14をそれぞれ固定台11及び可動台12
上に固定し、これらの突き合わせ端部が相互に近
接するように駆動源を操作したのち、自動運転を
開始する。一方の顕微鏡23を介してテレビカメ
ラ24で観察された画像から、この観察方向に対
して垂直な平面内での光フアイバ13,14のコ
ア13a,14aの軸ずれxが画像処理装置26
によつて検出され、制御装置28はこの値が零と
なるように一方の駆動モータ16を作動する。同
様に他方の顕微鏡22を介してテレビカメラ24
で観察された画像から、この観察方向に対して垂
直な平面内での光フアイバ13,14のコア13
a,14aの軸ずれyが画像処理装置26によつ
て検出され、制御装置28はこの値が零となるよ
うに他方の駆動モータ17を作動する。
Therefore, the two optical fibers 13 and 14 are held on the fixed base 11 and the movable base 12 by the presser metal fittings 15, respectively.
After fixing it on top and operating the drive source so that these abutting ends come close to each other, automatic operation is started. From the image observed by the television camera 24 through one of the microscopes 23, the image processing device 26 calculates the axis deviation x of the cores 13a, 14a of the optical fibers 13, 14 in a plane perpendicular to the observation direction.
, and the control device 28 operates one of the drive motors 16 so that this value becomes zero. Similarly, the television camera 24 is connected to the other microscope 22.
From the image observed at
The axis deviation y of a and 14a is detected by the image processing device 26, and the control device 28 operates the other drive motor 17 so that this value becomes zero.

実験によると、拡大率が200倍の顕微鏡22,
23を用いると共に走査線の数が約千本のテレビ
カメラ24を用いて画像処理を行なつた所、コア
13a,14aの中心を1マイクロメートル以下
の検出精度で位置決めすることが可能であり、平
均で0.5マイクロメートル以下の心ずれに抑えら
れることが判明した。
According to experiments, a microscope with a magnification of 200x22,
23 and a television camera 24 with about 1,000 scanning lines to perform image processing, it was possible to position the centers of the cores 13a and 14a with a detection accuracy of 1 micrometer or less, and the average It was found that misalignment could be suppressed to less than 0.5 micrometers.

前述の状態から可動台12の押え金具15を固
定台11側へ一定量移動させると共に放電電極1
8に通電し、光フアイバ13,14の突き合わせ
端部を放電加熱により融着接続するが、最終的に
接続損失を約0.1dBの低い値にすることができ
る。なお、船舶上での作業の場合には装置全体を
防振台上に設置すると共に各部の寸法形状等を共
振が発生しないように設定すると良い。
From the above-mentioned state, the presser metal fitting 15 of the movable base 12 is moved a certain amount toward the fixed base 11 side, and the discharge electrode 1
8 and the abutting ends of the optical fibers 13 and 14 are fused and spliced by discharge heating, and the final splice loss can be reduced to a low value of about 0.1 dB. In addition, when working on a ship, it is preferable to install the entire apparatus on a vibration isolating table and set the dimensions and shapes of each part so that resonance does not occur.

<発明の効果> 本発明の光フアイバ自動接続装置によると、光
フアイバの突き合わせ端部を透過照明によつて二
方向から撮像し、コアの輪郭から画像処理と制御
装置とによつて二本の光フアイバのコアの中心が
一致するようにこれらを自動的に相対移動させる
ようにしたので、単一モード光フアイバのような
コアの径が小さいものでも極めて高精度にて軸合
わせを行うことができ、作業時間の短縮化及び自
動化と相俟つて船舶上での光ケーブルの接続を高
信頼化させることが可能である。
<Effects of the Invention> According to the optical fiber automatic connection device of the present invention, images of the butt ends of optical fibers are imaged from two directions using transmitted illumination, and two connections are made from the outline of the core using image processing and a control device. Since these are automatically moved relative to each other so that the centers of the cores of the optical fibers coincide, it is possible to align the axis with extremely high precision even for small-diameter cores such as single-mode optical fibers. This makes it possible to shorten work time, automate the process, and improve the reliability of optical cable connections on ships.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光フアイバ自動接続装置
の一実施例の概略構造を表す作業概念図、第2図
はその制御原理を表すブロツク図、第3図は本発
明の他の一実施例の一部を表す配置図、第4図は
透過画像の一例を表す概念図、第5図は光フアイ
バの輝度分布を表すグラフである。 又、図中の符号で11は固定台、12は可動
台、13,14は光フアイバ、13a,14aは
コア、13b,14bはクラツデイング、15は
押え金具、16,17は駆動モータ、18は放電
電極、19は光源、20,21はライトガイド、
22,23は顕微鏡、24はテレビカメラ、25
は反射鏡、26は画像処理装置、28は制御装
置、x,yはコアの軸ずれである。
FIG. 1 is a working conceptual diagram showing the schematic structure of one embodiment of an automatic optical fiber connection device according to the present invention, FIG. 2 is a block diagram showing its control principle, and FIG. 3 is a diagram showing another embodiment of the present invention. FIG. 4 is a conceptual diagram showing an example of a transmitted image, and FIG. 5 is a graph showing the brightness distribution of the optical fiber. Further, in the figure, 11 is a fixed base, 12 is a movable base, 13 and 14 are optical fibers, 13a and 14a are cores, 13b and 14b are claddings, 15 is a presser metal fitting, 16 and 17 are drive motors, and 18 is a A discharge electrode, 19 a light source, 20 and 21 a light guide,
22 and 23 are microscopes, 24 is a television camera, 25
is a reflecting mirror, 26 is an image processing device, 28 is a control device, and x and y are axis deviations of the core.

Claims (1)

【特許請求の範囲】[Claims] 1 永久接続される二本の光フアイバの突き合わ
せ端部をその対向方向及び当該対向方向に対して
それぞれ直角な二つの方向に相対移動し得る位置
決め駆動装置と、前記二本の光フアイバの突き合
わせ端部を加熱融着する融着装置と、前記二本の
光フアイバの突き合わせ端部を前記二つの方向か
ら透過照明する照明装置と、前記二本の光フアイ
バの突き合わせ端部を挟んでこれら照明装置の透
過照明光と対向状態でそれぞれ配置され且つ前記
二本の光フアイバの突き合わせ端部の透過画像を
得る撮像装置と、前記二本の光フアイバのレンズ
作用と前記透過画像における前記二本の光フアイ
バのコア・クラツデイング間の屈折率差とによつ
て生じる輝度分布からコア・クラツデイング境界
の中央をコア中心として求め、これより前記二つ
の方向に沿つた前記二本の光フアイバのコアの軸
ずれを検出する画像処理装置と、この画像処理装
置からの前記二つの方向に沿つた前記コアの軸ず
れ信号に基づいて前記二本の光フアイバのコアが
同軸となるように前記位置決め駆動装置の作動を
制御する制御装置とからなる光フアイバ自動接続
装置。
1. A positioning drive device capable of relatively moving the abutting ends of two permanently connected optical fibers in opposing directions and in two directions perpendicular to the opposing directions, and the abutting ends of the two optical fibers. a fusion device that heats and fuses the two optical fibers; a lighting device that transmits and illuminates the butt ends of the two optical fibers from the two directions; and a lighting device that holds the butt ends of the two optical fibers in between. an imaging device that is arranged to face the transmitted illumination light of and obtains a transmitted image of the abutting ends of the two optical fibers; a lens action of the two optical fibers and the two lights in the transmitted image; From the brightness distribution caused by the difference in refractive index between the core and cladding of the fibers, the center of the boundary between the core and cladding is determined as the core center, and from this, the axis misalignment of the cores of the two optical fibers along the two directions is determined. an image processing device that detects the image processing device; and an actuation of the positioning drive device so that the cores of the two optical fibers are coaxial based on axis deviation signals of the cores along the two directions from the image processing device. An optical fiber automatic connection device consisting of a control device that controls the
JP996083A 1983-01-26 1983-01-26 Automatic connecting device for optical fiber Granted JPS59136708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP996083A JPS59136708A (en) 1983-01-26 1983-01-26 Automatic connecting device for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP996083A JPS59136708A (en) 1983-01-26 1983-01-26 Automatic connecting device for optical fiber

Publications (2)

Publication Number Publication Date
JPS59136708A JPS59136708A (en) 1984-08-06
JPH0352604B2 true JPH0352604B2 (en) 1991-08-12

Family

ID=11734503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP996083A Granted JPS59136708A (en) 1983-01-26 1983-01-26 Automatic connecting device for optical fiber

Country Status (1)

Country Link
JP (1) JPS59136708A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219707A (en) * 1983-05-27 1984-12-11 Fujikura Ltd Method for aligning core of single mode optical fiber
EP0216307A3 (en) * 1985-09-26 1989-08-02 Siemens Aktiengesellschaft Mechanical fixture for positioning two optical-fibre ends
JP2590060B2 (en) * 1985-12-03 1997-03-12 住友電気工業株式会社 Automatic connection method of multi-core optical fiber
JPH0746043B2 (en) * 1987-03-11 1995-05-17 住友電気工業株式会社 Image processing device for optical fiber structure measurement
EP0830627A1 (en) * 1995-06-07 1998-03-25 Siemens Aktiengesellschaft Splicing device for welding optical fibres
JP4610524B2 (en) * 2006-06-20 2011-01-12 株式会社フジクラ Optical fiber fusion splicing method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447671A (en) * 1977-09-21 1979-04-14 Nippon Telegr & Teleph Corp <Ntt> Monitoring device for axial alignment of optical fibers
JPS54126555A (en) * 1978-03-24 1979-10-01 Nec Corp Automatic coupler of optical fibers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447671A (en) * 1977-09-21 1979-04-14 Nippon Telegr & Teleph Corp <Ntt> Monitoring device for axial alignment of optical fibers
JPS54126555A (en) * 1978-03-24 1979-10-01 Nec Corp Automatic coupler of optical fibers

Also Published As

Publication number Publication date
JPS59136708A (en) 1984-08-06

Similar Documents

Publication Publication Date Title
JP3500850B2 (en) Method and apparatus for observing butted portion of ribbon-type optical fiber
EP0697117B1 (en) Controlled splicing of optical fibers
US7077579B2 (en) Low profile splicing stage for optical fiber waveguides
SE511805C2 (en) Method and apparatus for determining fusion current for welding optical fibers together, and using the method and apparatus respectively
JPH0352604B2 (en)
JPS59219707A (en) Method for aligning core of single mode optical fiber
JP3654904B2 (en) Connecting optical fiber with twin core and fiber with single core
JPS6215843B2 (en)
JPH0534646B2 (en)
JPH0360086B2 (en)
KR940004348A (en) Assembly device for controlling low connection loss of optical connector and its control method
JPH0625809B2 (en) Optical fiber core observation device
JP3142751B2 (en) Optical fiber fusion splicer
KR102064838B1 (en) Fusion splicer for optical fiber
JP3273489B2 (en) Core alignment method for optical fiber
JP3642849B2 (en) Fusion splicing method of optical fiber
JP2938317B2 (en) How to align optical fiber with V-groove
JPH0233107A (en) Welding connection device for optical fiber
JP2888730B2 (en) Optical fiber observation method and observation apparatus
JP3366728B2 (en) Optical fiber observation equipment
JPH01147506A (en) Fusion splicing method for constant polarization optical fiber
JP2842627B2 (en) Multi-core fusion splicing method for optical fibers
SU1765795A1 (en) Device for aligning optic fibers
JPH05203827A (en) Method for inspecting juncture of multiple optical fiber
JPH0233108A (en) Connecting method for optical fiber