JPH0352471B2 - - Google Patents

Info

Publication number
JPH0352471B2
JPH0352471B2 JP58165926A JP16592683A JPH0352471B2 JP H0352471 B2 JPH0352471 B2 JP H0352471B2 JP 58165926 A JP58165926 A JP 58165926A JP 16592683 A JP16592683 A JP 16592683A JP H0352471 B2 JPH0352471 B2 JP H0352471B2
Authority
JP
Japan
Prior art keywords
complex
formula
yield
acid
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58165926A
Other languages
Japanese (ja)
Other versions
JPS6058985A (en
Inventor
Junko Shigehara
Hidetoshi Tsuchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seisan Kaihatsu Kagaku Kenkyusho
Original Assignee
Seisan Kaihatsu Kagaku Kenkyusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seisan Kaihatsu Kagaku Kenkyusho filed Critical Seisan Kaihatsu Kagaku Kenkyusho
Priority to JP58165926A priority Critical patent/JPS6058985A/en
Publication of JPS6058985A publication Critical patent/JPS6058985A/en
Publication of JPH0352471B2 publication Critical patent/JPH0352471B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は一般式 (ここでnは1〜20、mは1〜6の整数および
Xはハロゲン原子)で示される水酸基を有する新
規な鉄−5,10,15,20−テトラ〔α,α,α,
α−o−(置換アミド)フエニル〕ポルフイン錯
体に関する。 有機溶媒中室温で酸素錯体を生成できる鉄−ポ
ルフイン錯体については従来多く報告されてい
る。その例としてはJ.P.Collman,Accounts of
Chemical Reseach,10,265(1977)あるいはF.
Basolo,B.M.HoffmanおよびJ.A.Ibers,ibid.,
8,384(1975).などがある。しかし、これらの
鉄−ポルフイン錯体は少量でも水が共存すると直
ちに酸化され、酸素錯体を生成できない欠点を有
する。しかもこれら錯体は水に溶解しないという
問題もある。特に室温条件下で無水の非プロトン
性溶媒中で非常に安定な酸素錯体が生成できると
告報されている鉄()−5,10,15,20−テト
ラ〔α,α,α,α−o−(ピバラミド)フエニ
ル〕ポルフイン錯体(J.P.Collman他、Journal
of the American Chemical Society,97,1427
(1975)参照)はそのままでは水と接触すると直
ちに酸化されるが、適当なリン脂質等で形成され
るリポソーム膜中に埋め込むことで、水中室温で
可逆的な酸素の吸脱着を行なえる鉄−ポルフイン
錯体のリポソーム分散水溶液が得られることが、
E.Hasegawa他、Biochemical and Biophysical
Research Communications,105,1416(1982).
に報告された。 本発明の目的は、離溶性の鉄−テトラフエニル
ポルフイン誘導体を酸素吸脱着機能を保持したま
ま水溶化させうるか、もしくは少量の界面活性
剤、リン脂質、合成水溶性高分子、多糖類、水溶
性タンパク質などを含む水溶液に容易に均一溶解
させうる様な改良が行なわれた新規な鉄−テトラ
フエニルポルフイン錯体を提供することである。
さらに、天然のリン脂質などには不飽和結合を有
するものが少くないが、これらが形成するリポソ
ーム状集合体などに一般式()の錯体を包理さ
せたのち、光照射などの適当な手段で、リン脂質
部及び錯体()の不飽和結合の開裂・架橋によ
り、包理状態を安定化できる特徴を持つ。 一般式の化合物は、中心鉄が2価の状態で適
当な塩基性配位子、好ましくは置換イミダゾール
配位子の存在下に均一水溶液中室温で酸素錯体を
形成し、可逆的に酸素を吸脱着できる点で非常に
有用な酸素吸脱着剤もしくは酸素運搬体である。
以上の様な理由から、本発明の一般式で示され
る水酸基を有する新規な鉄−テトラフエニルポル
フイン錯体は重要な合成中間体としての価値を持
つ。 式の新規な錯体は本発明によれば式 (ここでnは1〜20の整数)で示されるカルボ
ン酸クロリドとJ.P.Collman他、Journal of the
American Chemical Society,97,1427(1975)
に報告されている式 で示される5,10,15,20−テトラ(α,α,
α,α−o−アミノフエニル)ポルフイン(以下
H2TamPPと省略する。)を塩基の存在下に反応
させ、得られた式 (ここでnは先に定義したと同様である)で示
される化合物をアニソール存在下、無水塩化アル
ミニウムによりベンジル基を除去させ、得られた
(ここでnは先に定義したと同様である。)で
示される化合物をピリジン存在下臭化第一鉄と反
応させ、適当な鉱酸、例えば48%臭化水素酸、濃
塩酸、ヨウ化水素酸などで処理することで臭素イ
オンまたは塩素イオンもしくはヨウ素イオンを配
位した末端ヒドロキシ型の錯体を得、これに無水
イタコン酸を作用させて末端カルボン酸型錯体と
し、トリエチルアミンとクロルギ酸エチルで処理
後、さらに式で示される末端アミノオリゴエチ
レングリコール(ここにmは既述の定義と同様で
ある)を反応させることに H2N(−CH2CH2O)−nH () より、目的の一般式で示される新規な錯体を合
成できる。 一般式の出発原料は以下の方法で合成した。
ω−ベンジルオキシアルキルハライドをGeorge
R.Nowkome他、Synthesia,1975,517.の報告
に従つて生成させた2−メチルプロピオン酸のジ
リチウムアニオンと初め低温(−70℃〜20℃)で
そののち昇温して30〜45℃で反応させた。次に反
応混合物を冷希塩酸で分解し、溶媒で抽出した粗
生成物を非極性溶媒、例えば石油エーテル、n−
ヘキサン、n−ヘプタン中で再結晶して、ω−ベ
ンジルオキシ−2,2−ジメチルアルカン酸を無
色結晶として得た。これを非極性溶媒、好ましく
はベンゼンまたは四塩化炭素中あるいは無溶媒で
過剰量の塩化チオニルと反応させたのち、減圧濃
縮して一般式で示されるω−ベンジルオキシ−
2,2−ジメチルアルカン酸クロリドを得た。原
料の式 (ここで、nは先に定義したと同義であり、
X′は塩素または臭素を表わす。)で示されるω−
ベンジルオキシアルキルハライドは、n=1、X
=Clの場合はA.J.Hill他、Journal of the
Amercan Chemical Socioty,48,257(1926)
の報告によつて、n=2、X′=Brの場合はP.
Cresson,Bulletin de la Societe Chimique de
France,1964,2629の報告に従つて合成できる。
また、n=3〜20、X′=Brについてはα,ω−
ジブロモアルカンを1当量のナトリウムベンジル
オキシドとベンゼン中還流反応することで得られ
る。 一般式のカルボン酸クロリドの過剰量を公知
物質であるH2TamPPの無水非プロトン性溶媒好
ましくはテトラヒドロフラン、ジクロルメタン、
クロロホルム、N,N−ジメチルホルムアミドま
たはアセトン溶液中で過剰のトリエチルアミンま
たはピリジン存在下に0℃から室温で反応させた
のち、水に注ぎクロロホルムで抽出し、分離した
抽出液を蒸発させて得た残渣をシリカゲルカラム
クロマトグラフイーにより精製することで一般式
で示される化合物が得られる。 この一般式で示されるベンジルエーテル体の
ベンジル基を除去するために、ジクロルメタン:
ニトロメタンの混合溶媒中で過剰量のアニソール
存在下、過剰の無水塩化アルミニウムと−5℃な
いし30℃、好ましくは15℃ないし25℃で2時間な
いし12時間反応させた。反応混合物を氷水中に注
ぎクロロホルムで抽出し、抽出液を水洗ついで4
%炭酸水素ナトリウム水溶液で洗滌後、分離した
クロロホルム層を芒硝で乾燥し、クロロホルムを
蒸発させて得た残渣をベンゼンまたはジクロルメ
タン−ベンゼンの混合溶媒から再結晶した。 得られた一般式の化合物に鉄を導入するに
は、J.P.Collman他、Journal of the American
Chemical Society,97,1427(1975)の報告の方
法に従い、窒素ガス雰囲気下で還流した無水テト
ラヒドロフラン中ピリジンの存在下で過剰の臭化
第一鉄と反応させた。アルミナ又はシリカゲルに
よるカラムクロマトグラフイーで精製し、得られ
た溶出溶液を塩酸または臭化水素酸あるいはヨウ
化水素酸で処理すれば相当する塩素または臭素あ
るいはヨウ素を対イオンとして持ち、中心鉄が3
価の状態である末端ヒドロキシ型の錯体が得られ
る。これに過剰量の無水イタコン酸を常温にてク
ロロホルム中ジメチルアミノピリジン存在下に反
応し、対イオンと同様のXを持つハロゲン化水素
酸の1%水溶液で処理し、溶媒をメタノールに置
換して、セフアデツクスLH−60カラムにてメタ
ノールで展開、末端カルボン酸型の錯体を得る。
これに過剰量のトリエチルアミン及びクロルギ酸
メチルを無水DMF中の0〜5℃にて作用させ、
次に式()の片末端アミノオリゴエチレングリ
コールの過剰量を作用させ、セフアデツクスLH
−60カラムにてメタノールまたは水にて展開、目
的の式()の錯体が得られる。 この錯体を水系媒質(例えば水、緩衝液(PH4
ないしPH10)、生理食塩水など)に溶解し、塩基
性配位子好ましくは置換イミダゾール配位子を1
ないし1000倍当量、好ましくは5ないし200倍当
量加えて、窒素をバブルして脱酸素した水溶液と
した。中心鉄を3価から2価へ還元するには、1
ないし10倍量の亜ニチオン酸ナトリウムかまたは
水素化ホウ素ナトリウムもしくはアスコルビン酸
を加える方法、パラジウム黒またはパラジウム炭
素触媒存在下水素ガスにより還元する方法。E.
Hasegawa他、Biochemical and Biophysical
Research Communications,104,793(1982)
に報告した酵素系による還元方法などが使用でき
る。還元により得られた鉄()錯体の水溶液は
室温で酸素を吹き込むと酸素錯体となり、これに
窒素を吹き込むと元の鉄()錯体へ戻ることか
ら可逆的な酸素の吸脱着を確認した。 以上の様に本発明の一般式で表わされる新規
な重合基を有する非イオン性親疎水性鉄−テトラ
フエニルポルフイン錯体は有用な酸素吸着剤とし
て作用する。 本発明を以下の実施例によりさらに詳細に説明
するが、これは本発明を限定するものではない。 参考例 1 10−ベンジルオキシデカニルブロミドは、1,
10−ジブロモデカン100gと当量のナトリウムベ
ンジルオキシドをテトラヒドロフラン中で還流反
応させ、沈殿を過し濃縮後減圧蒸留した。収量
46g、沸点185〜189℃/3mmHg。 George R.Newkome他、Synthesis,1975
517.の報告に従つて、窒素雰囲気下、テトラヒド
ロフラン中でリチウムジイソプロピルアミドによ
り、2−メチルプロピオン酸のリチウムジアニオ
ンを発生させ、−20℃で10−ベンジルオキシデカ
ニルブロミド18gを滴下後、45℃で2時間反応さ
せた。冷希塩酸中に反応混合物を加え、エーテル
で抽出し、分離したエーテル層を希塩酸、次いで
水で洗い、分離して芒硝で乾燥させた。蒸発乾固
して得た粗油状物を石油エーテルから再結晶さ
せ、無色結晶の12−ベンジルオキシ−2,2−ジ
メチルドデカン酸を収量8.4g、収率46%で得た。
融点53〜55℃。元素分析:C21H34O3として計算
値(%);C75.40,H10.25、分析値(%):
C75.64,H10.09。プロトン核磁気共鳴スペクト
ル(CDCl3)δppm:1.18(6H,s,−CH3)、1.26
(16H,s,−CH2−)、3.46(2H,t,PhCH2O
CH2CH2−)、4.51(2H,s,PhCH2 O−)、7.33
(5H,s,フエニルプロトン)。 得られたこのカルボン酸3.34gを無水ベンゼン
5mlに溶解し塩化チオニル1.2mlを加え室温で12
時間反応させ、減圧下乾固して無色オイルの12−
ベンジルオキシ−2,2−ジメチルドデカン酸ク
ロリドを収量3.53gで得た。赤外吸収スペクトル
(CCl4)ν1790cm-1(【式】)。 プロトン核磁気共鳴スペクトル(CDCl3
δppm:1.28(22H,s,−CH3 及び−CH2 −)、
3.46(2H,t,PhCH2OCH2 CH2−)、4.50(2H,
s,PhCH2 O−)、7.32(5H,s,フエニルプロ
トン)。 実施例 1 5,10,15,20−テトラ(α,α,α,α−o
−アミノフエニル)ポルフイン(以下H2TamPP
と省略する。)はJ.P.Collman他、Journal of the
American Chemical Society,97,1427(1975)
の文献に従つて合成した。 H2Tampp1.0gを無水テトラヒドロフラン(40
ml)溶液とし、ピリジン0.81mlを加え室温で参考
例1で得た12−ベンジルオキシ−2,2−ジメチ
ルドデカン酸クロリド3.53gを滴下し、3時間反
応させた。エーテルで抽出し水洗ののち、分離し
たエーテル層を芒硝で乾燥後、減圧乾固して得た
粗生成物をベンゼン−エーテルの混合溶媒(体積
比15:1)でシリカゲルカラムクロマト精製して
褐色油状物として5,10,15,20−テトラ〔α,
α,α,α−o−(12−ベンジルオキシ−2,2
−ジメチルドデカンアミド)フエニル〕ポルフイ
ンを収量1.69g、収率60%で得た。 赤外吸収スペクトル(CCl3)ν3440,3330,
3000,2930,2860,1680,1580,1510,1450,
1300,1100,970,910,700cm-1。 プロトン核磁気共鳴スペクトル(CDCl3
δppm:(2.6(2H,s,ポリフイリン環内N
H)、−0.23(24H,s,−C(CH3 2CONH−)、
3.46(8H,t,PhcH2OCH2 CH2−)、4.50(8H,
s,PhCH2 O−)、7.12(4H,s,
【式】)、7.32(20H,s)、8.82(8H, s)。 5,10,15,20−テトラ〔α,α,α,α−o
−(12−ベンジルオキシ−2,2−ジメチルドデ
カンアミド)フエニル〕ポルフイン1.68gを無水
のジクロルメタン25mlとニトロメタン25mlの混合
溶媒溶液とし、アニソール2mlを加えたのち無水
塩化アルミニウム2gを加え室温で4時間反応さ
せた。氷水100ml中に注ぎ、過剰の塩化アルミニ
ウムを分解させ、ジクロルメタンで抽出し、分離
して得たジクロルメタン層を水洗、次いで10%炭
酸水素ナトリウム水溶液で洗い、分離して芒硝で
乾燥し減圧下濃縮した。残渣をベンゼンから再結
晶させ、紫色板状結晶の5,10,15,20−テトラ
〔α,α,α,α−o−(12−ヒドロキシ−2,2
−ジメチルドデカンアミド)フエニル〕ポルフイ
ンを収量1.10g、収率80%で得た。融点127〜
129.5℃。 磁場脱離マススペクトル:1579(M+1)+ 赤外吸収スペクトル(KBr)ν3600〜3350(幅
広い)、3440,3330,2940,2860,1690,1585,
1515,1450,1302,1060,970,810,770,740cm
-1。 プロトン核磁気共鳴スペクトル(CDCl3
δppm:−2.59(2H,s,ピロールN)、−0.22
(24H,s,−C(CH3 2−CONH−)、3.64(8H,
t,HOCH2 CH2−)、7.15(4H,s)、7.36〜8.73
(16H,m)、8.82(8H,s)。なおベンジル基に
由来する4.50(8H,s)及び7.32(20H,s)の吸
収は消失した。 元素分析:C100H138N8O8として計算値(%);
C76.00、H8.80、N7.09:分析値(%);C75.62、
H8.90、N7.09。 5,10,15,20−テトラ〔α,α,α,α−o
−(12−ヒドロキシ−2,2−ジメチルドデカン
アミド)フエニル〕ポルフイン0.65gを無水テト
ラヒドロフラン(50ml)溶液とし、ピリジン0.3
mlを加え窒素置換操作ののち、臭化第一鉄・4水
和物2.0gを加え窒素下3時間還流反応させた。
クロロホルムで抽出し、水洗ののち分離したクロ
ロホルム層を芒硝で乾燥し減圧で溶媒を留去して
得た残渣をクロロホルム/メタノールの混合溶媒
(体積比9/1)を用いアルミナカラムクロマト
により精製した。溶出溶液を48%臭化水素酸2ml
と撹拌ののち芒硝で乾燥し蒸発乾固して黒紫色固
体のプロモ{5,10,15,20−テトラ〔α,α,
α,α−o−(12−ヒドロキシ−2,2−ジメチ
ルドデカンアミド)フエニル〕ポルフイナト}鉄
()を収量0.38g、収率54%で得た。融点76〜
79℃。 磁場脱離マススペクトル:1713(M+1)+ただ
し分子式C100H136N8O8FeBr=1712として。 赤外吸収スペクトル(KBr):ν3600〜3150
(broad),3440,2930,2860,1690,1580,
1510,1440,1300,1075,1000,805,760,715
cm-1。 元素分析:C100H136N8O8・FeBrとして計算値
(%);C70.13、H8.00、N6.54、分析値(%);
C70.37、H8.40、N6.63。 この末端ヒドロキシ型錯体200mgを5gの無水
イタコン酸、1.5gのジメチルアミノピリジンと
ともに無水クロロホルム中で、常温にて10時間反
応、1%臭化水素酸水で洗浄して溶媒をメタノー
ルに置換し、セフアデツクスLH−60ゲルカラム
をメタノールにて展開主成分を分取して末端カル
ボン酸型の錯体を収率69%で得た。 元素分析:C120H152N8O20・FeBrとして 計算値(%);C66.66、H7.08、N5.18、 分析値(%);C66.70、H7.06、N5.21 赤外吸収スペクトル(KBr):ν3600〜3200
(broad)、3440,3020,2950,2930,2860,
1770,1725,1705,1650,1590,1520,1450,
1180,1015,820,770cm-1。特にイタコン酸のエ
ステル、−COOH,C=CH2に基く吸収が各々
1725,1705.1650cm-1に見られた。なお、1705cm
-1の吸収帯は、トリエチルアミン添加により1600
cm-1(broad)に移動した。 この錯体全量を、2mlのトリエチルアミン及び
2mlのクロルギ酸エチルとDMF中0〜5℃にて
1.5時間反応させ、さらに5gの片末端アミノジ
エチレングリコールと10時間反応させ、上記と同
様のカラム分離を行つて、式()においてn=
10、m=2の目的錯体を72%の収率で得た。 元素分析:C136H188N12O24・FeBrとして 計算値(%);C65.06、H7.55、N6.69、 分析値(%);C65.02、H7.59、N6.65 赤外吸収スペクトル(KBr);上述の末端カル
ボン酸のそれと比較して、末端−OHにより
ν3600〜3200cm-1(broad)の吸収が深くなり、ま
た第二級アミドに基くνNH3320cm-1、第及び
第アミド吸収帯1640,1555cm-1、オキシエチレ
ン単位C−O−Cに基く1200cm-1(broad)の出
現が認められ、また1705cm-1の−COOH吸収帯が
消失した。 こうして得た錯体は水不溶性であるが、例えば
卵黄レシチンとともに水溶液中で撹拌すると均一
透明な溶液となる。 参考例 2 1,18−ジブロモオクタデカン例えばLester
FriedmanおよびArnon Shani,Journal of the
American Chemical Society,96,7101〜7103
(1974)の報告に従つて合成できる。参考例1と
同様の方法により、1,10−ジブロモデカンに代
え1,18−ジブロモオクタデカン42gから18−ベ
ンジルオキシオクタテカニルブロミド18.3g(収
率41%)を得た。この18gを2−メチルプロピオ
ン酸のリチウムジアニオン(当量モル)と反応し
参考例1と同様の抽出後処理ののち得た粗油状物
をベンゼン:エーテルの混合溶媒(体積比15:
1)を用いたシリカゲルカラムクロマトグラフイ
ーで精製して無色結晶の20−ベンジルオキシ−
2,2−ジメチルエイコサン酸を収量5.7g、収
率31%で得た。融点72〜73℃。 元素分析:C29H50O3として計算値(%);C,
77.97、H,11.28、分析値(%);C78.25、
H11.21。 赤外吸収スペクトル(KBr)ν:2930,2860,
1705,1470,1130,1120,950,740,700cm-1。 プロトン核磁気共鳴スペクトル(CDCl3
δppm:1.18(6H,s,−C(CH3 2COOH)、1.25
(32H,brs PhCH2OCH2(CH2 16CH2−)、3.46
(2H,t,J=6.5Hz、PhCH2OCH2CH2 −)、
4.50(2H,s,PhCH2 O−)、7.33(5H,m,ベン
ゼン環プロトン)。 得られたこのカルボン酸5.2gを塩化チオニル
4mlと室温で4時間反応させ減圧下乾固して無色
固体の20−ベンジルオキシ−2,2−ジメチルエ
イコサン酸クロリドを収量5.6gを得た。 赤外吸収スペクトル(CCl4)ν:2930,2860,
1790,1460,1365,1100,905,700cm-1。 実施例 2 得られた20−ベンジルオキシ−2,2−ジメチ
ルエイコサン酸クロリド5.6gをH2TamPP1.3g
の無水テトラヒドロフラン(50ml)とピリジン
(1.5ml)の溶液と実施例1と同様の条件で反応、
後処理精製して、5,10,15,20−テトラ〔α,
α,α,α−o−(20−ベンジルオキシ−2,2
−ジメチル−エイコサンアミド)フエニル〕ポル
フインを収量3.70g、収率80%で得た。融点33〜
35℃。 元素分析:C160H230N8O8として計算値(%);
C80.29、H9.68、N4.68、分析値(%);C80.11,
H9.88、N4.77。 赤外吸収スペクトル(KBr)ν:3440,2920,
2850,1690,1580,1510,1450,1360,1300,
1100,965,800,750cm-1。 プロトン核磁気共鳴スペクトル(CDCl3
δppm:−2.60(2H,s,ポルフイリン環内N
)、−0.22(24H,s,−C(CH3 2−CONH
−)、3.45(8H,t,J=6.4Hz,PhCH2OCH2
CH2−)、4.49(8H,s,PhCH2 O−)、7.13(4H,
s,【式】)、7.31 (20H,s,【式】)、8.76 (4H,d,J=7Hz、【式】)、 8.82(8H,s,ポルフイン環β−位プロトン) 5,10,15,20−テトラ〔α,α,α,α−o
−(20−ベンジルオキシ−2,2−ジメチルエイ
コサンアミド)フエニル〕ポルフイン3.5gを実
施例1と同様の方法でジクロルメタン(30ml)、
ニトロメタン(15ml)及びアニソール(3ml)の
混合溶媒中で無水塩化アルミニウム6gと反応後
処理、抽出操作を行ない減圧下乾固して得た残渣
をシリカゲルカラムクロマトグラフイー(溶媒ク
ロロホルム/メタノール=15/1)して精製し、
ジクロルメタンとメタノールの混合溶媒から再結
晶した。赤褐色針状結晶の5,10,15,20−テト
ラ〔α,α,α,α−o−(20−ヒドロキシ−2,
2−ジメチルエイコサンアミド)フエニル〕ポル
フインを収量1.89g、収率64%で得た。融点88〜
90℃。 赤外吸収スペクトル(KBr)ν:3430,3320,
2920,2860,1675,1580,1510,1470,1450,
1300,970,805,760,720cm-1。 プロトン核磁気共鳴スペクトル(CDCl3
δppm:−2.60(2H,s,ポルフイリン環内N
)、−0.21(24H,s,−C(CH3 2−CONH
−)、3.69(8H,t,J=6.4Hz,HOCH2 CH2−,
7.14(4H,s,アミド基−CON−)、8.73(4H,
d,J=7Hz,【式】)、8.82 (2H,s,ポルフイリン環β位プロトン)。 元素分析:C132H202N8O8として計算値(%);
C78.14、H9.98、N5.52、分析値(%);C78.42、
H10.20、N5.39。 5,10,15,20−テトラ〔α,α,α,α−o
−(20−ヒドロキシ−2,2−ジメチルエイコサ
ンアミド)フエニル〕ポルフイン1.06gを実施例
1と同様の方法で反応し後処理、シリカゲルカラ
ムクロマトグラフイー(クロロホルム/メタノー
ル=15/1の混合溶媒)により精製し、さらにジ
クロルメタン/メタノールの混合溶媒から再結晶
させた。黒紫色結晶のブロモ{5,10,15,20−
テトラ〔α,α,α,α−o−(20−ヒドロキシ
−2,2−ジメチルエイコサンアミド)フエニ
ル〕ポルフイナト}鉄()を収量0.82g、収率
73%で得た。融点49〜50℃。 赤外吸収スペクトル(KBr)ν:3430,2930,
2860,1690,1580,1510,1460,1440,1300,
1000,800,760,720cm-1。 元素分析:C132H200N8O8FeBr:1/2CH2Cl2
として計算値(%);C72.16、H9.19、N5.08、分
析値(%);C72.41、H9.09、N4.92。 この末端ヒドロキシ型錯体200mgを、実施例1
と同様に無水イタコン酸と反応させ、相当する末
端カルボン酸型錯体を収率76%で得た。 元素分析:C152H216N8O20・FeBrとして計算値
(%);C69.92、H8.34、N4.29、分析値(%);
C69.90、H8.35、N4.33 IRスペクトル(KBr);実施例1に記載の類似
の末端カルボン酸型錯体のそれと酷似しており、
特にイタコン酸のエステル、−COOH、C=CH2
に基く吸収が各々1720,1705,1650cm-1に認めら
れた。 この錯体全量を実施例1と同様に、但し片末端
アミノテトラエチレングリコール55.0gを用い、
式()においてn=18、m=4の目的錯体を収
率82%で得た。 元素分析:C184H284N12O32・FeBrとして計算
値(%):C66.73、H8.64、N5.07、分析値
(%);C66.70、H8.66、N5.10 IRスペクトル(KBr);実施例1に記載の類似
の式()においてn=10、m=2の錯体スペク
トルに酷似し、特に末端−OHによりν3600〜
3200cm-1(broad)の吸収が深くなり、また第二
級アミドに基くνN−H、第及び第アミド吸
収帯が各々3220,1640,1550cm-1に認められ、オ
キシエチレン単位C−O−Cに基く1200cm-1
(broad)の出現が確認された。 こうして得た錯体は実施例1と同様の溶解性を
示した。 参考例 3 ベンジルオキシメチルクロリドはA.J.Hill他、
Journal of the American Chemical Society,
48,257(1926)の報告に従つて合成し、この
10.96gを参考例1と同様の方法により当量の2
−メチルプロピオン酸のリチウムジアニオンと反
応させ、n−ヘキサンから再結晶精製し、3−ベ
ンジルオキシ−2,2−ジメチルプロピオン酸を
収量7.75g、収率53%で得た。融点72〜74℃。 赤外吸収スペクトル(KBr)ν:3400〜2400
(broad)、1700,1480,1320,1250,1120,940,
740,700cm-1。 プロトン核磁気共鳴スペクトル(CDCl3
δppm:1.23(6H,s,−CH2C(CH3 2COOH)、
3.47(2H,s,PhCH2OCH2 C(CH32−)、4.55
(2H,s,PhCH2 O−)、7.31(5H,s,フエニ
ル環プロトン)。 元素分析:C12H16O3として計算値(%);
C69.20、H7.75、分析値(%);C69.43、H7.80。 得られたカルボン酸3.0gを塩化チオニル4ml
と参考例1と同様の方法で反応させ、3−ベンジ
ルオキシ−2,2−ジメチルプロピオン酸クロリ
ドを油状物として定量的に得た。 赤外吸収スペクトル(CCl4)ν:1830,1790,
1460,1100,915,700cm-1。 実施例 3 3−ベンジルオキシ−2,2−ジメチルプロピ
オン酸クロリド3.4gを実施例1と同様の方法で
H2Tampp1.1gと反応させたのち、溶媒としてク
ロロホルム/エーテル=15/1を用いてシリカゲ
ルカラムクロマトグラフイーで精製し、ジクロル
メタン−メタノール混合溶媒から再結晶させ、
5,10,15,20−テトラ〔α,α,α,α−(3
−ベンジルオキシ−2,2−ジメチルプロパンア
ミド)フエニル〕ポルフインを収量1.92g、収率
82%で得た。融点170〜172℃。 赤外吸収スペクトル(KBr)ν:3440,3320,
2970,2860,1690,1605,1583,1510,1450,
1310,1155,1095,1080,970,800,755,740,
700cm-1。 プロトン核磁気共鳴スペクトル(CDCl3
δppm:−2.53(2H,s,ポルフイリン環内N
H)、0.05(24H,s,−C(CH3 2−CONH−)、
2.72(8H,s,PhCH2OCH2 )、3.29(8H,s,
PhCH2 OCH2−)6.46〜6.56(8H,m,
【式】)、6.88〜6.96(12H,m, 【式】)、8.70(8H,s,ポルフ イリン環β−位プロトン)、8.15(4H,s,
【式】)、8.80(4H,d,J=7.3 Hz,【式】)、7.33〜7.90(12H, m,【式】)。 元素分析:C92H90N8O8として計算値(%);
C76.96,N6.32,H7.81、分析値(%);C76.81,
H6.41,N7.72。 実施例1と同様の方法で5,10,15,20−テト
ラ〔α,α,α,α−o−(3−ベンジルオキシ
−2,2−ジメチルプロパンアミド)フエニル〕
ポルフイン1.5gを脱ベンジル基反応させ、ベン
ゼンからの再結晶により、5,10,15,20−テト
ラ〔α,α,α,α−o−(3−ヒドロキシ−2,
2−ジメチル−プロパンアミド)フエニル〕ポル
フインを収量1.09g、収率96%で得た。融点294
〜297℃。 赤外吸収スペクトル(KBr)ν:3430
(broad)、3280(broad)、1670,1615,1590,
1530,1470,1450,1350,1310,1290,1160,
1050,970,820,810,760cm-1。 プロトン核磁気共鳴スペクトル(CDCl3
δppm:−2.89(2H,brs,ポルフイリン環内N
H)、−0.78(2H,brs,水和H2 O)、0.49(24H,
s,−C(CH3 2CONH−)、1.02(4H,brt.
OCH2−)、2.22(8H,d,J=4Hz,HOCH2
(CH32−)、7.35(4H,s,−C(CH32−CON
H)、8.85(8H,s,ポルフイリン環β−位プロ
トン)。 元素分析:C64H66N8O8・H2Oとして計算値
(%);C70.31、H6.27、N10.24、分析値(%);
C70.60、H6.34、N9.97。 実施例1と全く同様
の方法で5,10,15,20−テトラ〔α,α,α,
α−o−(3−ヒドロキシ−2,2−ジメチルプ
ロパンアミド)フエニル〕ポルフイン0.89gを臭
化第一鉄4水和物と反応させ、クロロホルム/メ
タノール=50/1の混参溶媒で精製し、ベンゼ
ン/メタノールから再結晶させてブロモ{5,
10,15,20−テトラ〔α,α,α,α−o−(3
−ヒドロキシ−2,2−ジメチルプロパンアミ
ド)フエニル〕ポルフイナト}鉄()を収量
0.37g、収量38%で得た。融点300℃以上。 赤外吸収スペクトル(KBr)ν:3420
(broad)、3250(broad)、1670,1610,1585,
1525,1440,1330,1050,1000,800,760,720
cm-1。 元素分析:C64H64N8O8FeBr・H2Oとして計算
値(%);C62.65,H5.42、N9.13、分析値(%)
C62.36、H5.46、N9.01。 この末端ヒドロキシ型錯体200mgを実施例1と
同様に無水イタコン酸と反応させ、相当する末端
カルボン酸型錯体を収率77%で得た。 元素分析:C84H80N8O20・FeBrとして計算値
(%);C60.88、H4.87、N6.76、分析値(%);
C60.90、H4.90、N6.72 赤外吸収スペクトル(KBr);実施例1に記載
の類似の末端カルボン酸型錯体のそれと酷似して
おり、特にイタコン酸のエステル、−COOH,C
=CH2に基く吸収が各々1725,1705,1650cm-1
認められた。 この末端カルボン酸型錯体全量を実施例1と同
様に但し片末端アミノヘキサエチレンブリコール
6gを用いて、式()においてn=1、m=6
の目的錯体を収率92%で得た。 元素分析:C132H180N12O40・FeBrとして計算
値(%);C58.49、H6.69、N6.20、分析値
(%);C58.53、H6.66、N6.23。 赤外吸収スペクトル(KBr);実施例1に記載
の類似の式()においてn=10、m=2の錯体
のスペクトルに酷似し、特に末端−OHにより
ν3600〜3200cm-1(broad)の吸収が深くなり、ま
た第二級アミドに基くνN−H、第第アミド
吸収率が各々3220,1645,1550cm-1に認められ、
オキシエチレン単位に基くC−O−C1200cm-1
(broad)の出現が確認された。 こうして得た錯体は水溶性である。
[Detailed Description of the Invention] The present invention relates to the general formula (Here, n is an integer of 1 to 20, m is an integer of 1 to 6, and X is a halogen atom).
[alpha]-o-(substituted amido)phenyl]porphine complex. Many reports have been made of iron-porphine complexes that can form oxygen complexes in organic solvents at room temperature. Examples include J.P.Collman, Accounts of
Chemical Research, 10 , 265 (1977) or F.
Basolo, BMHoffman and JAIbers, ibid.
8, 384 (1975). and so on. However, these iron-porphine complexes have the disadvantage that they are immediately oxidized when even a small amount of water is present, and cannot produce oxygen complexes. Moreover, there is also the problem that these complexes do not dissolve in water. It has been reported that a very stable oxygen complex can be formed in anhydrous aprotic solvents, especially under room temperature conditions. o-(pivalamide)phenyl]porphine complex (JP Collman et al., Journal
of the American Chemical Society, 97 , 1427
(1975)) is immediately oxidized as it is when it comes into contact with water, but by embedding it in a liposome membrane formed from an appropriate phospholipid, it can reversibly adsorb and desorb oxygen in water at room temperature. It is possible to obtain a liposome-dispersed aqueous solution of a porphin complex.
E. Hasegawa et al., Biochemical and Biophysical
Research Communications, 105 , 1416 (1982).
was reported. The object of the present invention is to make it possible to water-solubilize a dissolvable iron-tetraphenylporphine derivative while retaining its oxygen adsorption/desorption function, or to make it possible to water-solubilize a dissolvable iron-tetraphenylporphin derivative while retaining its oxygen adsorption/desorption function, or to use a small amount of surfactant, phospholipid, synthetic water-soluble polymer, polysaccharide, The object of the present invention is to provide a novel iron-tetraphenylporphine complex which has been improved so that it can be easily and uniformly dissolved in an aqueous solution containing water-soluble proteins.
Furthermore, many natural phospholipids have unsaturated bonds, and after encapsulating the complex of the general formula () in the liposome-like aggregates formed by these, appropriate means such as light irradiation can be applied. It has the characteristic that the encapsulated state can be stabilized by cleavage and crosslinking of the unsaturated bonds in the phospholipid part and the complex (). The compound of the general formula forms an oxygen complex in a homogeneous aqueous solution at room temperature in the presence of a suitable basic ligand, preferably a substituted imidazole ligand, with the central iron in a divalent state, and reversibly absorbs oxygen. It is a very useful oxygen adsorbing/desorbing agent or oxygen carrier because it can be desorbed.
For the above reasons, the novel iron-tetraphenylporphine complex having a hydroxyl group represented by the general formula of the present invention has value as an important synthetic intermediate. According to the invention, novel complexes of the formula (where n is an integer from 1 to 20) and J.P. Collman et al., Journal of the
American Chemical Society, 97 , 1427 (1975)
The expression reported in 5, 10, 15, 20-tetra (α, α,
α,α-o-aminophenyl)porphin (hereinafter referred to as
Abbreviated as H 2 TamPP. ) in the presence of a base, the obtained formula is (where n is the same as defined above), the benzyl group was removed with anhydrous aluminum chloride in the presence of anisole, and the resulting formula (where n is as defined above) is reacted with ferrous bromide in the presence of pyridine, and a suitable mineral acid such as 48% hydrobromic acid, concentrated hydrochloric acid, iodide A terminal hydroxy-type complex coordinated with bromide, chloride, or iodine ions is obtained by treatment with hydrogen acid, and this is treated with itaconic anhydride to form a terminal carboxylic acid-type complex, which is then treated with triethylamine and ethyl chloroformate. After the treatment, H2N ( -CH2CH2O ) -nH () is further reacted with a terminal amino oligoethylene glycol represented by the formula (where m is the same as defined above). New complexes with the desired general formula can be synthesized. The starting materials of the general formula were synthesized by the following method.
George omega-benzyloxyalkyl halide
The dilithium anion of 2-methylpropionic acid was prepared according to the report of R. Nowkome et al., Synthesia, 1975 , 517. The dilithium anion of 2-methylpropionic acid was initially heated at a low temperature (-70℃ to 20℃) and then heated to 30 to 45℃. I reacted with The reaction mixture is then decomposed with cold dilute hydrochloric acid and the crude product extracted with a solvent is added to a non-polar solvent such as petroleum ether, n-
Recrystallization in hexane and n-heptane gave ω-benzyloxy-2,2-dimethylalkanoic acid as colorless crystals. This is reacted with an excess amount of thionyl chloride in a nonpolar solvent, preferably benzene or carbon tetrachloride, or without a solvent, and then concentrated under reduced pressure to form a ω-benzyloxy-
2,2-dimethylalkanoyl chloride was obtained. raw material formula (Here, n has the same meaning as defined earlier,
X' represents chlorine or bromine. ) denoted by ω−
Benzyloxyalkyl halide is n=1, X
=Cl, AJHill et al., Journal of the
American Chemical Society, 48 , 257 (1926)
According to the report of , when n = 2 and X' = Br, P.
Cresson, Bulletin de la Societe Chimique de
It can be synthesized according to the report of France, 1964, 2629.
Also, for n = 3 to 20 and X' = Br, α, ω-
It is obtained by refluxing dibromoalkane with 1 equivalent of sodium benzyl oxide in benzene. An excess amount of the carboxylic acid chloride of the general formula is mixed with a known substance, H 2 TamPP, in an anhydrous aprotic solvent, preferably tetrahydrofuran, dichloromethane,
Residue obtained by reacting in chloroform, N,N-dimethylformamide or acetone solution in the presence of excess triethylamine or pyridine at 0°C to room temperature, pouring into water and extracting with chloroform, and evaporating the separated extract. A compound represented by the general formula can be obtained by purifying it by silica gel column chromatography. In order to remove the benzyl group of the benzyl ether represented by this general formula, dichloromethane:
The mixture was reacted with excess anhydrous aluminum chloride in a mixed solvent of nitromethane in the presence of an excess amount of anisole at -5°C to 30°C, preferably 15°C to 25°C for 2 to 12 hours. The reaction mixture was poured into ice water, extracted with chloroform, the extract was washed with water, and then
After washing with a % sodium bicarbonate aqueous solution, the separated chloroform layer was dried with sodium sulfate, and the residue obtained by evaporating the chloroform was recrystallized from benzene or a mixed solvent of dichloromethane-benzene. To introduce iron into the resulting compound of general formula, J.P. Collman et al., Journal of the American
The reaction was carried out with excess ferrous bromide in the presence of pyridine in refluxed anhydrous tetrahydrofuran under a nitrogen atmosphere, following the method reported in Chemical Society, 97 , 1427 (1975). Purification by column chromatography using alumina or silica gel, and treatment of the resulting eluate with hydrochloric acid, hydrobromic acid, or hydroiodic acid, results in the formation of chlorine, bromine, or iodine as a counter ion, and the central iron is
A complex of terminal hydroxyl type is obtained which is in the valent state. This was reacted with an excess amount of itaconic anhydride in the presence of dimethylaminopyridine in chloroform at room temperature, treated with a 1% aqueous solution of hydrohalic acid having the same X as the counter ion, and the solvent was replaced with methanol. , and developed with methanol on a Sephadex LH-60 column to obtain a terminal carboxylic acid type complex.
This was treated with an excess amount of triethylamine and methyl chloroformate in anhydrous DMF at 0 to 5°C,
Next, an excess amount of one-terminal amino-oligoethylene glycol of formula () was applied to Sephadex LH.
Develop with methanol or water on a -60 column to obtain the desired complex of formula (). This complex is transferred to an aqueous medium (e.g. water, buffer solution (PH4).
pH 10 to 10), physiological saline, etc.), and a basic ligand, preferably a substituted imidazole ligand, is dissolved in
A 1000 to 1000 times equivalent amount, preferably a 5 to 200 times equivalent amount was added, and nitrogen was bubbled to form a deoxygenated aqueous solution. To reduce the central iron from trivalent to divalent, 1
A method of adding 1 to 10 times the amount of sodium dithionite, sodium borohydride, or ascorbic acid, and a method of reducing with hydrogen gas in the presence of a palladium black or palladium carbon catalyst. E.
Hasegawa et al., Biochemical and Biophysical
Research Communications, 104 , 793 (1982)
The enzyme-based reduction method reported in 2010 can be used. The aqueous solution of the iron() complex obtained by reduction becomes an oxygen complex when oxygen is blown into it at room temperature, and returns to the original iron() complex when nitrogen is blown into it, confirming reversible adsorption and desorption of oxygen. As described above, the nonionic hydrophilic and hydrophobic iron-tetraphenylporphine complex having a novel polymerizable group represented by the general formula of the present invention acts as a useful oxygen adsorbent. The present invention will be explained in more detail by the following examples, which are not intended to limit the invention. Reference example 1 10-benzyloxydecanyl bromide is 1,
100 g of 10-dibromodecane and an equivalent amount of sodium benzyl oxide were refluxed in tetrahydrofuran, and the precipitate was filtered, concentrated, and then distilled under reduced pressure. yield
46g, boiling point 185-189℃/3mmHg. George R. Newkome et al., Synthesis, 1975 ,
517, the lithium dianion of 2-methylpropionic acid was generated with lithium diisopropylamide in tetrahydrofuran under a nitrogen atmosphere, and after dropping 18 g of 10-benzyloxydecanyl bromide at -20°C, the mixture was heated at 45°C. The mixture was allowed to react for 2 hours. The reaction mixture was added to cold diluted hydrochloric acid and extracted with ether, and the separated ether layer was washed with diluted hydrochloric acid and then with water, separated and dried over Glauber's salt. The crude oil obtained by evaporation to dryness was recrystallized from petroleum ether to obtain 8.4 g of colorless crystals of 12-benzyloxy-2,2-dimethyldodecanoic acid in a yield of 46%.
Melting point 53-55℃. Elemental analysis: Calculated value (%) as C 21 H 34 O 3 ; C75.40, H10.25, analysis value (%):
C75.64, H10.09. Proton nuclear magnetic resonance spectrum ( CDCl3 ) δppm: 1.18 (6H, s, -CH3 ), 1.26
(16H, s, -CH 2 -), 3.46 (2H, t, PhCH 2 O
CH 2 CH 2 −), 4.51 (2H, s, PhC H 2 O−), 7.33
(5H, s, phenyl proton). 3.34 g of this obtained carboxylic acid was dissolved in 5 ml of anhydrous benzene, 1.2 ml of thionyl chloride was added, and the mixture was stirred at room temperature for 12 hours.
After reacting for an hour and drying under reduced pressure, a colorless oil of 12-
Benzyloxy-2,2-dimethyldodecanoic acid chloride was obtained in a yield of 3.53 g. Infrared absorption spectrum (CCl 4 ) ν1790cm -1 ([Formula]). Proton nuclear magnetic resonance spectrum ( CDCl3 )
δppm: 1.28 (22H, s, -CH 3 and -CH 2 -),
3.46 (2H, t, PhCH 2 O CH 2 CH 2 −), 4.50 (2H,
s, PhC H 2 O-), 7.32 (5H, s, phenyl proton). Example 1 5,10,15,20-tetra (α, α, α, α-o
-aminophenyl) porphin (hereinafter H 2 TamPP
It is abbreviated as ) is J.P.Collman et al., Journal of the
American Chemical Society, 97 , 1427 (1975)
Synthesized according to the literature. 1.0 g of H 2 Tampp was added to anhydrous tetrahydrofuran (40
ml) solution, 0.81 ml of pyridine was added thereto, and 3.53 g of 12-benzyloxy-2,2-dimethyldodecanoic acid chloride obtained in Reference Example 1 was added dropwise at room temperature, followed by reaction for 3 hours. After extraction with ether and washing with water, the separated ether layer was dried with Glauber's salt and dried under reduced pressure. The crude product obtained was purified by silica gel column chromatography using a mixed solvent of benzene and ether (volume ratio 15:1) to give a brown color. 5,10,15,20-tetra [α,
α,α,α-o-(12-benzyloxy-2,2
-dimethyldodecanamido)phenyl]porphine was obtained in an amount of 1.69 g, with a yield of 60%. Infrared absorption spectrum (CCl 3 ) ν3440, 3330,
3000, 2930, 2860, 1680, 1580, 1510, 1450,
1300, 1100, 970, 910, 700cm -1 . Proton nuclear magnetic resonance spectrum ( CDCl3 )
δppm: (2.6(2H, s, N in polyphyrin ring
H), -0.23 (24H,s, -C( CH3 ) 2CONH- ),
3.46 (8H, t, PhcH2OCH2CH2- ) , 4.50( 8H ,
s, Ph CH 2 O-), 7.12 (4H, s,
[Formula]), 7.32 (20H, s), 8.82 (8H, s). 5, 10, 15, 20-tetra [α, α, α, α-o
-(12-benzyloxy-2,2-dimethyldodecanamido)phenyl] 1.68 g of porphine was dissolved in a mixed solvent of 25 ml of anhydrous dichloromethane and 25 ml of nitromethane, 2 ml of anisole was added, and then 2 g of anhydrous aluminum chloride was added and kept at room temperature for 4 hours. Made it react. The mixture was poured into 100 ml of ice water to decompose excess aluminum chloride, extracted with dichloromethane, and the separated dichloromethane layer was washed with water and then with a 10% aqueous sodium bicarbonate solution, separated, dried over sodium sulfate, and concentrated under reduced pressure. . The residue was recrystallized from benzene to give purple plate-like crystals of 5,10,15,20-tetra[α,α,α,α-o-(12-hydroxy-2,2
-dimethyldodecanamido)phenyl]porphine was obtained in an amount of 1.10 g, with a yield of 80%. Melting point 127~
129.5℃. Magnetic field desorption mass spectrum: 1579 (M+1) + infrared absorption spectrum (KBr) ν3600-3350 (wide range), 3440, 3330, 2940, 2860, 1690, 1585,
1515, 1450, 1302, 1060, 970, 810, 770, 740cm
-1 . Proton nuclear magnetic resonance spectrum ( CDCl3 )
δppm: −2.59 (2H, s, pyrrole NH ), −0.22
(24H, s, -C(C H 3 ) 2 -CONH-), 3.64 (8H,
t, HOC H 2 CH 2 −), 7.15 (4H, s), 7.36-8.73
(16H, m), 8.82 (8H, s). Note that the absorptions at 4.50 (8H, s) and 7.32 (20H, s) derived from the benzyl group disappeared. Elemental analysis: Calculated value (%) as C 100 H 138 N 8 O 8 ;
C76.00, H8.80, N7.09: Analysis value (%); C75.62,
H8.90, N7.09. 5, 10, 15, 20-tetra [α, α, α, α-o
-(12-Hydroxy-2,2-dimethyldodecanamido)phenyl] 0.65 g of porphine was dissolved in anhydrous tetrahydrofuran (50 ml), and 0.3 g of pyridine was dissolved.
ml and after purging with nitrogen, 2.0 g of ferrous bromide tetrahydrate was added and refluxed under nitrogen for 3 hours.
After extraction with chloroform and washing with water, the separated chloroform layer was dried with Glauber's salt and the solvent was distilled off under reduced pressure. The resulting residue was purified by alumina column chromatography using a mixed solvent of chloroform/methanol (volume ratio 9/1). . Add the elution solution to 2 ml of 48% hydrobromic acid.
After stirring, drying with Glauber's salt and evaporating to dryness, a black-purple solid of promo{5,10,15,20-tetra[α,α,
α,α-o-(12-hydroxy-2,2-dimethyldodecanamido)phenyl]porphynato}iron () was obtained in a yield of 0.38 g, 54%. Melting point 76~
79℃. Magnetic field desorption mass spectrum: 1713 (M+1) + However, the molecular formula is C 100 H 136 N 8 O 8 FeBr = 1712. Infrared absorption spectrum (KBr): ν3600~3150
(broad), 3440, 2930, 2860, 1690, 1580,
1510, 1440, 1300, 1075, 1000, 805, 760, 715
cm -1 . Elemental analysis: Calculated value (%) as C 100 H 136 N 8 O 8・FeBr; C70.13, H8.00, N6.54, analytical value (%);
C70.37, H8.40, N6.63. 200 mg of this terminal hydroxy type complex was reacted with 5 g of itaconic anhydride and 1.5 g of dimethylaminopyridine in anhydrous chloroform at room temperature for 10 hours, washed with 1% hydrobromic acid water, and the solvent was replaced with methanol. A Sephadex LH-60 gel column was developed with methanol and the main component was separated to obtain a terminal carboxylic acid type complex in a yield of 69%. Elemental analysis: C 120 H 152 N 8 O 20・FeBr Calculated value (%); C66.66, H7.08, N5.18, Analysis value (%); C66.70, H7.06, N5.21 Red External absorption spectrum (KBr): ν3600~3200
(broad), 3440, 3020, 2950, 2930, 2860,
1770, 1725, 1705, 1650, 1590, 1520, 1450,
1180, 1015, 820, 770 cm -1 . In particular, the absorption based on itaconic acid ester, -COOH, and C= CH2 , respectively
Found at 1725, 1705.1650cm -1 . In addition, 1705cm
-1 absorption band is 1600 by adding triethylamine.
Moved to cm -1 (broad). The entire complex was mixed with 2 ml of triethylamine and 2 ml of ethyl chloroformate in DMF at 0-5°C.
The reaction was carried out for 1.5 hours, and further reacted with 5 g of one-terminal aminodiethylene glycol for 10 hours. The same column separation as above was performed, and in the formula (), n=
10, the target complex with m=2 was obtained in 72% yield. Elemental analysis: Calculated value (%) as C 136 H 188 N 12 O 24 FeBr; C65.06, H7.55, N6.69, Analysis value (%); C65.02, H7.59, N6.65 Red External absorption spectrum (KBr): Compared to that of the terminal carboxylic acid mentioned above, the absorption in the ν3600 to 3200cm -1 (broad) region is deeper due to the terminal -OH, and the absorption in the νNH3320cm -1 , secondary and The appearance of amide absorption bands at 1640 and 1555 cm -1 and 1200 cm -1 (broad) based on the oxyethylene unit C-O-C was observed, and the -COOH absorption band at 1705 cm -1 disappeared. The complex thus obtained is water-insoluble, but when stirred in an aqueous solution with, for example, egg yolk lecithin, it becomes a homogeneous and transparent solution. Reference example 2 1,18-dibromooctadecane e.g. Lester
Friedman and Arnon Shani, Journal of the
American Chemical Society, 96, 7101-7103
(1974). In the same manner as in Reference Example 1, 18.3 g (yield: 41%) of 18-benzyloxyoctatecanyl bromide was obtained from 42 g of 1,18-dibromooctadecane instead of 1,10-dibromodecane. 18 g of this was reacted with lithium dianion (equivalent mole) of 2-methylpropionic acid, and after the same extraction treatment as in Reference Example 1, the crude oil obtained was obtained using a mixed solvent of benzene:ether (volume ratio 15:
1) was purified by silica gel column chromatography to obtain colorless crystals of 20-benzyloxy-
2,2-dimethyleicosanoic acid was obtained in a yield of 5.7 g and a yield of 31%. Melting point 72-73℃. Elemental analysis: Calculated value (%) as C 29 H 50 O 3 ; C,
77.97, H, 11.28, analysis value (%); C78.25,
H11.21. Infrared absorption spectrum (KBr) ν: 2930, 2860,
1705, 1470, 1130, 1120, 950, 740, 700 cm -1 . Proton nuclear magnetic resonance spectrum ( CDCl3 )
δppm: 1.18 (6H, s, -C( CH3 ) 2COOH ), 1.25
(32H, brs PhCH 2 OCH 2 (CH 2 ) 16 CH 2 −), 3.46
(2H, t, J=6.5Hz, PhCH 2 OCH 2 CH 2 −),
4.50 (2H, s, PhC H 2 O-), 7.33 (5H, m, benzene ring proton). 5.2 g of this obtained carboxylic acid was reacted with 4 ml of thionyl chloride at room temperature for 4 hours and dried under reduced pressure to obtain 5.6 g of 20-benzyloxy-2,2-dimethyleicosanoic acid chloride as a colorless solid. Infrared absorption spectrum (CCl 4 ) ν: 2930, 2860,
1790, 1460, 1365, 1100, 905, 700cm -1 . Example 2 5.6 g of the obtained 20-benzyloxy-2,2-dimethyleicosanoic acid chloride was mixed with 1.3 g of H 2 TamPP.
of anhydrous tetrahydrofuran (50 ml) and pyridine (1.5 ml) under the same conditions as in Example 1.
After post-treatment and purification, 5,10,15,20-tetra[α,
α,α,α-o-(20-benzyloxy-2,2
-dimethyl-eicosanamido)phenyl]porphin was obtained in an amount of 3.70 g, with a yield of 80%. Melting point 33~
35℃. Elemental analysis: Calculated value (%) as C 160 H 230 N 8 O 8 ;
C80.29, H9.68, N4.68, analysis value (%); C80.11,
H9.88, N4.77. Infrared absorption spectrum (KBr) ν: 3440, 2920,
2850, 1690, 1580, 1510, 1450, 1360, 1300,
1100, 965, 800, 750 cm -1 . Proton nuclear magnetic resonance spectrum ( CDCl3 )
δppm: −2.60 (2H, s, N in the porphyrin ring
−H ), −0.22(24H,s, −C(CH 3 ) 2 −CONH
−), 3.45 (8H, t, J=6.4Hz, PhCH 2 OC H 2
CH 2 −), 4.49 (8H, s, PhC H 2 O−), 7.13 (4H,
s, [formula]), 7.31 (20H, s, [formula]), 8.76 (4H, d, J = 7Hz, [formula]), 8.82 (8H, s, proton at β-position of porphine ring) 5, 10, 15,20-tetra [α, α, α, α-o
-(20-benzyloxy-2,2-dimethyleicosanamido)phenyl] 3.5 g of porphine was added to dichloromethane (30 ml) in the same manner as in Example 1.
Post-treatment and extraction were performed with 6 g of anhydrous aluminum chloride in a mixed solvent of nitromethane (15 ml) and anisole (3 ml), and the resulting residue was subjected to silica gel column chromatography (solvent chloroform/methanol = 15/ 1) and refine it,
It was recrystallized from a mixed solvent of dichloromethane and methanol. 5,10,15,20-tetra[α,α,α,α-o-(20-hydroxy-2,
1.89 g of 2-dimethyleicosanamido)phenyl]porphine was obtained in a yield of 64%. Melting point 88~
90℃. Infrared absorption spectrum (KBr) ν: 3430, 3320,
2920, 2860, 1675, 1580, 1510, 1470, 1450,
1300, 970, 805, 760, 720 cm -1 . Proton nuclear magnetic resonance spectrum ( CDCl3 )
δppm: −2.60 (2H, s, N in the porphyrin ring
−H ), −0.21(24H,s, −C(CH 3 ) 2 −CONH
−), 3.69 (8H, t, J=6.4Hz, HOC H 2 CH 2 −,
7.14 (4H, s, amide group - CON H -), 8.73 (4H,
d, J=7Hz, [Formula]), 8.82 (2H, s, proton at β position of porphyrin ring). Elemental analysis: Calculated value as C 132 H 202 N 8 O 8 (%);
C78.14, H9.98, N5.52, analysis value (%); C78.42,
H10.20, N5.39. 5, 10, 15, 20-tetra [α, α, α, α-o
-(20-hydroxy-2,2-dimethyleicosanamido)phenyl] 1.06 g of porphine was reacted in the same manner as in Example 1, followed by silica gel column chromatography (mixed solvent of chloroform/methanol = 15/1). ) and further recrystallized from a mixed solvent of dichloromethane/methanol. Black-purple crystal bromo {5, 10, 15, 20−
Tetra[α,α,α,α-o-(20-hydroxy-2,2-dimethyleicosanamido)phenyl]porphynato}iron () yield 0.82 g, yield
Got it with 73%. Melting point 49-50℃. Infrared absorption spectrum (KBr) ν: 3430, 2930,
2860, 1690, 1580, 1510, 1460, 1440, 1300,
1000, 800, 760, 720 cm -1 . Elemental analysis: C 132 H 200 N 8 O 8 FeBr: 1/2 CH 2 Cl 2
Calculated value (%); C72.16, H9.19, N5.08, analytical value (%); C72.41, H9.09, N4.92. 200 mg of this terminal hydroxy type complex was added to Example 1.
The reaction was carried out with itaconic anhydride in the same manner as above to obtain the corresponding terminal carboxylic acid type complex in a yield of 76%. Elemental analysis: Calculated value (%) as C 152 H 216 N 8 O 20 FeBr; C69.92, H8.34, N4.29, analytical value (%);
C69.90, H8.35, N4.33 IR spectrum (KBr); very similar to that of the similar terminal carboxylic acid type complex described in Example 1,
Especially esters of itaconic acid, -COOH, C=CH 2
Absorption based on 1720, 1705, and 1650 cm -1 was observed, respectively. The total amount of this complex was prepared in the same manner as in Example 1, except that 55.0 g of aminotetraethylene glycol at one end was used.
The desired complex of formula () with n=18 and m=4 was obtained in a yield of 82%. Elemental analysis: C 184 H 284 N 12 O 32 Calculated value (%) as FeBr: C66.73, H8.64, N5.07, Analysis value (%); C66.70, H8.66, N5.10 IR Spectrum (KBr): Very similar to the complex spectrum of n=10, m=2 in the similar formula () described in Example 1, especially ν3600 ~ due to terminal -OH
The absorption at 3200 cm -1 (broad) becomes deep, and νN-H, primary and primary amide absorption bands based on secondary amide are observed at 3220, 1640 and 1550 cm -1 respectively, and the oxyethylene unit C-O-C Based on 1200cm -1
(broad) was confirmed. The complex thus obtained showed the same solubility as in Example 1. Reference example 3 Benzyloxymethyl chloride is described by AJHill et al.
Journal of the American Chemical Society,
48, 257 (1926), and this
10.96g was converted into an equivalent amount of 2
-Methylpropionic acid was reacted with lithium dianion and purified by recrystallization from n-hexane to obtain 7.75 g of 3-benzyloxy-2,2-dimethylpropionic acid in a yield of 53%. Melting point 72-74℃. Infrared absorption spectrum (KBr) ν: 3400-2400
(broad), 1700, 1480, 1320, 1250, 1120, 940,
740,700cm -1 . Proton nuclear magnetic resonance spectrum ( CDCl3 )
δppm: 1.23 (6H, s, -CH2C ( CH3 ) 2COOH ),
3.47 (2H, s, PhCH2OCH2C ( CH3 ) 2- ) , 4.55
(2H, s, PhC H 2 O-), 7.31 (5H, s, phenyl ring proton). Elemental analysis: Calculated value as C 12 H 16 O 3 (%);
C69.20, H7.75, analysis value (%); C69.43, H7.80. Add 3.0 g of the obtained carboxylic acid to 4 ml of thionyl chloride.
was reacted in the same manner as in Reference Example 1 to quantitatively obtain 3-benzyloxy-2,2-dimethylpropionic acid chloride as an oil. Infrared absorption spectrum (CCl 4 ) ν: 1830, 1790,
1460, 1100, 915, 700cm -1 . Example 3 3.4 g of 3-benzyloxy-2,2-dimethylpropionic acid chloride was added in the same manner as in Example 1.
After reacting with 1.1 g of H 2 Tampp, it was purified by silica gel column chromatography using chloroform/ether = 15/1 as a solvent, and recrystallized from a dichloromethane-methanol mixed solvent.
5, 10, 15, 20-tetra [α, α, α, α-(3
-benzyloxy-2,2-dimethylpropanamido)phenyl]porphine yield: 1.92 g, yield
Got it with 82%. Melting point 170-172℃. Infrared absorption spectrum (KBr) ν: 3440, 3320,
2970, 2860, 1690, 1605, 1583, 1510, 1450,
1310, 1155, 1095, 1080, 970, 800, 755, 740,
700 cm -1 . Proton nuclear magnetic resonance spectrum ( CDCl3 )
δppm: −2.53 (2H, s, N in the porphyrin ring
H), 0.05 (24H, s, -C( CH3 ) 2 -CONH-),
2.72 (8H, s, PhCH 2 OC H 2 ), 3.29 (8H, s,
PhC H 2 OCH 2 −) 6.46 to 6.56 (8H, m,
[Formula]), 6.88-6.96 (12H, m, [Formula]), 8.70 (8H, s, proton at β-position of porphyrin ring), 8.15 (4H, s,
[Formula]), 8.80 (4H, d, J=7.3 Hz, [Formula]), 7.33 to 7.90 (12H, m, [Formula]). Elemental analysis: Calculated value (%) as C 92 H 90 N 8 O 8 ;
C76.96, N6.32, H7.81, analysis value (%); C76.81,
H6.41, N7.72. 5,10,15,20-tetra[α,α,α,α-o-(3-benzyloxy-2,2-dimethylpropanamido)phenyl] in the same manner as in Example 1
1.5 g of porphine was subjected to a debenzylation reaction and recrystallized from benzene to obtain 5,10,15,20-tetra[α,α,α,α-o-(3-hydroxy-2,
1.09 g of 2-dimethyl-propanamido)phenyl]porphine was obtained in a yield of 96%. Melting point 294
~297℃. Infrared absorption spectrum (KBr) ν: 3430
(broad), 3280 (broad), 1670, 1615, 1590,
1530, 1470, 1450, 1350, 1310, 1290, 1160,
1050, 970, 820, 810, 760 cm -1 . Proton nuclear magnetic resonance spectrum ( CDCl3 )
δppm: −2.89 (2H, brs, N in the porphyrin ring
H), -0.78 (2H, brs, hydrated H2O ), 0.49 (24H,
s, -C( CH3 ) 2CONH- ), 1.02(4H, brt.H
OCH 2 −), 2.22 (8H, d, J = 4Hz, HOC H 2 C
( CH3 ) 2- ), 7.35(4H,s,-C( CH3 ) 2- CON
H), 8.85 (8H, s, porphyrin ring β-position proton). Elemental analysis: Calculated value (%) as C 64 H 66 N 8 O 8・H 2 O; C70.31, H6.27, N10.24, analytical value (%);
C70.60, H6.34, N9.97. 5,10,15,20-tetra [α, α, α,
0.89 g of α-o-(3-hydroxy-2,2-dimethylpropanamido)phenyl]porphine was reacted with ferrous bromide tetrahydrate and purified using a mixed solvent of chloroform/methanol = 50/1. , recrystallized from benzene/methanol to give bromo{5,
10, 15, 20-tetra [α, α, α, α-o-(3
-Hydroxy-2,2-dimethylpropanamido)phenyl]porphynato}iron () yield
Obtained 0.37 g, yield 38%. Melting point over 300℃. Infrared absorption spectrum (KBr) ν: 3420
(broad), 3250 (broad), 1670, 1610, 1585,
1525, 1440, 1330, 1050, 1000, 800, 760, 720
cm -1 . Elemental analysis: Calculated value (%) as C 64 H 64 N 8 O 8 FeBr・H 2 O; C62.65, H5.42, N9.13, analytical value (%)
C62.36, H5.46, N9.01. 200 mg of this terminal hydroxy type complex was reacted with itaconic anhydride in the same manner as in Example 1 to obtain the corresponding terminal carboxylic acid type complex in a yield of 77%. Elemental analysis: Calculated value (%) as C 84 H 80 N 8 O 20 FeBr; C60.88, H4.87, N6.76, analytical value (%);
C60.90, H4.90, N6.72 Infrared absorption spectrum (KBr); very similar to that of the similar terminal carboxylic acid type complex described in Example 1, especially for the ester of itaconic acid, -COOH, C
Absorption based on =CH 2 was observed at 1725, 1705, and 1650 cm -1 , respectively. The entire amount of this terminal carboxylic acid type complex was prepared in the same manner as in Example 1, except that 6 g of aminohexaethylene glycol at one end was used, and in the formula (), n=1, m=6
The desired complex was obtained in 92% yield. Elemental analysis: Calculated values (%) as C 132 H 180 N 12 O 40 FeBr; C58.49, H6.69, N6.20, analytical values (%); C58.53, H6.66, N6.23. Infrared absorption spectrum (KBr): very similar to the spectrum of the complex with n=10 and m=2 in the similar formula () described in Example 1, especially absorption in the range of ν3600 to 3200 cm -1 (broad) due to terminal -OH becomes deeper, and νN-H and primary amide absorption rates based on secondary amide are observed at 3220, 1645, and 1550 cm -1 , respectively,
C-O-C1200cm -1 based on oxyethylene units
(broad) was confirmed. The complex thus obtained is water-soluble.

Claims (1)

【特許請求の範囲】 1 式 (ここでnは1〜20、mは1〜6の整数及びX
はハロゲン原子)で表わされる水酸基を有する鉄
−5,10,15,20−テトラ〔α,α,α,α−o
−(置換アミド)フエニル〕ポルフイン錯体。
[Claims] 1 formula (Here, n is an integer of 1 to 20, m is an integer of 1 to 6, and
iron-5,10,15,20-tetra [α, α, α, α-o
-(Substituted amido)phenyl]porphin complex.
JP58165926A 1983-09-09 1983-09-09 Nonionic hydrophilic hydrophobic iron-tetraphenylporphyrin complex having polymerized group Granted JPS6058985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58165926A JPS6058985A (en) 1983-09-09 1983-09-09 Nonionic hydrophilic hydrophobic iron-tetraphenylporphyrin complex having polymerized group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58165926A JPS6058985A (en) 1983-09-09 1983-09-09 Nonionic hydrophilic hydrophobic iron-tetraphenylporphyrin complex having polymerized group

Publications (2)

Publication Number Publication Date
JPS6058985A JPS6058985A (en) 1985-04-05
JPH0352471B2 true JPH0352471B2 (en) 1991-08-12

Family

ID=15821631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58165926A Granted JPS6058985A (en) 1983-09-09 1983-09-09 Nonionic hydrophilic hydrophobic iron-tetraphenylporphyrin complex having polymerized group

Country Status (1)

Country Link
JP (1) JPS6058985A (en)

Also Published As

Publication number Publication date
JPS6058985A (en) 1985-04-05

Similar Documents

Publication Publication Date Title
CN1083442C (en) Process for prepn. of tetraazamacrocycles
EP0530285A1 (en) Process for the enantioselective preparation of phenylisoserin derivatives.
EP0066884B1 (en) Oxygen-adsorbing and desorbing agent
JPH0352471B2 (en)
JPH0352470B2 (en)
JPH0354670B2 (en)
Yue et al. Synthesis of 2, 3-dimethoxy-5-iodobenzoic acid
JP2000007693A (en) Chlorin derivative
JPH0375552B2 (en)
JPH0372079B2 (en)
Tsuji et al. Efficient copper-catalyzed oxidation of dihydrazones of α-diketones to disubstituted acetylenes
JPH0730033B2 (en) Process for producing substituted anthra [1,9-cd] pyrazol-6 (2H) -one
WO2024000877A1 (en) Preparation method for nicotine
JPS635033B2 (en)
JP3405741B2 (en) Porphyrin metal complexes with proximal bases
JPH0526791B2 (en)
JPH03128389A (en) Porphyrin metal complex
JPH0375551B2 (en)
JPH0262292B2 (en)
JPS635010B2 (en)
US4914243A (en) Production of 2-alkoxy or aryl(lower)alkoxy-6-methoxy-1-naphthalenecarboxaldehyde
JPH0354671B2 (en)
JPH0427986B2 (en)
JPH0375550B2 (en)
JPS6213051B2 (en)