JPH0352459A - Automatic focusing device - Google Patents

Automatic focusing device

Info

Publication number
JPH0352459A
JPH0352459A JP1188027A JP18802789A JPH0352459A JP H0352459 A JPH0352459 A JP H0352459A JP 1188027 A JP1188027 A JP 1188027A JP 18802789 A JP18802789 A JP 18802789A JP H0352459 A JPH0352459 A JP H0352459A
Authority
JP
Japan
Prior art keywords
focusing position
high frequency
circuit
frequency component
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1188027A
Other languages
Japanese (ja)
Inventor
Hiroshi Takemoto
浩 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1188027A priority Critical patent/JPH0352459A/en
Publication of JPH0352459A publication Critical patent/JPH0352459A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the focusing position of a photographic image fluctuated and the image hard to observe by predicting the focusing position based on the change of amplitude of a high frequency component, and moving a photo graphic lens to a predicted focusing position. CONSTITUTION:A prediction arithmetic means 12 predicts the focusing position of the photographic image based on the amount of change of the amplitude of the high frequency component for the amount of travel of the photographic lens 2 supplied from a comparison means 10, and sets a prescribed range decided in advance centering the predicted focusing position. The prediction arithmetic means 12 sends a control signal so as to move the focusing position of the photographic image when the focusing position of the photographic image being photographed at present comes off the prescribed range. ln such a way, the fluctuation of the focusing position prevented occurring in the neighborhood of the focusing position in the focusing operation of the photographic image.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えばビデオ勺メラ等に使用される、撮影像
の焦点を自動的に合わせる自動合焦装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an automatic focusing device for automatically focusing a captured image, which is used, for example, in a video camera.

[従来の技術] 撮影像を電気信号に変換する撮像素子から送出される信
号を利用しで撮影像の合焦操作を行う、例えばビデオカ
メラに設けられる自動合焦装置が知られている。このよ
うな自動合焦装置は、NHK技術研究(昭和40年第7
巻第1号通巻86号P, 2 1−P.37)に発表さ
れた5、いわゆる山登りサーボ方式(以下山登り方式と
記す)を利用l7たものである。
[Prior Art] An automatic focusing device installed in, for example, a video camera is known, which performs a focusing operation on a photographed image using a signal sent from an image sensor that converts the photographed image into an electrical signal. This kind of automatic focusing device was developed by NHK Technical Research (7th edition in 1965).
Volume 1, serial number 86, P, 2 1-P. This method utilizes the so-called mountain-climbing servo method (hereinafter referred to as the "mountain-climbing method"), which was announced in 2003.

この山登り方式とは、上記撮像素子が送出する信号内に
含まれる高城周波数成分(以下高周波成分と記す)の振
幅の変化が、撮影像の焦点が合うに従い大きくなること
を利用I7高周波成分の振幅が最も大きいところが撮影
像の含焦位置と判断する方式であり、高周波成分の軌跡
を描けば第2図に示すように放物線状を描く。
This hill-climbing method utilizes the fact that the amplitude of the Takagi frequency component (hereinafter referred to as high-frequency component) included in the signal sent out by the image sensor increases as the captured image is focused. I7 The amplitude of the high-frequency component This method determines that the point where is greatest is the focused position of the photographed image, and if the locus of the high frequency component is drawn, it will draw a parabolic shape as shown in FIG.

[発明が解決l7ようとする課題コ しかl,この山登0方式では、高周波成分の振福の最も
大きい位置を判断するには第2図に示す放物線の頂上、
即ち合焦位置を過ぎた焦点位置における高周波成分を測
定して始めて高周波成分の最高位置が判断できるわけで
あるから、常に合焦位置を中心としてその前後に撮影レ
ンズが移動して合焦操作が行われることとなる。よって
、得られる撮影像は常に焦点が合った状態と、幾分ずれ
ているという状態が繰り返される。
[The problem that the invention attempts to solve is: In this mountain climbing method, in order to determine the position where the vibration of high frequency components is greatest, the top of the parabola shown in Fig. 2,
In other words, the highest position of the high-frequency component can only be determined by measuring the high-frequency component at the focal point past the focal point, so the photographing lens always moves back and forth around the focal point to perform focusing operations. It will be carried out. Therefore, the photographed image obtained is always in a focused state and a state in which it is slightly out of focus repeatedly.

このことは、シャソタをきる瞬間の撮影像を撮影するス
チルカメラでは撮影像のピントにそれほどの影響はでな
いが、連続して撮影を続けるビデオカメラの場合には撮
影像が非常に見づらい映像となる。
This does not have much of an effect on the focus of a still camera that captures images at the moment the camera stops moving, but in the case of a video camera that shoots continuously, the images become extremely difficult to see. .

本発明はこのような問題点を解決するためになされたも
ので、撮影像の合焦操作において、合焦位置近傍で焦点
位置が変動しない自動合焦装置を提供することを目的と
する。
The present invention has been made to solve these problems, and an object of the present invention is to provide an automatic focusing device in which the focus position does not change near the focus position during the focusing operation of a photographed image.

[課題を解決するための手段] 本発明は、撮像素子より送出される信号から得た映像信
号より抽出される高周波成分の量にもとづいて撮影像の
合焦操作を行う合焦装置を備えた自動合焦装置において
、 撮影レンズの移動量に対する上記高周波成分の変化量を
演算し送出する変化量演算手段と、上記変化量演算手段
が送出する情報にもとづいて撮影像の合焦位置を予測す
るとともに、その予測合焦位置を中心とした所定範囲を
許容領域に設定し、1この許容領域外の焦点位置に撮影
像の焦点があるとき撮影像の合焦操作を行うべく制御信
号を合焦装置へ送出する予測演算手段と、を備えたこと
を特徴とする。
[Means for Solving the Problems] The present invention includes a focusing device that performs a focusing operation on a photographed image based on the amount of high frequency components extracted from a video signal obtained from a signal transmitted from an image sensor. In the automatic focusing device, a change amount calculation means calculates and sends out the amount of change in the high frequency component with respect to the amount of movement of the photographing lens, and a focus position of the photographed image is predicted based on information sent out by the change amount calculation means. At the same time, a predetermined range centered around the predicted in-focus position is set as an allowable area, and a control signal is sent to perform a focusing operation on the captured image when the focus of the captured image is at a focus position outside this allowable area. The present invention is characterized by comprising a predictive calculation means for sending data to the device.

[作用コ 予測演算手段は、比較手段より供給される、撮影レンズ
の移動量に対する高周波成分の振幅の変化量をもとに撮
影像の合焦位置を予測し、予め定められている所定範囲
をその予測合焦位置を中心として設定する。そして予測
演算手段は、現在撮影中の撮影像の焦点位置が上記所定
範囲から外れている場合には上記予測合焦位置まで上記
撮影像の焦点位置を移動させるように制御信号を送出す
[実施例] 本発明の自動合焦装置の一実施例を示す第1図において
、撮影レンズ2はオートフォーカス(AF)モータlに
よって該撮影レンズ2の光軸方向に移動し、撮影レンズ
2と撮像素子3の撮像面との距離が調整されることで撮
影像の合焦操作を行うものである。このような撮影レン
ズ2を介して得られる撮影像を電気信号に変換する撮像
素子3は、上記電気信号よりテレビジゴン信号にてなる
映像信号の作成等の処理を行う信号処理回路4に接続さ
れる。信号処理回路4の出力側は、上記映像信号を可視
的に表示させるための信号処理を行うカメラ回路7へ接
続されるとともに、上記映像信号より高周波成分を検出
するバンドパスフィルタ(図内ではBPFと記す)5を
介してゲート回路6に接続される。ゲート回路6にはカ
メラ回路7が送出する映像信号より自動合焦操作を行う
距離範囲を作戊するAF測距枠回路8の出力側が接続さ
れる。ゲート回路6の出力側は、カメラ回路7より送出
される信号が供給され、ゲート回路6より送出された高
周波成分を抽出保持するサンプルホールド(図内ではS
/Hと記す)回路9に接続される。サンプルホールド回
路9の出力側は、直接比較回路10に接続されるととも
に、サンプルホールド回路9が送出する高周波成分を1
フィールド分遅延させる1フィールド遅延回路1lを介
して比較回路10に接続される。よって比較回路10は
、撮影像より得られる現在の高周波成分と、■フィール
ド分遅延された高周波成分とを比較する回路であり、第
2図に示すような山登り曲線を作成するためのデータを
送出する回路である。比較回路10の出力側は、比較回
路10が送出するデータをもとに上記山登り曲線を作或
し、その山登り曲線の頂点、いわゆる合焦点を予測する
予測演算回路12に接続される。予測演算回路12の出
力側は、AFモータ1に接続される。
[The effect prediction calculation means predicts the focal position of the photographed image based on the amount of change in the amplitude of the high frequency component with respect to the amount of movement of the photographic lens, which is supplied from the comparison means, and calculates the focus position within a predetermined range. The predicted focus position is set as the center. The predictive calculation means sends a control signal to move the focal position of the photographed image to the predicted focal position when the focal position of the photographed image currently being photographed is outside the predetermined range. Example] In FIG. 1 showing an embodiment of the automatic focusing device of the present invention, the photographing lens 2 is moved in the optical axis direction of the photographing lens 2 by an autofocus (AF) motor l, and the photographing lens 2 and the image sensor The distance to the imaging surface No. 3 is adjusted to perform a focusing operation of the photographed image. An image sensor 3 that converts a photographed image obtained through such a photographic lens 2 into an electric signal is connected to a signal processing circuit 4 that performs processing such as creating a video signal in the form of a television digital signal from the electric signal. Ru. The output side of the signal processing circuit 4 is connected to a camera circuit 7 that performs signal processing to visually display the video signal, and is also connected to a bandpass filter (BPF in the figure) that detects high frequency components from the video signal. ) 5 to the gate circuit 6. The gate circuit 6 is connected to the output side of an AF distance measuring frame circuit 8 which creates a distance range for performing automatic focusing operations from the video signal sent out by the camera circuit 7. The output side of the gate circuit 6 is supplied with the signal sent out from the camera circuit 7, and a sample hold (S in the figure) extracts and holds the high frequency component sent out from the gate circuit 6.
/H) is connected to circuit 9. The output side of the sample and hold circuit 9 is directly connected to the comparison circuit 10, and the high frequency component sent out by the sample and hold circuit 9 is
It is connected to the comparator circuit 10 via a one-field delay circuit 1l that delays the signal by one field. Therefore, the comparison circuit 10 is a circuit that compares the current high frequency component obtained from the photographed image and the high frequency component delayed by ■field, and sends out data for creating a hill climbing curve as shown in FIG. This is a circuit that does this. The output side of the comparator circuit 10 is connected to a prediction calculation circuit 12 that creates the above-mentioned hill-climbing curve based on the data sent out by the comparator circuit 10 and predicts the apex of the hill-climbing curve, the so-called in-focus point. The output side of the prediction calculation circuit 12 is connected to the AF motor 1.

このように構戊される自動合焦装置の動作を以下に説明
する。
The operation of the automatic focusing device configured in this manner will be described below.

撮影レンズ1を介して得られた撮影像は、撮像素子3に
て電気信号に変換され、信号処理回路4にてテレビジョ
ン信号となる。このテレビジョン信号は、カメラ回路7
へ送出され操作者等が可視的に撮影像を確認できるよう
に処理されるとともにバンドバスフィルタ5に供給され
高周波成分が抽出され、抽出された高周波成分はゲート
回路6へ送出される。
A captured image obtained through the photographic lens 1 is converted into an electrical signal by the image sensor 3, and converted into a television signal by the signal processing circuit 4. This television signal is transmitted to the camera circuit 7
The image is processed so that an operator or the like can visually confirm the photographed image, and is also supplied to a bandpass filter 5 to extract a high frequency component, and the extracted high frequency component is sent to a gate circuit 6.

ゲート回路6にて上記高周波成分は、AF測距枠回路8
より供給される信号にて自動合焦が行われる範囲のみの
戊分が抽出され、サンプルホールド回路9へ送出される
。サンプルホールド回路9では、カメラ回路7が送出す
る信号に基づいて1二記高周波成分のサンプリング及び
サンプリング【7た高周波成分の保持を行い、サンプル
ホールド回路9より送出された高周波成分は、比較回路
10にて、1フィールド遅延回路1lにより1フィール
ド分遅延された高周波成分と遅延されていない高周波戊
分とが比較され、その比較結果は予測演算回路12に送
出される。
In the gate circuit 6, the high frequency component is transferred to the AF distance measuring frame circuit 8.
With the signal supplied from the camera, a fraction of only the range where automatic focusing is performed is extracted and sent to the sample and hold circuit 9. The sample and hold circuit 9 performs sampling and holding of the sampled high frequency components based on the signal sent out by the camera circuit 7, and the high frequency components sent out from the sample and hold circuit 9 are sent to the comparator circuit 10. At , the high frequency component delayed by one field by the one field delay circuit 1 l is compared with the high frequency component that is not delayed, and the comparison result is sent to the prediction calculation circuit 12 .

予測演算回路12においては比較回路10から1フィー
ルド毎に供給される比較された高周波成分に基づいて、
撮影像の高周波成分と撮影像の合焦位置の関係を近似的
に見いだす。即ち、従来技術では厠定時点毎における高
周波成分量に基づいて最も高周波成分の振幅が大きくな
る位置を探したが、本実施例の自動合焦装置においては
比較回路10より供給される撮影レンズ2の移動量に対
する高周波成分の振幅の変化分に基づいて第2図に示す
ような放物線の関数を近似的に求める。例えば第2図に
示すような」二に凸の放物線に近似するならば原理的に
は3回、測定した結果を比較回路10より予測演算回路
l2へ送出ずれば良いが、実際にはノイズ等の要因があ
ることを考慮して予測演算回路12は比較回路lOより
供給される3回以上の測定値データをもとに例えば最小
二乗沃等の近似処理方法によって上記放物線の関数を近
似的に求める。さらに予測演算回路12は、得られた関
数の微係数がゼロとなる位置、即ち合焦位置を演算する
。このようにして予1リ合焦位置が求められた時点で、
予測演算回路12は、予め設定されている許容範囲を上
記予測合焦位置を中心として設定する。そして現在の撮
影像の焦点位置が上記許容範囲より外れている場合には
、予測演算回路l2は上記予測合焦位置まで撮影レンズ
2を移動させるようにAFモータlへ制御信号を送出す
る。尚、上記許容範囲とは、目視では撮影像のピントの
ずれが認識できない範囲の撮影像の焦点位置のずれをい
う。
In the prediction calculation circuit 12, based on the compared high frequency components supplied for each field from the comparison circuit 10,
The relationship between the high frequency components of the photographed image and the focal position of the photographed image is approximately found. That is, in the prior art, the position where the amplitude of the high-frequency component is the largest is searched based on the amount of high-frequency component at each predetermined time point, but in the automatic focusing device of this embodiment, the photographing lens 2 supplied from the comparison circuit 10 A parabolic function as shown in FIG. 2 is approximately determined based on the amount of change in the amplitude of the high frequency component with respect to the amount of movement. For example, if the approximation is to a biconvex parabola as shown in FIG. Considering that there are factors, the prediction calculation circuit 12 approximately calculates the function of the parabola by using an approximation processing method such as least squares calculation based on the measured value data supplied from the comparison circuit 1O three times or more. demand. Furthermore, the prediction calculation circuit 12 calculates the position where the differential coefficient of the obtained function becomes zero, that is, the in-focus position. When the pre-focus position is determined in this way,
The prediction calculation circuit 12 sets a preset allowable range centered on the predicted focus position. If the current focus position of the photographed image is outside the above-mentioned allowable range, the prediction calculation circuit 12 sends a control signal to the AF motor 1 to move the photographing lens 2 to the above-mentioned predicted focus position. Note that the above-mentioned allowable range refers to a shift in the focal position of a captured image within a range where the shift in focus of the captured image cannot be visually recognized.

このように本実施例における自動合焦装置によれば、撮
影像の予測合焦位置が決まった時点で予測合焦位置まで
撮影レンズ2を一回で移動させるので、従来例のように
合焦位置を中心として前後に撮影レンズが移動すること
がなく、よって撮影画像が見づらくなることはなくなる
。又、予測合焦位置が演算された後は、一回で撮影レン
ズ2を合焦位置まで移動させることより、合焦位置の調
整に要する時間を短くすることができる。又、」二述し
たように合焦位置の決定を行った後においても、比較回
路10より予測演算回路12へのデータの送出は引き続
き行われており、撮影像の焦点位置が上記許容範囲を越
えるまでは撮影I/ンズ2を移動させず、この許容範囲
を越えた時点で改めて合焦操作に入るようにすることで
、余分な合焦操作を省き、さらに撮影画像の見づらさを
解消することができる。
As described above, according to the automatic focusing device of this embodiment, the photographic lens 2 is moved to the predicted focal position in one go at the time when the predicted focal position of the captured image is determined, so that the automatic focusing device in this embodiment is not focused as in the conventional example. The photographing lens does not move back and forth around the position, so that the photographed image does not become difficult to see. Further, after the predicted focus position is calculated, the photographic lens 2 is moved to the focus position in one step, thereby reducing the time required to adjust the focus position. Furthermore, even after the focus position has been determined as described in Section 2, data continues to be sent from the comparator circuit 10 to the prediction calculation circuit 12, and if the focus position of the captured image falls outside the above-mentioned tolerance range. By not moving the camera I/lens 2 until the tolerance is exceeded, and then re-entering the focusing operation once the tolerance has been exceeded, unnecessary focusing operations can be omitted, and furthermore, the difficulty in viewing the photographed image can be eliminated. be able to.

[発明の効果] 以上詳述したように本発明によれば、映像信ぢより抽出
される高周波成分の振幅の大小により撮影レンズを移動
させながら合焦位置を判断するのではなく、」二記高周
波成分の振幅の変化に基づき合焦位置を予測l7その予
測された合焦位置まで一回で撮影レンズを移動させるこ
とより、撮影像の合焦位置が変動せず撮影像が、見づら
くなることはない。
[Effects of the Invention] As detailed above, according to the present invention, instead of determining the in-focus position while moving the photographic lens based on the magnitude of the amplitude of the high frequency component extracted from the video signal, Predicting the in-focus position based on changes in the amplitude of high-frequency components 17 By moving the photographing lens in one go to the predicted in-focus position, the in-focus position of the photographed image does not change and the photographed image becomes difficult to see. There isn't.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の自動合焦装置の=一実施例における構
戊を示すブロソク図、第2図は焦点距離と高周波成分と
の関係を示す図である。 1・・・AFモータ、2・・・撮影レンズ、10・・・
比較回路、 12・・・予測演算回路。
FIG. 1 is a block diagram showing the structure of one embodiment of the automatic focusing device of the present invention, and FIG. 2 is a diagram showing the relationship between focal length and high frequency components. 1... AF motor, 2... Photography lens, 10...
Comparison circuit, 12... Prediction calculation circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)撮像素子より送出される信号から得た映像信号よ
り抽出される高周波成分の量にもとづいて撮影像の合焦
操作を行う合焦装置を備えた自動合焦装置において、 撮影レンズの移動量に対する上記高周波成分の変化量を
演算し送出する変化量演算手段と、上記変化量演算手段
が送出する情報にもとづいて撮影像の合焦位置を予測す
るとともに、その予測合焦位置を中心とした所定範囲を
許容領域に設定し、この許容領域外の焦点位置に撮影像
の焦点があるとき撮影像の合焦操作を行うべく制御信号
を合焦装置へ送出する予測演算手段と、を備えたことを
特徴とする自動合焦装置。
(1) In an automatic focusing device equipped with a focusing device that performs a focusing operation on a photographed image based on the amount of high frequency components extracted from a video signal obtained from a signal transmitted from an image sensor, movement of a photographing lens is performed. a change amount calculation means for calculating and sending out the amount of change in the high frequency component with respect to the amount of change; a predetermined range set as a permissible range, and a predictive calculation means for sending a control signal to a focusing device to perform a focusing operation on the photographed image when the photographed image is focused at a focal position outside the permissible range. An automatic focusing device characterized by:
JP1188027A 1989-07-20 1989-07-20 Automatic focusing device Pending JPH0352459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1188027A JPH0352459A (en) 1989-07-20 1989-07-20 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1188027A JPH0352459A (en) 1989-07-20 1989-07-20 Automatic focusing device

Publications (1)

Publication Number Publication Date
JPH0352459A true JPH0352459A (en) 1991-03-06

Family

ID=16216383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1188027A Pending JPH0352459A (en) 1989-07-20 1989-07-20 Automatic focusing device

Country Status (1)

Country Link
JP (1) JPH0352459A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302252A (en) * 2006-05-08 2007-11-22 Yamato Packing Service Co Ltd Paper-made assembly box
CN103765277A (en) * 2011-09-09 2014-04-30 文塔纳医疗系统公司 Focus and imaging system and techniques using error signal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302252A (en) * 2006-05-08 2007-11-22 Yamato Packing Service Co Ltd Paper-made assembly box
CN103765277A (en) * 2011-09-09 2014-04-30 文塔纳医疗系统公司 Focus and imaging system and techniques using error signal
JP2014529102A (en) * 2011-09-09 2014-10-30 ベンタナ メディカル システムズ, インコーポレイテッド Focus and imaging systems and techniques using error signals

Similar Documents

Publication Publication Date Title
JP3975395B2 (en) Camera system
EP2166748A1 (en) Auto focus device
JPH05344406A (en) Camera
JP3116370B2 (en) Imaging device
US10893188B2 (en) Imaging apparatus having autofocus function, and focus adjustment method therefor
KR100197609B1 (en) Method and apparatus for zooming of video camera
US6333761B2 (en) Image pickup apparatus having focus detection area size dependent on aspect ratio
CN111131662B (en) Image output method, image output apparatus, camera, and storage medium
US20110164867A1 (en) Digital photographing apparatus and method that apply high-speed multi-autofocusing (af)
JPH0829667A (en) Automatic focusing method
JPH0352459A (en) Automatic focusing device
JPH03149512A (en) Focus control circuit
JP2699340B2 (en) Automatic focusing device
JPH04349789A (en) Camera device
US8106992B2 (en) Automatic focusing system using a magnification or reduction optical system
JPH06133204A (en) Automatic focus adjustment device
JP2913530B2 (en) Automatic focus control device
JP3983534B2 (en) Imaging device
JPH09197253A (en) Method for automatic focusing
JP2882450B2 (en) Auto zoom device
JPWO2019146164A1 (en) Imaging device, imaging method, and program
JPS63202186A (en) Focal length discriminator
JPH06205258A (en) Focal position detector
JP3869689B2 (en) Auto focus camera
JPH04360378A (en) Flange back adjusting method for video camera