JPH0352386A - Picture data compression method - Google Patents

Picture data compression method

Info

Publication number
JPH0352386A
JPH0352386A JP1187170A JP18717089A JPH0352386A JP H0352386 A JPH0352386 A JP H0352386A JP 1187170 A JP1187170 A JP 1187170A JP 18717089 A JP18717089 A JP 18717089A JP H0352386 A JPH0352386 A JP H0352386A
Authority
JP
Japan
Prior art keywords
value
difference
difference value
converted
gradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1187170A
Other languages
Japanese (ja)
Inventor
Sadafumi Araki
禎史 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1187170A priority Critical patent/JPH0352386A/en
Publication of JPH0352386A publication Critical patent/JPH0352386A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the effect of data compression as a whole by converting a difference according to a predetermined nonlinear quantization characteristic when an absolute of the difference between a predicted value and actual gradation does not exceeds prescribed value and applying 2-dimension Huffman coding based on both the converted difference and the run length. CONSTITUTION:The method consists of a picture input section 1, a prediction value calculation section 2, a prediction error calculation section 3, a quantization section 4, a Huffman coding table 5 and a coding section 6. When the absolute value of a difference between a prediction value and actual gradation does not exceed a prescribed value and the difference is converted according to a predetermined nonlinear quantization characteristic, the 2-dimension Huffman coding table is generated based on number where the converted difference and picture elements with equal converted difference appear consecutively, and the code is assigned based on the coding table. Thus, an optimum 2-dimension Huffman coding table is generated in response to the frequency of occurrence of events and the code is assigned to obtain a high data compression effect.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多階調画像データの圧縮・符号化方法に係り、
特に予測符号化法の改良に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for compressing and encoding multi-tone image data,
In particular, it relates to improvements in predictive coding methods.

〔従来の技術〕[Conventional technology]

多階調画像データの高能率符号化方式として広く利用さ
れているものに予測符号化法がある(吹抜敬彦著「画像
のディジタル信号処理」(増補版)、pp146〜16
4、日刊工業新聞社、工987年8月25日発行). 一般に予測符号化法では,現在の画素の階調値をその周
辺の符号化済み画素の階調値に基づく予測関数を用いて
予測する.さらに、この予測値と実際の階調値との差分
値を予め定められた非線形特性に従って変換し(非線形
量子化)、その変換差分値に対応した符号(コード)を
割り当てる。
Predictive coding is widely used as a highly efficient coding method for multi-gradation image data (Takahiko Fukinuki, "Digital Signal Processing of Images" (expanded edition), pp. 146-16)
4, Nikkan Kogyo Shimbun, published August 25, 1987). Generally, in predictive coding methods, the gray level value of the current pixel is predicted using a prediction function based on the gray level values of the surrounding encoded pixels. Furthermore, the difference value between this predicted value and the actual gradation value is transformed according to predetermined nonlinear characteristics (nonlinear quantization), and a code corresponding to the transformed difference value is assigned.

しかし、この手法により、画像入力装置がら入力された
画像データを圧縮して符号化する場合、次のような問題
がある。
However, when using this method to compress and encode image data input from an image input device, there are the following problems.

上記差分値の非線形量子化に適用する非線形特性は、主
として差分値の出現頻度に拠っている。
The nonlinear characteristics applied to the nonlinear quantization of the difference values are mainly based on the frequency of appearance of the difference values.

即ち、出現頻度が高い部分は、差分値を細かいきざみ幅
で場合分けし,出現頻度が低い部分は逆に大まかなきざ
み幅で場合分けして、それぞれの場合に対応する代表値
を変換差分値とするのである.差分値の出現頻度は、一
般にその絶対値が小さなものほど高く,大きなものほど
低くなる傾向がある.従って、差分値と変換差分値の関
係は、差分値の絶対値が大きくなるほど,1つの変換差
分値に対応する差分値の変域が大きくなる.このことは
,差分値の絶対値が大きくなるほど、実際の差分値と変
換差分値との誤差が大きくなる可能性が高くなることを
示している.この誤差が、符号化した画像データを復号
化した際の原画像の階調値と復原画像の階調値との誤差
になるのである.般に、差分値が大きくなるのは、原画
像の階調数が激しく変化する部分、例えばエッジ部分で
起こる。そこで、上記のように差分値の絶対値が実際よ
りも小さな値に変換されると、復元画像での階調数の変
化が、原画像の階調数の変化よりもなだらかになり,例
えばエッヂ部がぼけるということになる.さらに,予測
符号化では、既に符号化した画素の階調値をもとに新た
な画素を予測するので、いったん大きな誤差が生じると
、それが後の画素にまで悪影響をおよぼすことになる.
ところが、画倣においてエッジ部というのは極めて重要
な情報を含んでいる部分であり、ここがぼけるというこ
とは、画像品質を著しく劣化させることになる. 従来、これを改善する方法としては、例えば特開昭56
−129482号公報に示されているように、差分値の
絶対値が一定値以上になった場合は、差分値の代りに階
調値を符号化して誤差の伝播を防ぐ方法が知られている
.ところが、この方式では、差分値が所定値以下の場合
は差分値を変換せずにそのまま符号化している。原画像
の階調数が16階調程度の場合はこの方式でも圧縮効果
が上がるが、256階調(8ビット)程度になると,絶
対値が所定値以下の差分値を全てそのまま符号化するこ
とは、あまり圧縮効果が上がらない.〔発明が解決しよ
うとする課題〕
In other words, for parts with high frequency of appearance, the difference value is divided into cases in fine increments, and conversely, parts with low appearance frequency are divided into cases in rough increments, and the representative value corresponding to each case is converted into a converted difference value. That is to say. In general, the frequency of appearance of difference values tends to be higher as the absolute value is smaller, and lower as the absolute value is larger. Therefore, regarding the relationship between the difference value and the converted difference value, as the absolute value of the difference value becomes larger, the range of the difference value corresponding to one converted difference value becomes larger. This shows that the larger the absolute value of the difference value, the greater the possibility that the error between the actual difference value and the converted difference value will become larger. This error results in an error between the tone values of the original image and the tone values of the restored image when the encoded image data is decoded. Generally, the difference value becomes large in a portion where the number of gradations of the original image changes drastically, such as an edge portion. Therefore, if the absolute value of the difference value is converted to a smaller value than the actual value as described above, the change in the number of gradations in the restored image will be more gradual than the change in the number of gradations in the original image, for example, This means that some parts will be blurred. Furthermore, in predictive coding, new pixels are predicted based on the gradation values of pixels that have already been encoded, so once a large error occurs, it will adversely affect subsequent pixels.
However, in image copying, the edge area contains extremely important information, and blurring this area will significantly degrade the image quality. Conventionally, as a method to improve this, for example, Japanese Patent Application Laid-open No. 56
As shown in Publication No. 129482, it is known that when the absolute value of the difference value exceeds a certain value, a tone value is encoded instead of the difference value to prevent error propagation. .. However, in this method, if the difference value is less than a predetermined value, the difference value is encoded as is without being converted. If the number of gradations in the original image is about 16, the compression effect will be improved even with this method, but if it becomes about 256 gradations (8 bits), all the difference values whose absolute value is less than a predetermined value will be encoded as is. does not have much compression effect. [Problem to be solved by the invention]

Claims (1)

【特許請求の範囲】[Claims] (1)多階調データを圧縮して符号化する方法であって
、注目画素の階調値をその周辺の符号化済み画素の階調
値に基づく予測関数を用いて予測し、予測値と実際の階
調値との差分値を求め、該差分値の絶対値が所定値を超
えたときは、当該階調値を予め定められた線形量子化特
性に従って変換し、その変換階調値に対応した符号を割
当て、差分値の絶対値が所定値を超えないときは、当該
差分値を予め定められた非線形量子化特性に従って変換
し、その変換差分値に対応した符号を割当てる符号化方
式において、 前記差分値の絶対値が所定値を超えず当該差分値が予め
定められた非線形量子化特性に従って変換された場合、
その変換差分値および当該変換差分値の等しい画素が連
続して現れた個数をもとにして2次元ハフマン符号化テ
ーブルを生成し、当該符号化テーブルにもとづいて符号
を割当てることを特徴とする画像データ圧縮方法。
(1) A method of compressing and encoding multi-gradation data, in which the gradation value of a pixel of interest is predicted using a prediction function based on the gradation values of encoded pixels around it, and the predicted value and The difference value from the actual gradation value is calculated, and if the absolute value of the difference value exceeds a predetermined value, the gradation value is converted according to a predetermined linear quantization characteristic, and the converted gradation value is In an encoding method, a corresponding code is assigned, and when the absolute value of the difference value does not exceed a predetermined value, the difference value is transformed according to a predetermined nonlinear quantization characteristic, and a code corresponding to the transformed difference value is assigned. , when the absolute value of the difference value does not exceed a predetermined value and the difference value is converted according to a predetermined nonlinear quantization characteristic,
An image characterized in that a two-dimensional Huffman encoding table is generated based on the transformation difference value and the number of consecutive pixels with the same transformation difference value, and a code is assigned based on the encoding table. Data compression method.
JP1187170A 1989-07-19 1989-07-19 Picture data compression method Pending JPH0352386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1187170A JPH0352386A (en) 1989-07-19 1989-07-19 Picture data compression method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1187170A JPH0352386A (en) 1989-07-19 1989-07-19 Picture data compression method

Publications (1)

Publication Number Publication Date
JPH0352386A true JPH0352386A (en) 1991-03-06

Family

ID=16201340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1187170A Pending JPH0352386A (en) 1989-07-19 1989-07-19 Picture data compression method

Country Status (1)

Country Link
JP (1) JPH0352386A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43256E1 (en) 2003-01-13 2012-03-20 Nokia Corporation Processing of images using a limited number of bits

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43256E1 (en) 2003-01-13 2012-03-20 Nokia Corporation Processing of images using a limited number of bits

Similar Documents

Publication Publication Date Title
JP3716931B2 (en) Adaptive decoding device for continuous images
EP0399487A2 (en) Transformation coding device
EP0838954A2 (en) Image encoding and decoding apparatus
US5719961A (en) Adaptive technique for encoder and decoder signal transformation
EP1091592A2 (en) Video signal encoding apparatus
JPH03192876A (en) Picture coder
JPH05219385A (en) Picture compression expansion method and device
JP2004528791A (en) Inter-frame encoding method and apparatus
JP2002064821A (en) Method for compressing dynamic image information and its system
JP2901656B2 (en) Image coding device
JPH0352386A (en) Picture data compression method
JP2839142B2 (en) Image coding method
JP2000165873A (en) Compression method for moving picture information and its system
JPS63284974A (en) Picture compression system
JPH02305271A (en) Picture data compressing method
JPH02248162A (en) Picture data encoding system
JP2891251B2 (en) Image encoding device and image decoding device
JP3577093B2 (en) Image coding and restoration device
JP2872149B2 (en) Image coding device
JPH10336656A (en) Image encoding device and method
JPH07240920A (en) Compression and extension for digital image data
JPH06296275A (en) Method and device for encoding image signal
KR100303744B1 (en) Method and device for compressing and expanding image
JP3016805B2 (en) Image data compression method
JP3480644B2 (en) Image encoding device and image decoding device