JPH0351852Y2 - - Google Patents

Info

Publication number
JPH0351852Y2
JPH0351852Y2 JP4054185U JP4054185U JPH0351852Y2 JP H0351852 Y2 JPH0351852 Y2 JP H0351852Y2 JP 4054185 U JP4054185 U JP 4054185U JP 4054185 U JP4054185 U JP 4054185U JP H0351852 Y2 JPH0351852 Y2 JP H0351852Y2
Authority
JP
Japan
Prior art keywords
cable
cap
core wire
coated
extruder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4054185U
Other languages
Japanese (ja)
Other versions
JPS60162320U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4054185U priority Critical patent/JPS60162320U/en
Publication of JPS60162320U publication Critical patent/JPS60162320U/en
Application granted granted Critical
Publication of JPH0351852Y2 publication Critical patent/JPH0351852Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【考案の詳細な説明】 本考案は、架橋ポリエチレンケーブルの製造装
置に関するものである。
[Detailed Description of the Invention] The present invention relates to an apparatus for manufacturing a crosslinked polyethylene cable.

従来、架橋ポリエチレンケーブルの製造手段に
おいては、心線に絶縁材料を被覆後、これを架橋
筒(口金)内に導き、心線を誘導加熱するととも
に絶縁被覆の外側から高温高圧ガスを介して絶縁
層を加熱し架橋反応を行わせていた。この架橋反
応により分解ガスが生成されるが、そのガスの生
成により絶縁被覆が発泡しボイドを生じるので高
圧力のガスを加えていた。
Conventionally, in the production of cross-linked polyethylene cables, the core wire is coated with an insulating material and then introduced into a cross-linking tube (cap), where the core wire is heated by induction and insulated via high-temperature, high-pressure gas from outside the insulation coating. The layer was heated to cause a crosslinking reaction. This crosslinking reaction generates decomposition gas, which causes the insulation coating to foam and create voids, so high-pressure gas was applied.

しかし、従来の製造手段では、分解ガスを積極
的の取除くことがなされていなかつたため、ボイ
ドの発生を抑えることが難しく、その結果ケーブ
ルの製造速度を上昇させることができなかつた。
また、誘導加熱コイルが高温の軟化している被覆
と接触すると絶縁層が変形するため、絶縁層と誘
導コイルとの間に所定のクリアランスを保ち絶対
に接触しないようにしている。
However, in the conventional manufacturing means, since the decomposition gas was not actively removed, it was difficult to suppress the generation of voids, and as a result, it was not possible to increase the manufacturing speed of the cable.
Furthermore, since the insulating layer is deformed when the induction heating coil comes into contact with the high-temperature, softened coating, a predetermined clearance is maintained between the insulating layer and the induction coil to ensure that they never come into contact.

従つて、誘導加熱用コイルの内径が必要以上に
大きくなり、そのため加熱効率の低下を招いてい
た。
Therefore, the inner diameter of the induction heating coil becomes larger than necessary, resulting in a decrease in heating efficiency.

本考案の目的は、押し出し架橋速度及び性能の
向上ができるようにした架橋ポリエチレンケーブ
ルの製造装置を提供することにある。
An object of the present invention is to provide a crosslinked polyethylene cable manufacturing apparatus that can improve extrusion crosslinking speed and performance.

本考案の要旨は、けん引され進行する心線の周
囲に絶縁材料を被覆する押出機と、高周波電流が
供給され心線を加熱する高周波誘導加熱用コイル
と、高温高圧のガスにより口金を外側から加熱す
る手段と、上記押出機により押し出され被覆され
た被覆絶縁部分を案内する上記口金とを設けてな
る架橋ポリエチレンケーブルの製造装置におい
て、上記口金を多孔性焼結合金材料により形成す
るとともにそれ自身の内面にフツソ樹脂コーテイ
ング層を施し、上記口金外周部に架橋反応時の分
解ガスの吸引排気口を設けたことを特徴とするも
のである。
The gist of this invention is an extruder that coats an insulating material around a core wire that is being towed and advances, a high-frequency induction heating coil that is supplied with high-frequency current to heat the core wire, and a cap that is heated from the outside using high-temperature, high-pressure gas. In an apparatus for manufacturing a crosslinked polyethylene cable, which is provided with a means for heating and the above-mentioned mouthpiece for guiding the coated insulating part extruded by the extruder, the mouthpiece is formed of a porous sintered alloy material, and the mouthpiece itself is made of a porous sintered alloy material. It is characterized in that a soft resin coating layer is applied to the inner surface of the mouthpiece, and a suction/exhaust port for decomposed gas during the crosslinking reaction is provided on the outer periphery of the mouthpiece.

以下、本考案の架橋ポリエチレンケーブルの製
造装置の一実施例を第1図、第2図により説明す
る。
Hereinafter, an embodiment of the crosslinked polyethylene cable manufacturing apparatus of the present invention will be described with reference to FIGS. 1 and 2.

2は押出機で、鉛直方向にけん引され進行する
心線1の周囲に絶縁材料を押し出しケーブル被覆
8を形成するようになつている。5は長ランドの
多孔性材料の焼結合金体の押出機2の口金で、ケ
ーブル被覆8と案内リール進行方向に長く形成さ
れ、最小部にケーブル被覆8が平滑に進むように
潤滑油の給油口3が設けられ、口金5内を通過し
被覆層界面に潤滑油が注がれるようになつてい
る。口金5の外周の外部加熱面11には1〜20K
Hzの高周波電流が供給される高周波誘導加熱用の
誘導コイル7が複数巻き巻回され、また、外部加
熱面11は高温高圧のガスによる加熱手段(図示
せず)により加熱されるようになつている。口金
5の外周部と外部加熱面11との間には連通口1
3を有するスペーサ12が配設されており、ま
た、外部加熱面11には吸引排気口9が設けられ
ている。
Reference numeral 2 denotes an extruder which extrudes an insulating material around the core wire 1 which is being towed and advances in the vertical direction to form a cable sheath 8. Reference numeral 5 designates the extruder 2 for extruding a sintered alloy body made of a porous material with a long land, and is formed long in the direction in which the cable sheathing 8 and the guide reel advance. A spout 3 is provided so that lubricating oil passes through the mouthpiece 5 and is poured onto the coating layer interface. The external heating surface 11 on the outer periphery of the cap 5 has a temperature of 1 to 20K.
An induction coil 7 for high-frequency induction heating to which a high-frequency current of Hz is supplied is wound in multiple turns, and the external heating surface 11 is heated by heating means (not shown) using high-temperature and high-pressure gas. There is. A communication port 1 is provided between the outer periphery of the cap 5 and the external heating surface 11.
A spacer 12 having a diameter of 3 is provided, and a suction/exhaust port 9 is provided on the external heating surface 11 .

6はフツソ樹脂コーテイングでケーブル被覆8
が口金5の表面の微細な孔に目詰りしないように
して円滑にすべるように形成したものであり、し
たがつて、その厚さは、吸引排気口9から真空引
きすることによりケーブル被覆8において発生し
た分解ガスが比較的容易に通過し得る0.03〜0.2
mm程度とする必要がある。4はアイソレータであ
る。
6 is a cable covering with a soft resin coating 8
The cable is formed so that it can slide smoothly without clogging the fine holes on the surface of the cap 5. Therefore, its thickness can be reduced by applying a vacuum from the suction/exhaust port 9 to the cable sheath 8. 0.03 to 0.2 through which the generated decomposition gas can pass relatively easily
It needs to be about mm. 4 is an isolator.

口金5には例えばステンレス,青銅などの材質
の多孔性焼結合金を使用するが、口金5の外側に
は加熱用誘導コイル7を取付けるのでこの部分も
不必要に加熱される。
The cap 5 is made of a porous sintered alloy such as stainless steel or bronze, but since the heating induction coil 7 is attached to the outside of the cap 5, this portion is also heated unnecessarily.

従つて、この加熱量を低減するためには電気固
有抵抗の高い材料が望ましくその抵抗率pはp>
100μΩcm程度が好ましい。しかし、pがそれ以下
でも単に導体誘導加熱の効率が低下するだけで本
質的には影響がない。また、誘導コイル7は、各
素線間を絶縁して形成された転位撚線を複数個非
磁性高電気抵抗率のパイプ内周に環状に配設収容
し、この環状に配置された転位撚線群の中央に冷
却水通路を形成した高周波誘導加熱用コイルを使
用すれば誘導加熱効率を向上することができる。
Therefore, in order to reduce the amount of heating, it is desirable to use a material with high electrical resistivity, and the resistivity p is p>
Approximately 100μΩcm is preferable. However, even if p is less than that, the efficiency of conductor induction heating simply decreases and there is essentially no effect. In addition, the induction coil 7 includes a plurality of transposed twisted wires formed by insulating each strand, arranged and accommodated in a ring shape around the inner periphery of a non-magnetic high electrical resistivity pipe, and the transposed twisted wires arranged in an annular shape. Induction heating efficiency can be improved by using a high-frequency induction heating coil in which a cooling water passage is formed in the center of the wire group.

この製造装置により架橋ポリエチレンケーブル
を製造する場合には、鉛直方向に進行する心線1
の周囲に押出機2により絶縁材料を押し出しケー
ブル被覆8を形成するとともにケーブル被覆8を
口金5内を進行させる。口金5内を進行する心線
1は誘導コイル7によつて加熱されるのでケーブ
ル被覆8は内周側から加熱され、また外部加熱面
11は高温高圧のガスにより加熱されてケーブル
被覆8を外周側から加熱し、ケーブル被覆8は中
央まで約180℃に加熱され架橋が行なわれる。こ
の場合に、ケーブル被覆8の架橋時に発生する分
解ガスは吸引排気口9から真空引きされ強制的に
吸引されることにより、ケーブル被覆8の外周部
表面に拡散してきたガスは口金5の多孔状部を介
し吸引除去されボイドの発生を防止することがで
き製造速度を上昇できる。
When manufacturing a cross-linked polyethylene cable using this manufacturing equipment, the core wire 1 traveling in the vertical direction
An extruder 2 extrudes an insulating material around the cable to form a cable sheath 8, and the cable sheath 8 is advanced through the base 5. Since the core wire 1 traveling inside the base 5 is heated by the induction coil 7, the cable sheathing 8 is heated from the inner circumferential side, and the external heating surface 11 is heated by high-temperature, high-pressure gas to heat the cable sheathing 8 from the outer circumference. By heating from the side, the cable sheath 8 is heated to about 180° C. to the center to effect crosslinking. In this case, the decomposed gas generated during crosslinking of the cable sheathing 8 is evacuated and forcibly sucked through the suction/exhaust port 9, and the gas that has diffused to the outer peripheral surface of the cable sheathing 8 is dispersed through the porous cap 5. It is possible to prevent the generation of voids and increase the production speed.

尚、内側及び外側からの加熱によりケーブル被
覆8が加熱されるには、かなりの時間を必要と
し、ケーブル被覆8が加熱され架橋反応が進んで
から分解ガスが生ずることから多孔性の口金5に
よる排気はケーブルが進行方向にある程度進んだ
位置からでもよい。また、給油口3の部分から口
金5を加熱し、ケーブル被覆8に対する加熱をで
きるだけ前方から行なうことが好ましい。
It should be noted that it takes a considerable amount of time for the cable sheathing 8 to be heated by heating from the inside and outside, and decomposition gas is generated after the cable sheathing 8 is heated and the crosslinking reaction has progressed. The exhaust may be exhausted from a position where the cable has advanced to some extent in the direction of travel. Further, it is preferable to heat the cap 5 from the oil filler port 3 and heat the cable sheath 8 from the front as much as possible.

上記のように分解ガスを脱気した結果、
66KV,400mm2架橋ポリエチレンケーブルの製造
の場合において、従来のこの種製造装置を用いた
のに比べ、3μmのボイドが1/10の減少し密度も
幾分向上し、ケーブル被覆8はすべてゲル分率が
85%以上で問題がなく、AC破壊電圧は従来値と
等しかつたが、インパルス破壊値は20%上昇し、
押し出し製造速度は従来の2倍に向上した。
As a result of degassing the cracked gas as described above,
In the case of manufacturing a 66KV, 400mm 2 cross-linked polyethylene cable, compared to using conventional manufacturing equipment of this type, the 3μm voids were reduced by 1/10, the density was improved somewhat, and the cable sheath 8 was completely gel-based. Rate is
There was no problem at 85% or higher, and the AC breakdown voltage was the same as the conventional value, but the impulse breakdown value increased by 20%,
The extrusion production speed has been doubled compared to the conventional method.

以上記述した如く本考案の架橋ポリエチレンケ
ーブルの製造装置によれば、押し出し製造速度及
び性能を著しく向上することができる効果を有す
るものである。
As described above, the crosslinked polyethylene cable manufacturing apparatus of the present invention has the effect of significantly improving extrusion manufacturing speed and performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本考案の架橋ポリエチレンケーブル
の製造装置の一実施例の一部を断面で示した正面
図、第2図は第1図のA部詳細断面図である。 1……心線、2……押出機、5……口金、7…
…誘導コイル、8……ケーブル被覆、9……吸引
排気口。
FIG. 1 is a front view showing a part of an embodiment of the crosslinked polyethylene cable manufacturing apparatus of the present invention in cross section, and FIG. 2 is a detailed sectional view of section A in FIG. 1. 1... core wire, 2... extruder, 5... nozzle, 7...
...Induction coil, 8...Cable covering, 9...Suction/exhaust port.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] けん引され進行する心線の周囲に絶縁材料を被
覆する押出機と、高周波電流が供給され心線を加
熱する高周波誘導加熱用コイルと、高温高圧のガ
スにより口金を外側から加熱する手段と、上記押
出機により押し出され被覆された被覆絶縁部分を
案内する上記口金とを設けてなる架橋ポリエチレ
ンケーブルの製造装置において、上記口金を多孔
性焼結合金材料により形成するとともにそれ自身
の内面にフツソ樹脂コーテイング層を施し、上記
口金外周部に架橋反応時の分解ガスの吸引排気口
を設けたことを特徴とする架橋ポリエチレンケー
ブルの製造装置。
an extruder that coats an insulating material around the core wire that is being towed and advances, a high-frequency induction heating coil that is supplied with a high-frequency current to heat the core wire, a means for heating the cap from the outside with high-temperature, high-pressure gas, and the above-mentioned A cross-linked polyethylene cable manufacturing apparatus is provided with the above-mentioned cap for guiding the coated insulating part extruded by an extruder, and the above-mentioned cap is formed of a porous sintered alloy material, and the inner surface of the cable is coated with a soft resin. 1. An apparatus for manufacturing a crosslinked polyethylene cable, characterized in that a crosslinked polyethylene cable is coated with a layer and a suction/exhaust port for decomposed gas during a crosslinking reaction is provided on the outer periphery of the base.
JP4054185U 1985-03-20 1985-03-20 Cross-linked polyethylene cable manufacturing equipment Granted JPS60162320U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4054185U JPS60162320U (en) 1985-03-20 1985-03-20 Cross-linked polyethylene cable manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4054185U JPS60162320U (en) 1985-03-20 1985-03-20 Cross-linked polyethylene cable manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS60162320U JPS60162320U (en) 1985-10-28
JPH0351852Y2 true JPH0351852Y2 (en) 1991-11-08

Family

ID=30549521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4054185U Granted JPS60162320U (en) 1985-03-20 1985-03-20 Cross-linked polyethylene cable manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS60162320U (en)

Also Published As

Publication number Publication date
JPS60162320U (en) 1985-10-28

Similar Documents

Publication Publication Date Title
JPH1069826A (en) Manufacture of coaxial cable
JP2000511684A (en) High voltage winding conductor and method of manufacturing the conductor
CN110570992B (en) Production process of magnetic suspension track traffic long stator cable
CN214705541U (en) Cable for charging pile
US2298748A (en) Method of making electric cables
JPH0351852Y2 (en)
JP2021170452A (en) Method for manufacturing power transmission cable
JPH06295622A (en) Winding type high voltage resistance electric wire for preventing generation of noise
US1995356A (en) Submarine communication conductor
CA1089206A (en) Process for manufacturing coaxial cable
JPS6031124Y2 (en) Rubber/plastic insulated power cable
JPS6343766Y2 (en)
JP7136103B2 (en) Power cable manufacturing method
JP2528934Y2 (en) Three layer extruded power cable
JP2003059362A (en) Manufacturing method for oil-impregnated paper solid cable
JPS6328807Y2 (en)
JPS621696Y2 (en)
JPS6344892Y2 (en)
JPS6116570Y2 (en)
CA1196162A (en) Tree resistant power cable
JPS585516B2 (en) Kakiyou Polyethylene Cable Nosetsuzokuhouhou
JPS6017689B2 (en) Continuous vulcanization method for electric wires
JPS6111853Y2 (en)
JPS5933127Y2 (en) Cross-linked polyethylene power cable
JPS63274014A (en) Photo-fiber compound monocore power cable