JPH0351795B2 - - Google Patents

Info

Publication number
JPH0351795B2
JPH0351795B2 JP20754884A JP20754884A JPH0351795B2 JP H0351795 B2 JPH0351795 B2 JP H0351795B2 JP 20754884 A JP20754884 A JP 20754884A JP 20754884 A JP20754884 A JP 20754884A JP H0351795 B2 JPH0351795 B2 JP H0351795B2
Authority
JP
Japan
Prior art keywords
metal
treated
bath
article
fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20754884A
Other languages
Japanese (ja)
Other versions
JPS6187873A (en
Inventor
Takeo Oki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20754884A priority Critical patent/JPS6187873A/en
Publication of JPS6187873A publication Critical patent/JPS6187873A/en
Publication of JPH0351795B2 publication Critical patent/JPH0351795B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、被処理物品表面に金属化合物層を形
成する方法、特に、被処理物品表面に溶融塩化物
浴を使用して、金属化合物、例えば金属炭化物あ
るいは金属ホウ化物からなる金属化合物層を形成
する方法に関する。 (従来の技術) 従来より、金属材料、特に鉄系材料において表
面硬度あるいはその耐摩耗性を向上させる目的で
各種金属あるいは非金属元素を例えば炭化物、ホ
ウ化物の形態で材料表面に付着させる各種の方法
が知られている。一般には、メツキ法、電解ある
いは無電解溶融塩浴浸漬法、セメンテーシヨン
法、溶射法、放電硬化法、etc.である。 例えば、無電解溶融塩浴浸漬法は、溶融ホウ酸
または溶融ホウ酸塩浴中に目的とする金属を溶融
し、これに被処理物品を浸漬することによつて、
上記金属の炭化物あるいはホウ化物層を被処理材
表面に付着する方法である。一般に金属炭化物あ
るいはホウ化物は硬く、耐摩耗性に富んでいるの
で、耐摩耗性部品、例えば金型、治工具、工作機
械あるいは自動車の摺動部品などとして今日広く
使用されている。 (発明が解決すべき問題点) このように、今日実用化されている処理方法に
は多くのものがあるが、溶融塩浸漬法はその処理
方法が簡便であるということから、実用化には魅
力のある方法である。なお、電解溶融塩浸漬法は
上述の浸漬時に被処理材を陰極として電解を併せ
て行う方法であり、金属化合物の析出が促進され
るが、処理操作がかなり複雑となり、高価な処理
といえる。 そこで、本発明者は溶融塩浴による表面処理に
着目して検討をおこなつた。 しかし、被処理物品表面に形成する金属化合物
層は非常に安定したものが要求され、このこと
は、通常の溶融塩化物浴では多くの金属化合物は
遊離してこない、つまり反応しないということで
あり、一般にそのような金属化合物の形成は困難
と考えられていた。そのために従来はホウ酸もし
くはホウ酸塩浴を利用しているのである。 ここに、本発明者は、溶融塩の組成並びにそれ
に添加する金属化合物の種類についてその組合せ
を種々検討し、反応エネルギー的に最も可能性の
ある組合せをいくつか取り出して、実際に処理を
行つてみたところ、従来、反応しないと考えられ
ていた金属酸化物についてもフツ化物の存在下で
はフツ化金属イオンに変化し、かかる化合物の存
在下では例えば金属炭化物(あるいはホウ化物)
が容易に被処理物品表面に析出し、そのようにし
て得られた処理表面が基体と密着するとともにす
ぐれた硬さ、耐摩耗性、さらには耐食性を有する
ことを見出し、ここに本発明を完成した。 ここに、本発明の特徴とするところは、被処理
物品表面に溶融塩浴により目的とする金属の化合
物から成る表面皮膜を形成する方法であつて、フ
ツ化物含有溶融塩化物浴に上記の目的とする金属
の酸化物および単体金属もしくは該金属を含む合
金を添加して浸漬浴を調製し、次いで、処理すべ
き前記被処理物品を適宜時間該浸漬浴に浸漬する
ことを特徴とする、被処理表面に金属化合物層を
形成する方法である。 本発明における技術的特徴は、溶融塩化物浴に
目的金属のフツ化金属イオンが形成され、これが
各種金属化合物として被処理物品表面に析出する
ことであり、したがつて、フツ化金属イオンが生
成する限り本発明はそれに由来する具体的金属化
合物およびそれの有する具体的特性に制限されな
い。 上述の金属化合物の析出反応は該金属化合物が
炭化物である場合被処理物品に炭素が含まれると
きに、加速されるから、好ましくは前記被処理物
品は炭素0.1重量%以上含有する鉄系材料あるい
は超硬合金さらには炭素繊維材料である。また、
前記金属化合物が金属ホウ化物である場合、前記
被処理物品がホウ素含有材料から成るものであつ
てもよい。 上記溶融塩浴に目的とする金属の酸化物を添加
する場合には、単体金属もしくは合金をも添加し
て浸漬浴を調製する。 本発明は塩化物浴の有する利点を利用するもの
で、前記溶融塩化物浴はアルカリ金属、アルカリ
土類金属の塩化物の少なくとも一種から成るもの
であつてもよく、また一態様によれば、前記フツ
化物はアルカリ金属またはアルカリ土類金属のフ
ツ化物である。 (作用) 上記溶融塩化物浴は、一般にはKCl−BaCl2
基本組成とし、これにフツ化物、例えばNaFを
添加したものである。その他、溶融塩化物浴とし
ては、代表的にはNaCL、LiCl、CaCl2等が例示
され、またフツ化物としては、NaF、KF、LiF、
CaF2、BaF2等がある。好ましくはアルカリ金属
塩化物−アルカリ土類金属塩化物−アルカリ金属
フツ化物から成る浴組成が好ましい。そのときの
具体的組成割合などはすでに当業者には明らかな
ところであるが、一般には、KCl−BaCl2−NaF
系の場合、KClは、5〜95モル%、BaCl2は、5
〜95モル%、そしてNaFは、5〜50モル%であ
る。フツ化物が50モル%を超えると、浴温度が高
くなりすぎるばかりでなく、腐食の問題が生じ
る。 目的とする金属の種類は特に制限されないが、
本発明にかかる処理方法の一つの目的が被処理材
の耐摩耗性向上にあることから、一般には硬質金
属、例えばCr、V、W、Mo、Ti、Zr.Hf、Nb、
Ta等周期律表第a族、第Va族および第a族
金属である。 このような目的金属は、一部は化合物として代
表的には、酸化物として上記溶融塩化物浴に加え
られるが、これは入手も容易であり、また、一般
的に取扱も容易であることから、有利である。ま
た、他の一部は、金属粉末として添加される。こ
れは目的金属の単体金属またはそれを含む合金、
例えばフエロアロイなどとして添加してもよく、
これも本発明の有利な点である。 このように、フツ化物としてナトリウム金属フ
ツ化物を使用した場合、溶融塩中のNaFと酸化
物とが反応して、部分的にフツ化金属カリ、ソー
ダ等が生成する。そしてそれらは、それぞれ、例
えば、TiO2→NaK2TiF6、Cr2O3→NaCrF3
V2O5→Na3VF6、B2O3→KBF4、WO3→K3WF6
である。そしてそれらは、次いで被処理金属表面
で反応して、それぞれ、TiC、Cr7C3、VC、
BFe2、Fe6W6Cなどとなる。 浸漬時間、温度は目的とする生成金属化合物の
種類、被処理物品の材質によつても区々である
が、一般には、800〜1000℃で1〜数時間処理す
れば十分である。 目的とする金属の単体、合金の添加量について
は制限はないが、一般には2〜20%、好ましくは
5〜15%である。同様に金属酸化物の量も2〜7
%、好ましくは5〜7%である。 次に本発明を実施例によつて、さらに具体的に
説明する。なお、本明細書において「%」は特に
ことわりがなければ、「重量%」である。 実施例 本例では、磁性ルツボにKCl、BaCl2および
NaFをそれぞれ42.2、20.2、および37.6モル%加
えて加熱溶融した後、一旦温度を700℃に下げて、
所定量の各金属酸化物および合金粉末(フエロア
ロイ)を添加して、十分撹拌し、浸漬浴とした。 このようにして調製した浸漬浴に第1表に示す
鋼組成の試験片(JIS SKD11)を所定時間だけ
浸漬した。本例で使用した金属酸化物と合金との
組合せは第2表に示すとおりであつた。
(Industrial Application Field) The present invention relates to a method for forming a metal compound layer on the surface of an article to be treated, in particular, a method of forming a metal compound layer on the surface of an article to be treated, using a molten chloride bath to form a layer of metal compounds, such as metal carbides or metal borides, on the surface of the article to be treated. The present invention relates to a method for forming a metal compound layer comprising: (Prior Art) Conventionally, various metals or non-metallic elements have been attached to the surface of metal materials, especially iron-based materials, in the form of carbides or borides for the purpose of improving surface hardness or wear resistance. method is known. Generally, the plating method, electrolytic or electroless molten salt bath immersion method, cementation method, thermal spraying method, discharge hardening method, etc. For example, the electroless molten salt bath immersion method involves melting the target metal in a molten boric acid or molten borate bath, and immersing the article to be treated in this.
This is a method in which a carbide or boride layer of the above metal is attached to the surface of the material to be treated. Generally, metal carbides or borides are hard and have high wear resistance, and are therefore widely used today as wear-resistant parts such as molds, jigs, tools, machine tools, and sliding parts of automobiles. (Problems to be solved by the invention) As described above, there are many treatment methods in practical use today, but the molten salt immersion method is a simple treatment method, so it is difficult to put it into practical use. This is an attractive method. In addition, the electrolytic molten salt immersion method is a method in which electrolysis is performed using the material to be treated as a cathode during the above-mentioned immersion, and the precipitation of metal compounds is promoted, but the processing operation is quite complicated and can be said to be an expensive process. Therefore, the present inventors conducted studies focusing on surface treatment using a molten salt bath. However, the metal compound layer formed on the surface of the article to be treated is required to be extremely stable, which means that in a normal molten chloride bath, many metal compounds will not be liberated, that is, they will not react. , the formation of such metal compounds was generally considered difficult. Traditionally, boric acid or borate baths have been used for this purpose. Here, the present inventor investigated various combinations of the composition of the molten salt and the type of metal compound added thereto, selected some of the most possible combinations in terms of reaction energy, and conducted the actual treatment. As a result, even metal oxides, which were conventionally thought to be non-reactive, change to metal fluoride ions in the presence of fluorides, and in the presence of such compounds, for example, metal carbides (or borides)
It was discovered that the treated surface easily precipitates on the surface of the article to be treated, and that the treated surface thus obtained adheres closely to the substrate and has excellent hardness, abrasion resistance, and further corrosion resistance, and has hereby completed the present invention. did. Here, the feature of the present invention is a method of forming a surface film consisting of a target metal compound on the surface of an article to be treated using a molten salt bath, and in which a fluoride-containing molten chloride bath is used for the above-mentioned purpose. A dipping bath is prepared by adding an oxide of the metal to be treated and an elemental metal or an alloy containing the metal, and then the article to be treated is immersed in the dipping bath for an appropriate time. This method forms a metal compound layer on the treated surface. The technical feature of the present invention is that metal fluoride ions of the target metal are formed in the molten chloride bath, and these are deposited as various metal compounds on the surface of the article to be treated. Therefore, metal fluoride ions are generated. To the extent that it does, the present invention is not limited to the specific metal compounds derived therefrom or the specific properties thereof. The precipitation reaction of the metal compound described above is accelerated when the metal compound is a carbide and the article to be treated contains carbon, so preferably the article to be treated is an iron-based material containing 0.1% by weight or more of carbon or Cemented carbide and even carbon fiber materials. Also,
When the metal compound is a metal boride, the article to be treated may be made of a boron-containing material. When adding an oxide of a desired metal to the molten salt bath, the immersion bath is prepared by also adding a single metal or an alloy. The present invention takes advantage of the advantages of a chloride bath, the molten chloride bath being comprised of at least one alkali metal or alkaline earth metal chloride; and in one embodiment, The fluoride is an alkali metal or alkaline earth metal fluoride. (Function) The above-mentioned molten chloride bath generally has a basic composition of KCl-BaCl 2 to which is added a fluoride, for example, NaF. In addition, typical examples of molten chloride baths include NaCL, LiCl, CaCl2 , etc., and examples of fluorides include NaF, KF, LiF,
There are CaF2 , BaF2, etc. Preferably, a bath composition consisting of alkali metal chloride-alkaline earth metal chloride-alkali metal fluoride is preferred. The specific composition ratio at that time is already clear to those skilled in the art, but in general, KCl−BaCl 2 −NaF
In the case of the system, KCl is 5 to 95 mol%, BaCl 2 is 5 to 95 mol%
~95 mol% and NaF is 5-50 mol%. If the fluoride content exceeds 50 mole percent, not only will the bath temperature become too high, but corrosion problems will occur. The type of target metal is not particularly limited, but
Since one purpose of the treatment method according to the present invention is to improve the wear resistance of the treated material, generally hard metals such as Cr, V, W, Mo, Ti, Zr.Hf, Nb,
These are metals of Group A, Group Va, and Group A of the periodic table, such as Ta. Such target metals are typically added to the molten chloride bath as oxides, in part as compounds, since they are readily available and generally easy to handle. , is advantageous. In addition, the other part is added as metal powder. This refers to the target metal or an alloy containing it,
For example, it may be added as a ferroalloy, etc.
This is also an advantage of the invention. In this way, when sodium metal fluoride is used as the fluoride, NaF in the molten salt reacts with the oxide, and metal fluoride potassium, soda, etc. are partially produced. and they are, respectively, for example, TiO 2 →NaK 2 TiF 6 , Cr 2 O 3 →NaCrF 3 ,
V 2 O 5 →Na 3 VF 6 , B 2 O 3 →KBF 4 , WO 3 →K 3 WF 6
It is. Then, they react on the surface of the treated metal to form TiC, Cr 7 C 3 , VC, and TiC, respectively.
BFe 2 , Fe 6 W 6 C, etc. The immersion time and temperature vary depending on the type of target metal compound to be produced and the material of the article to be treated, but generally, treatment at 800 to 1000°C for one to several hours is sufficient. There is no limit to the amount of the target metal or alloy added, but it is generally 2 to 20%, preferably 5 to 15%. Similarly, the amount of metal oxide is 2 to 7
%, preferably 5-7%. Next, the present invention will be explained in more detail with reference to Examples. In this specification, "%" means "% by weight" unless otherwise specified. Example In this example, KCl, BaCl 2 and
After adding 42.2, 20.2, and 37.6 mol% of NaF and heating and melting them, the temperature was lowered to 700℃,
Predetermined amounts of each metal oxide and alloy powder (ferroalloy) were added and sufficiently stirred to form an immersion bath. A test piece (JIS SKD11) having a steel composition shown in Table 1 was immersed in the immersion bath thus prepared for a predetermined time. The combinations of metal oxides and alloys used in this example were as shown in Table 2.

【表】 反応条件を種々変えて一連の実験を行つた。そ
れらの結果を第3表ないし第7表にまとめて示
す。 第3表は浸漬温度を種々変えて行つたときの各
生成金属化合物の種類とその被覆厚さとのデータ
をまとめて示す。浸漬時間は2時間であつた。 TiC、Cr7C3、VC、BFe2については温度上昇
につれて被覆量を増加する傾向があるが、
Fe6W6Cの場合は900℃と1000℃とを比較した場
合、被覆量の変化はあまり見られない。 第4表は浸漬時間を種々変えて行つたときの各
金属化合物の種類とその被覆厚さとのデータをま
とめて示す。浸漬温度は1000℃であつた。 TiC、Cr7C3、VC、Fe6W6の場合の各被覆量は
時間に対して、除々に増加しているものの、約3
mg/cm2付近で飽和している。一方、BFe2の場合
の被覆量は反応時間に対してかなりの増加が見ら
れる。 第5表はNaFの量を0、13.9、37.6そして44.5
モル%と変化させたときの各金属化合物の被覆量
をまとめて示す。浸漬温度は1000℃、浸漬時間は
2時間であつた。 いずれの場合も、NaFの量の増加に伴つて被
覆量も増加している。これは添加金属酸化物が
NaFがない場合ほとんど溶解しないためと考え
られる。ただし、Cr7C3の場合わずかに被覆して
いるのは、Cr2O3がNaFの存在しない場合でも多
少の溶解度を有するためである。 第6表は合金添加量と被覆量との関係を示す。
浸漬条件は第5表の場合に同じ。 合金量を5、10、15重量%添加したとき、被覆
量の変化はいずれの金属化合物の場合にもほとん
どみられない。しかし、合金添加量がゼロ%のと
きにはいずれの場合も被覆量は同じくゼロとなつ
ている。つまり、合金(もしくは金属単体)の存
在が反応進行に不可欠である。 第7表は金属酸化物量を変化させた場合の被覆
量の変化を示すものである。浸漬条件は第5表の
場合に同じ。 表に示す結果から、金属酸化物添加量が増加す
るにしたがつて、被覆量は少量ではあるが、増加
する傾向にある。金属酸化物がゼロの場合でも被
覆がみられるのは、添加合金粉末の表面の酸化物
がNaFと反応して、一部フツ化金属イオンが生
成し、反応が進行したためと思われる。 このように、本発明にかかる方法にあつては、
合金(もしくは単体金属)とフツ化金属イオンと
が同時に存在しなければ反応は進行しない。換言
すれば、合金(もしくは単体金属)と金属酸化物
およびフツ化物とが共存しなければ皮膜形成は起
こらないのである。 次に、KCl15g、BaCl220g、NaF7.5g、金属
酸化物1g、合金粉末5gを加えて調製した浸漬
浴を使い、1000℃で2時間処理した場合に得られ
た皮膜についてその硬度、耐摩耗性、および耐食
性をそれぞれ試験した。 第8表はマイクロビツカース硬度計によつて測
定した上記皮膜の表面硬さを示す。 極めて高い硬度が得られるのが分かる。 耐摩耗性の試験は往復動摩耗試験機によつて行
つたが、その結果からは、TiC、Cr7C3、VCを被
覆した試片についてはほとんど摩耗がみられなか
つた。 なお、耐食性についても、H2SO4溶液中では
TiCおよびVCが、またNaCl溶液中ではTiC、
Cr7C3、VCが特に優れていた。 本発明における金属化合物の例として炭化物お
よびホウ化物を例にとつて本発明を説明してきた
が、その他各種の金属化合物が想定されることは
当業者にとつて自明であり、それらについても本
発明は適用されるものと理解されるべきである。 (効果) このように、本発明によれば、取扱いの容易な
溶融塩化物浴を使用するという簡便な浸漬処理だ
けで従来のホウ酸塩浴で得られた、あるいは電解
処理と組合せて得られた表面皮膜と同等あるいは
それより優れた表面皮膜が得られるのであつて、
当業界の発展に寄与するところ大である。 なお、本発明方法にあつて、必要によりさらに
電解処理法を組合せても良いことは明らかであ
る。
[Table] A series of experiments were conducted under various reaction conditions. The results are summarized in Tables 3 to 7. Table 3 summarizes data on the types of metal compounds produced and their coating thicknesses when dipping was carried out at various temperatures. The immersion time was 2 hours. For TiC, Cr 7 C 3 , VC, and BFe 2 , the amount of coating tends to increase as the temperature rises;
In the case of Fe 6 W 6 C, when comparing 900°C and 1000°C, there is not much change in the amount of coating. Table 4 summarizes the data on the type of each metal compound and its coating thickness when the dipping time was varied. The immersion temperature was 1000°C. In the case of TiC, Cr 7 C 3 , VC, and Fe 6 W 6 , the amount of each coating gradually increases over time, but it is about 3
It is saturated around mg/ cm2 . On the other hand, in the case of BFe 2 , the amount of coating increases considerably with the reaction time. Table 5 shows the amount of NaF at 0, 13.9, 37.6 and 44.5.
The coating amount of each metal compound when changed in mol% is summarized. The immersion temperature was 1000°C and the immersion time was 2 hours. In both cases, the amount of coverage increases as the amount of NaF increases. This is because the added metal oxide
This is thought to be because almost no dissolution occurs in the absence of NaF. However, the reason why Cr 7 C 3 is slightly coated is because Cr 2 O 3 has some solubility even in the absence of NaF. Table 6 shows the relationship between the amount of alloy added and the amount of coating.
The immersion conditions are the same as in Table 5. When 5, 10, and 15% by weight of alloy is added, almost no change in coating amount is observed for any of the metal compounds. However, when the alloy addition amount is 0%, the coating amount is also zero in both cases. In other words, the presence of an alloy (or an elemental metal) is essential for the reaction to proceed. Table 7 shows the change in coating amount when the amount of metal oxide was changed. The immersion conditions are the same as in Table 5. From the results shown in the table, as the amount of metal oxide added increases, the amount of coating tends to increase, albeit by a small amount. The reason why a coating was observed even when the amount of metal oxide was zero is thought to be because the oxide on the surface of the added alloy powder reacted with NaF, some metal fluoride ions were generated, and the reaction progressed. Thus, in the method according to the present invention,
The reaction will not proceed unless the alloy (or single metal) and metal fluoride ions are present at the same time. In other words, film formation will not occur unless the alloy (or single metal) coexists with the metal oxide and fluoride. Next, we used an immersion bath prepared by adding 15 g of KCl, 20 g of BaCl 2 , 7.5 g of NaF, 1 g of metal oxide, and 5 g of alloy powder, and treated the film at 1000°C for 2 hours. We investigated its hardness and wear resistance. and corrosion resistance were tested. Table 8 shows the surface hardness of the above coatings as measured by a Micro-Vickers hardness meter. It can be seen that extremely high hardness can be obtained. Wear resistance tests were conducted using a reciprocating abrasion tester, and the results showed that almost no wear was observed on the specimens coated with TiC, Cr 7 C 3 , and VC. Regarding corrosion resistance, in H 2 SO 4 solution
TiC and VC, and in NaCl solution TiC,
Cr 7 C 3 and VC were particularly excellent. Although the present invention has been explained using carbides and borides as examples of metal compounds in the present invention, it is obvious to those skilled in the art that various other metal compounds are also conceivable, and the present invention also applies to them. shall be understood to apply. (Effects) As described above, according to the present invention, it is possible to obtain the same results as those obtained in a conventional borate bath or in combination with an electrolytic treatment by a simple immersion treatment using an easy-to-handle molten chloride bath. It is possible to obtain a surface film that is equivalent to or better than that obtained by
This will greatly contribute to the development of this industry. It is clear that the method of the present invention may be further combined with an electrolytic treatment method if necessary.

【表】【table】

【表】 (注) カツコ内は皮膜厚さ
[Table] (Note) The inside of the cutlet is the film thickness.

【表】 (注) カツコ内は皮膜厚さ
[Table] (Note) The inside of the cutlet is the film thickness.

【表】【table】

【表】 (注) カツコ内は皮膜厚さ
[Table] (Note) The inside of the cutlet is the film thickness.

【表】 (注) カツコ内は皮膜厚さ
[Table] (Note) The inside of the cutlet is the film thickness.

【表】 (注) カツコ内は皮膜厚さ
[Table] (Note) The inside of the cutlet is the film thickness.

【表】【table】

Claims (1)

【特許請求の範囲】 1 被処理物品表面に溶融塩浴により目的とする
金属の化合物から成る表面皮膜を形成する方法で
あつて、フツ化物含有溶融塩化物浴に上記の目的
とする金属の酸化物および単体金属もしくは該金
属を含む合金を添加して浸漬浴を調製し、次い
で、被処理物品の処理すべき表面を適宜時間該浸
漬浴に浸漬することを特徴とする、被処理物品表
面に金属化合物層を形成する方法。 2 前記被処理物品が炭素0.1重量%以上含有す
る鉄または鉄合金から成る物品である、特許請求
の範囲第1項記載の方法。 3 前記金属化合物が金属炭化物である特許請求
の範囲第1項または第2項記載の方法。 4 前記金属化合物が金属ホウ化物である特許請
求の範囲第1項または第2項記載の方法。 5 前記溶融塩化物浴がアルカリ金属およびアル
カリ土類金属の塩化物の少なくとも一種から成
る、特許請求の範囲第1項ないし第4項のいずれ
か1項に記載の方法。 6 前記フツ化物がアルカリ金属またはアルカリ
土類金属のフツ化物である、特許請求の範囲第1
項ないし第5項のいずれか1項に記載の方法。
[Scope of Claims] 1. A method for forming a surface film consisting of a compound of a target metal on the surface of an article to be treated using a molten salt bath, the method comprising oxidizing the target metal in a fluoride-containing molten chloride bath. A dipping bath is prepared by adding a substance and a single metal or an alloy containing the metal, and then the surface of the article to be treated is immersed in the dipping bath for an appropriate time. A method of forming a metal compound layer. 2. The method according to claim 1, wherein the article to be treated is an article made of iron or an iron alloy containing 0.1% by weight or more of carbon. 3. The method according to claim 1 or 2, wherein the metal compound is a metal carbide. 4. The method according to claim 1 or 2, wherein the metal compound is a metal boride. 5. The method according to any one of claims 1 to 4, wherein the molten chloride bath comprises at least one of alkali metal and alkaline earth metal chlorides. 6 Claim 1, wherein the fluoride is an alkali metal or alkaline earth metal fluoride.
The method according to any one of Items 5 to 5.
JP20754884A 1984-10-03 1984-10-03 Method for forming metallic compound layer on surface of article to be treated Granted JPS6187873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20754884A JPS6187873A (en) 1984-10-03 1984-10-03 Method for forming metallic compound layer on surface of article to be treated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20754884A JPS6187873A (en) 1984-10-03 1984-10-03 Method for forming metallic compound layer on surface of article to be treated

Publications (2)

Publication Number Publication Date
JPS6187873A JPS6187873A (en) 1986-05-06
JPH0351795B2 true JPH0351795B2 (en) 1991-08-07

Family

ID=16541555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20754884A Granted JPS6187873A (en) 1984-10-03 1984-10-03 Method for forming metallic compound layer on surface of article to be treated

Country Status (1)

Country Link
JP (1) JPS6187873A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227578A (en) * 1985-07-26 1987-02-05 Takeo Oki Treated article of ti material having boron compound layer and its production

Also Published As

Publication number Publication date
JPS6187873A (en) 1986-05-06

Similar Documents

Publication Publication Date Title
US6458218B1 (en) Deposition and thermal diffusion of borides and carbides of refractory metals
US4778540A (en) Method for surface treatment and treating material therefor
US3719518A (en) Process of forming a carbide layer of vanadium, niobium or tantalum upon a steel surface
JP2013147748A (en) Method for boriding of coating using high speed electrolytic process
US6503344B2 (en) Boronizing agent in paste form
US4610437A (en) Crucible for holding salt baths for the boriding of steels
GB1593958A (en) Coating ferrous alloys
US3671297A (en) Method of chromizing in a fused salt bath
JP4360728B2 (en) Paste boronizing agent and use thereof, and method for producing Fe2B-containing boride layer with few pores on a workpiece made of iron material
US3885059A (en) Method for forming a carbide layer of a IV-b group element of the periodic table on the surface of a cemented carbide article
CA1036976A (en) Anodically dissolving group v-a element into molten borate bath
JPH0351795B2 (en)
JPH0354191B2 (en)
US3211572A (en) Coating metal surfaces with refractory metals
Galopin et al. Molten salts in metal treating: Present uses and future trends
US3959092A (en) Method for a surface treatment of cemented carbide article
JPH0351796B2 (en)
JPH05140725A (en) Treatment for surface of titanium material
JPH0216383B2 (en)
US4536224A (en) Salt bath for the currentless production of wear resistant boride layers
US4440581A (en) Process for the production of vanadium carbide coatings on iron
US5939144A (en) Method and composition for diffusion treatment of ceramic materials
US4009086A (en) Method for a surface treatment of an iron, ferrous alloy or cemented carbide article
US3930575A (en) Method for a surface treatment of an iron, ferrous alloy or cemented carbide article
JPS6138260B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term