JPH0351755B2 - - Google Patents

Info

Publication number
JPH0351755B2
JPH0351755B2 JP61192402A JP19240286A JPH0351755B2 JP H0351755 B2 JPH0351755 B2 JP H0351755B2 JP 61192402 A JP61192402 A JP 61192402A JP 19240286 A JP19240286 A JP 19240286A JP H0351755 B2 JPH0351755 B2 JP H0351755B2
Authority
JP
Japan
Prior art keywords
aqueous solution
hydrate
freon
cold storage
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61192402A
Other languages
Japanese (ja)
Other versions
JPS6348384A (en
Inventor
Shigetake Kawasaki
Masaru Oowa
Yoji Akitani
Masaru Nakaiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61192402A priority Critical patent/JPS6348384A/en
Publication of JPS6348384A publication Critical patent/JPS6348384A/en
Publication of JPH0351755B2 publication Critical patent/JPH0351755B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明は冷熱を蓄積する化学的蓄冷方法に関す
るものである。 〔従来技術〕 蓄冷材には古かくら潜熱型蓄冷材として、広く
氷が利用され、現在においても、商業用ビルなど
の冷房用冷熱源として氷蓄冷装置が採用されてい
る。しかし、これらの氷蓄冷装置においては、間
接冷却方式が多く採用され、氷は氷結用伝熱管上
に析出、成長するので、氷結のための冷熱源温度
を−10℃前後に取る必要がある。そのために製氷
に必要な冷凍機の負荷が大きく、その成績係数は
約2から2.5前後にある。なお、氷の結晶化率も
最大20%から30%前後に限界があり、その蓄冷熱
容量(氷の潜熱のみによる)も16×103Kcal/m3
から24×103Kcal/m3にすぎない。 〔目的〕 本発明は、前記氷蓄冷材の欠点を補い、氷の融
点よりも高い温度に分解点を持つ結晶を生成させ
て蓄冷操作における冷凍機負荷の低減を可能と
し、しかも水と反応して結晶化する特性を持つ冷
媒を用いることにより、その結晶化率の増加をも
可能とする化学的蓄冷方法を提供することを目的
とする。 〔構成〕 本発明によれば、水と反応して水和物の結晶を
析出する液状のハロゲン化炭化水素系冷媒を、ア
ルコール水溶液中に混合分散させると共に、該水
溶液を冷却し、該ハロゲン化炭化水素系冷媒の水
和物結晶を析出させて冷熱を該結晶に蓄積させる
ことを特徴とする化学的蓄冷方法が提供される。 本発明の蓄冷方法に用いるハロゲン化炭化水素
系冷媒としては、水と反応して水和物の結晶を析
出し得るものであればよく、従来公知のものが用
いられ、このようなものには、例えば、フロン1
1(CCl3F)、フロン12(CCl2F2)、フロン21
(CHCl2F)、フロン22(CHClF2)、フロン31
(CH2ClF)、臭化メチル(CH3Br)等が挙げられ
る。一般には、本発明で冷媒として用い得るハロ
ゲン化炭化水素は、沸点−40℃〜24℃を有し、そ
の水和物の臨界分解点温度が8.5℃〜18℃の範囲
にあるものである。表−1に主要なハロゲン化炭
化水素系冷媒(水和物)の性質とその水和物の特
性を示す。
[Technical Field] The present invention relates to a chemical cold storage method for storing cold heat. [Prior Art] Ice has been widely used as a latent heat type cold storage material since ancient times, and even now, ice cold storage devices are used as a cold source for cooling commercial buildings and the like. However, in these ice cold storage devices, an indirect cooling method is often adopted, and since ice precipitates and grows on the freezing heat transfer tube, it is necessary to maintain the temperature of the cold heat source for freezing at around -10°C. Therefore, the load on the refrigerator required for ice making is large, and its coefficient of performance is around 2 to 2.5. Furthermore, the crystallization rate of ice has a maximum limit of around 20% to 30%, and its cold storage heat capacity (based only on the latent heat of ice) is 16×10 3 Kcal/m 3
It is only 24×10 3 Kcal/m 3 . [Objective] The present invention compensates for the drawbacks of the ice cold storage material, generates crystals that have a decomposition point at a temperature higher than the melting point of ice, thereby making it possible to reduce the load on the refrigerator during cold storage operation, and moreover, makes it possible to reduce the load on the refrigerator during cold storage operations. The purpose of the present invention is to provide a chemical cold storage method that makes it possible to increase the crystallization rate by using a refrigerant that has the property of crystallizing. [Structure] According to the present invention, a liquid halogenated hydrocarbon refrigerant that reacts with water to precipitate hydrate crystals is mixed and dispersed in an alcohol aqueous solution, and the aqueous solution is cooled and the halogenated A chemical cold storage method is provided, which is characterized in that hydrate crystals of a hydrocarbon refrigerant are precipitated and cold heat is accumulated in the crystals. The halogenated hydrocarbon refrigerant used in the cold storage method of the present invention may be any refrigerant as long as it can react with water to precipitate hydrate crystals, and conventionally known refrigerants can be used. , for example, Freon 1
1 (CCl 3 F), Freon 12 (CCl 2 F 2 ), Freon 21
(CHCl 2 F), Freon 22 (CHClF 2 ), Freon 31
(CH 2 ClF), methyl bromide (CH 3 Br), and the like. Generally, the halogenated hydrocarbon that can be used as a refrigerant in the present invention has a boiling point of -40°C to 24°C and a critical decomposition temperature of its hydrate in the range of 8.5°C to 18°C. Table 1 shows the properties of major halogenated hydrocarbon refrigerants (hydrates) and the characteristics of the hydrates.

【表】 アルコールとしては、従来公知のもの、例え
ば、メタノール、エタノール、n−プロパノー
ル、イソプロパノール、n−ブタノール、イソブ
タノール、第二ブタノール、第三ブタノール等の
低級アルコールが用いられる。一般的には、本発
明で用い得るアルコールは、水溶液とした時に、
水より低い表面張力を与えるものであればよい。
表−2に各種アルコール水溶液の性質を示す。
[Table] As the alcohol, conventionally known lower alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, and tertiary-butanol are used. Generally, when the alcohol that can be used in the present invention is made into an aqueous solution,
Any material that provides a surface tension lower than that of water may be used.
Table 2 shows the properties of various alcohol aqueous solutions.

〔実施例〕〔Example〕

次に、本発明を実施例によりさらに詳細に説明
する。 実施例 低温恒温槽内に約1の撹拌機付反応槽を設置
し、この反応槽に表−3に示す水又は各種アルコ
ール水溶液約600gを装入した後、液状のフロン
11を添加し、撹拌速度400rpmで撹拌を行つて
フロン11水和物結晶を析出させた。この場合の
実験条件と、2時間後の生成量(水和物生成量)
を含む実験結果を表−3に示す。また、第1図に
その際のフロン11水和物の経過時間に対する生
成量の変化をグラフとして示す。 なお、フロン11水和物の生成量は、溶液に約
0.1%の食塩を加え、ある経過時間毎にフイルタ
ー付試料採取器で試料を採取し、水和物の生成に
伴つて食塩が溶液側に濃縮されることを利用し
て、試料溶液中の食塩濃度の分析結果から求め
た。
Next, the present invention will be explained in more detail with reference to Examples. Example: Approximately 1 reaction tank with a stirrer was installed in a low-temperature thermostat, and approximately 600 g of water or various alcohol aqueous solutions shown in Table 3 was charged into this reaction tank, and then liquid Freon 11 was added and stirred. Stirring was performed at a speed of 400 rpm to precipitate Freon 11-hydrate crystals. Experimental conditions in this case and amount produced after 2 hours (amount of hydrate produced)
Table 3 shows the experimental results including. Further, FIG. 1 is a graph showing the change in the amount of Freon 11-hydrate produced with respect to the elapsed time. The amount of Freon hedecahydrate produced is approximately
Add 0.1% salt and collect samples with a sampler with a filter at certain elapsed time intervals. It was determined from the concentration analysis results.

【表】 〔効果〕 表−3に示した平均過冷却度は、フロン11水
和物の分解温度(表−2に示されている)から反
応槽内の水和物生成過程における溶液の平均温度
を差引いた値であり、この過冷却度は、水和物生
成反応の推進力として作用する。また、水和物の
生成反応は、溶液内に分散した冷媒の液滴界面で
主に進行するので、水和物の生成速度は、上記の
平均過冷却度と、冷媒液滴の全表面に関与する冷
媒の添加量に関係する。このことは同一溶液にお
いて、過冷却又は冷媒の添加率を大きくとれば、
単位時間当りの水和物生成量が増大することを意
味している。 表−3と第1図に示した実験結果は、フロン1
1の添加率12%〜14%、平均冷却度2℃〜3℃と
ほぼ同一条件下の範囲で、水和物の生成反応を進
行させたときの結果の1例を示すものであるが、
第1図において、アルコール無添加の水に比較し
て、各種アルコール水溶液においては、時間経過
に対して、フロン11水和物の生成量は急速な増
加を示している。例えば、第1図において、2時
間経過後のフロン11水和物の生成量を比較する
と、表−3にも示したように、水におけるフロン
11の水和物の生成量は、平均過冷却度2.7℃で
5.8g/100g・水であるが、初期濃度約10%のエ
タノール水溶液では、平均過冷却度2.9℃で41.0
g/100g・溶液、初期濃度約1.9%のn−ブタノ
ール水溶液においては平均過冷却度約2.4℃で
45.5g/100g・溶液と、フロン11水和物の生
成量が7倍から8倍へと増加し、明らかにアルコ
ール水溶液が水和物の生成反応を促進し、フロン
11水和物の生成に顕著な効果を示している。 上記水和物の生成量は冷媒の添加率にも関係す
るので、表−3に示した2時間後のフロン11水
和物生成量から、添加率に影響をされない水和物
への反応率を求めて、その結果を表−3の最終欄
に示した。この反応率は溶液中の冷媒がすべて水
と反応して水和物を形成すれば1となる数値であ
る。2時間経過後の反応率は水において0.11と小
さく、大部分のフロン11は未反応のまま液中に
残存しているが、たとえば約10%のエタノール水
溶液や約1.9%のn−ブタノール水溶液において
は、0.86と0.91のそれぞれ高い反応率を示し、2
時間経過後には、すでに大部分のフロン11が水
と反応して水和物を形成していることを示し、ア
ルコール水溶液においては、水和物の生成反応が
著しく促進させることが明らかに示されている。 第2図に、表−3の2時間後の反応率を、表−
2に示したそれぞれのアルコール水溶液における
表面張力(15℃)との関係で図示する。第2図か
ら明らかなように、水和物への反応率は水溶液の
表面張力の低下にともなつて増大し、フロン11
水和物の生成反応はアルコールの種類やその濃度
を変え、溶液の表面張力を調整することによつ
て、生成速度を促進させ、また制御することが可
能である。たとえば、3時間前後の短時間で水和
物生成による蓄冷操作を行い、0.95前後の反応率
を取得するには、2時間後で約0.9の反応率を示
す表面張力45dyn/cmのアルコール水溶液、たと
えば約2%のn−ブタノール水溶液の使用が考え
られ、また夏期の余剰夜間電力を利用して6時間
前後で蓄冷操作を行い、約0.95の反応率を得るに
は、2時間後で約0.6の反応率を示す表面張力
60dyn/cmのアルコール水溶液、たとえば、約3.6
%のエタノールが約1%のn−プロパノールの水
溶液の使用が可能となる。 以上のことは、フロン11を用いた実験により
示したものであるが、他の冷媒、たとえばフロン
22、フロン32、フロン31などのハロゲン化
炭化水素系冷媒を用いても、同様の蓄冷効果を得
ることができる。
[Table] [Effect] The average degree of supercooling shown in Table 3 is calculated from the decomposition temperature of fluorocarbon-11 hydrate (shown in Table 2) to the average degree of supercooling of the solution during the hydrate production process in the reaction tank. This is the value obtained by subtracting the temperature, and this degree of supercooling acts as a driving force for the hydrate production reaction. In addition, since the hydrate formation reaction mainly proceeds at the interface of the refrigerant droplets dispersed in the solution, the hydrate formation rate depends on the above average degree of supercooling and the total surface of the refrigerant droplets. It is related to the amount of refrigerant added. This means that if the same solution is supercooled or the refrigerant addition rate is increased,
This means that the amount of hydrate produced per unit time increases. The experimental results shown in Table 3 and Figure 1 are
This shows an example of the results when the hydrate production reaction was allowed to proceed under almost the same conditions as No. 1, with an addition rate of 12% to 14% and an average cooling degree of 2°C to 3°C.
In FIG. 1, compared to water with no alcohol added, in various alcohol aqueous solutions, the amount of chlorofluorocarbon decahydrate produced increases rapidly over time. For example, in Figure 1, when comparing the amount of fluorocarbon-11 hydrate produced after 2 hours, as shown in Table 3, the amount of fluorocarbon-11 hydrate produced in water is at 2.7℃
5.8g/100g/water, but in an ethanol aqueous solution with an initial concentration of about 10%, the average supercooling degree is 41.0 with an average degree of supercooling of 2.9℃.
g/100g solution, an n-butanol aqueous solution with an initial concentration of about 1.9% has an average supercooling degree of about 2.4℃.
45.5g/100g solution, the amount of fluorocarbon-11-hydrate produced increased from 7 to 8 times, and it was clear that the alcohol aqueous solution promoted the hydrate production reaction, leading to the production of fluorocarbon-11-hydrate. It has shown remarkable effects. Since the amount of hydrate produced above is also related to the addition rate of the refrigerant, the reaction rate to hydrate, which is not affected by the addition rate, is determined from the amount of fluorocarbon-11 hydrate produced after 2 hours shown in Table 3. The results are shown in the final column of Table 3. This reaction rate is a value that becomes 1 if all the refrigerant in the solution reacts with water to form a hydrate. The reaction rate after 2 hours is as low as 0.11 in water, and most of Freon 11 remains unreacted in the liquid, but for example, in about 10% ethanol aqueous solution or about 1.9% n-butanol aqueous solution, showed high reaction rates of 0.86 and 0.91, respectively, and 2
After a period of time, it was shown that most of the Freon 11 had already reacted with water to form hydrates, and it was clearly shown that the reaction to form hydrates was significantly accelerated in an aqueous alcohol solution. ing. Figure 2 shows the reaction rate after 2 hours in Table 3.
It is illustrated in relation to the surface tension (15°C) of each alcohol aqueous solution shown in 2. As is clear from Figure 2, the reaction rate to hydrate increases as the surface tension of the aqueous solution decreases, and Freon 11
The rate of formation of hydrates can be accelerated and controlled by changing the type of alcohol and its concentration and adjusting the surface tension of the solution. For example, in order to perform a cold storage operation by generating hydrates in a short period of about 3 hours and obtain a reaction rate of about 0.95, an alcohol aqueous solution with a surface tension of 45 dyn/cm that exhibits a reaction rate of about 0.9 after 2 hours, For example, using an aqueous solution of about 2% n-butanol is considered, and in order to obtain a reaction rate of about 0.95 by performing a cold storage operation for about 6 hours using surplus nighttime electricity during the summer, it is possible to obtain a reaction rate of about 0.6 after 2 hours. surface tension, which indicates the reaction rate of
60dyn/cm alcohol aqueous solution, e.g. approx. 3.6
% ethanol allows the use of an aqueous solution of n-propanol of about 1%. The above was demonstrated through experiments using Freon 11, but similar cold storage effects can be achieved using other refrigerants, such as halogenated hydrocarbon refrigerants such as Freon 22, Freon 32, and Freon 31. Obtainable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、各種アルコール水溶液におけるフロ
ン11水和物の経過時間に対する生成量の変化を
示す。図中、1は水、2は約1%n−プロパノー
ル水溶液、3は約3.6%エタノール水溶液、4は
約10%エタノール水溶液、5は約2%n−ブタノ
ール水溶液を用いた結果をそれぞれ示す。第2図
は、各種アルコール水溶液を用いてフロン11水
和物を生成させる際に、水溶液の表面張力
(dyn/cm)と反応率との関係を示す。 図中、点1は水、点2は約1%n−プロパノー
ル水溶液、点3は約3.6%エタノール水溶液、点
4は約10%エタノール水溶液、点5は約2%n−
ブタノール水溶液をそれぞれ用いた場合の結果を
示す。
FIG. 1 shows changes in the amount of Freon decahydrate produced over time in various alcohol aqueous solutions. In the figure, 1 shows the results using water, 2 about 1% n-propanol aqueous solution, 3 about 3.6% ethanol aqueous solution, 4 about 10% ethanol aqueous solution, and 5 about 2% n-butanol aqueous solution. FIG. 2 shows the relationship between the surface tension (dyn/cm) of the aqueous solution and the reaction rate when Freon 11-hydrate is produced using various alcohol aqueous solutions. In the figure, point 1 is water, point 2 is about 1% n-propanol aqueous solution, point 3 is about 3.6% ethanol aqueous solution, point 4 is about 10% ethanol aqueous solution, and point 5 is about 2% n-propanol aqueous solution.
The results are shown when each butanol aqueous solution was used.

Claims (1)

【特許請求の範囲】[Claims] 1 水と反応して水和物の結晶を析出する液状の
ハロゲン化炭化水素系冷媒をアルコール水溶液中
に混合分散させると共に、該水溶液を冷却し、該
ハロゲン化炭化水素系冷媒の水和物結晶を析出さ
せて冷熱を該結晶に蓄積させることを特徴とする
化学的蓄冷方法。
1. A liquid halogenated hydrocarbon refrigerant that reacts with water to precipitate hydrate crystals is mixed and dispersed in an alcohol aqueous solution, and the aqueous solution is cooled to form hydrate crystals of the halogenated hydrocarbon refrigerant. A chemical cold storage method characterized by precipitating and accumulating cold heat in the crystals.
JP61192402A 1986-08-18 1986-08-18 Method of chemically storing cooling energy Granted JPS6348384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61192402A JPS6348384A (en) 1986-08-18 1986-08-18 Method of chemically storing cooling energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61192402A JPS6348384A (en) 1986-08-18 1986-08-18 Method of chemically storing cooling energy

Publications (2)

Publication Number Publication Date
JPS6348384A JPS6348384A (en) 1988-03-01
JPH0351755B2 true JPH0351755B2 (en) 1991-08-07

Family

ID=16290717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61192402A Granted JPS6348384A (en) 1986-08-18 1986-08-18 Method of chemically storing cooling energy

Country Status (1)

Country Link
JP (1) JPS6348384A (en)

Also Published As

Publication number Publication date
JPS6348384A (en) 1988-03-01

Similar Documents

Publication Publication Date Title
US5065598A (en) Ice thermal storage apparatus
US4237964A (en) Heat exchange process with heat accumulation
JP2581708B2 (en) Thermal energy storage composition
JPH09291272A (en) Heat accumulating material
Tomlinson Heat pump cool storage in a clathrate of freon
KR20030019395A (en) Carboxylate salts in heat-storage applications
US4287076A (en) Product suitable for the storage and conveyance of thermal energy
JPH08504872A (en) Novel clathrate-producing medium and its use in thermal energy storage devices and methods of thermal energy storage and transfer
US4689164A (en) Eutectoid salt composition for coolness storage
Bukhalkin et al. Phase change materials in energy: current state of research and potential applications
US4406806A (en) Thermal energy storage
JPH0351755B2 (en)
CN106221675A (en) A kind of phase-change and energy-storage medium
KR910007090B1 (en) Reversible phase change composition for storing energy
WO1996039472A1 (en) A method for performing heat exchange by using a heat transfer medium, a heat transfer medium and a heat exchange apparatus
US4189393A (en) Heat storage material comprising lithium chlorate-trihydrate and a nucleating agent
JPH0532963A (en) Heat storage material
CN111777991A (en) Low-temperature phase-change material and preparation method and application thereof
JPH0885785A (en) Prevention of latent heat storage material composition from being overcooled and latent heat storage apparatus
KR930009901B1 (en) Storage heat material
JPS5952920B2 (en) Latent heat storage material
JPH0143796B2 (en)
AU659663B2 (en) Improved cooling medium for use in a thermal energy storage system
JPH0792307B2 (en) Ice heat storage device
SU1409830A1 (en) Method of accumulating refrigerant

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term