JPH0351744A - High-pressure gas injection mechanism - Google Patents

High-pressure gas injection mechanism

Info

Publication number
JPH0351744A
JPH0351744A JP1188252A JP18825289A JPH0351744A JP H0351744 A JPH0351744 A JP H0351744A JP 1188252 A JP1188252 A JP 1188252A JP 18825289 A JP18825289 A JP 18825289A JP H0351744 A JPH0351744 A JP H0351744A
Authority
JP
Japan
Prior art keywords
gas
valve
pressure
gas injection
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1188252A
Other languages
Japanese (ja)
Other versions
JP2879096B2 (en
Inventor
Koichi Tanaka
田中 皓一
Takao Kobayashi
隆夫 小林
Motoo Morita
森田 素生
Takashi Morita
孝 森田
Hiroshi Takenaka
弘 竹中
Hideaki Sawai
澤井 秀明
Teiichi Okochi
大河内 禎一
Koichiro Kawashima
紘一郎 川嶋
Kouji Fukatsu
深津 鋼次
Yoshihiko Urata
浦田 喜彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MORITA TEKKOSHO KK
Nagoya Institute of Technology NUC
Toho Gas Co Ltd
Original Assignee
MORITA TEKKOSHO KK
Nagoya Institute of Technology NUC
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MORITA TEKKOSHO KK, Nagoya Institute of Technology NUC, Toho Gas Co Ltd filed Critical MORITA TEKKOSHO KK
Priority to JP18825289A priority Critical patent/JP2879096B2/en
Publication of JPH0351744A publication Critical patent/JPH0351744A/en
Application granted granted Critical
Publication of JP2879096B2 publication Critical patent/JP2879096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To release a valve body completely in a short time by slightly moving a sliding valve on the surface of a cone whose upper part is cut. CONSTITUTION:A cylinder 34 is energized with air pressure, and a piston rod is moved rightward. A sliding valve 28 is linearly moved rightward. A surface 29 of a cone whose upper part is cut is provided in the valve 28. The surface 29 is moved to positions where a plurality of gas introducing holes 24 of an injection path 26 are provided. Therefore, the holes 24 are slightly opened. Part of high pressure gas in a gas-pressure increasing chamber 22 escapes through the holes 24. Pushing force in the axial direction is made to act on the surface 29. Therefore, the valve 28 is linearly moved rightward quickly against a compressing spring 38. All the holes 24 are completely opened. Namely, the partially released gas pressure acts on the entire valve 28 only by slightly opening the holes 24, and the valve 28 is slidden rightward at a very high speed. Thus all the holes 24 are opened instantaneously in one motion. The released high pressure gas launches a flying body 76 of a loading mechanism 12 with a large amount of energy.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、ドライアイスに代表される昇華性物体を飛
翔体とし、この飛翔体を高圧ガスの噴射作用下に高速で
飛翔させる発射装置に好適に使用される高圧ガス噴射機
構に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is suitable for use in a launcher that uses a sublimable object such as dry ice as a flying object and flies this projectile at high speed under the jet action of high-pressure gas. This relates to the high pressure gas injection mechanism used.

従来技術 銃器、大砲等から発射される弾丸や砲弾その他ロケット
等の如く空間を高速で飛翔する物体を。
PRIOR ART Objects that fly through space at high speed, such as bullets, shells, and rockets fired from firearms, cannons, etc.

般に「高速飛翔体」と称することができる。これら高速
飛翔体は、主として軍事目的での使用に重点が置かれて
いる場合が多いが、当該飛翔体が高速で飛翔して何等か
の対象物に衝突した際に放出される大きなエネルギーは
、これを好適に制御することによって平和利用が充分に
可能である。そこで、飛翔体を発射装置に装填し、該飛
翔体を火薬の炸裂による反動、高圧ガスの強力な噴射圧
力その他電気的反発力等で高速駆動して所要の対象物に
衝突させ、これにより該物体の物性を解析する試みが既
に実験段階で実用化されている。
Generally, it can be referred to as a "high-speed flying object." These high-speed flying objects are often used primarily for military purposes, but when the flying object flies at high speed and collides with some object, the large amount of energy released is By properly controlling this, peaceful use is fully possible. Therefore, the projectile is loaded into a launcher, and the projectile is driven at high speed by the recoil from the explosion of gunpowder, the powerful injection pressure of high-pressure gas, and other electrical repulsion forces, and collides with the desired object. Attempts to analyze the physical properties of objects have already been put into practical use at the experimental stage.

前記飛翔体を高速飛翔させる発射装置において。In a launcher that causes the flying object to fly at high speed.

その駆動源に高圧ガスを使用する場合は、密閉空間中に
ガスを極めて高い圧力下で一時的に貯留し、その高圧ガ
スを短時間で一挙に解放することにより、該飛翔体に全
エネルギーを有効に作用させる必要がある。
When using high-pressure gas as the driving source, the gas is temporarily stored under extremely high pressure in a closed space, and the high-pressure gas is released all at once in a short period of time to provide the entire energy to the projectile. It needs to work effectively.

発明が解決しようとする課題 密閉空間中に貯留した高圧ガスを一挙に解放するには、
一般に弁体を解放手段として使用し、これを極めて短時
間で作動させて、弁体閉塞されていた通孔を全開する必
要がある。しがし、ガス圧力が高ければ高いほど、該弁
体は強力に弁座に押し付けられているので、弁体開放を
短時間で行なうのは困建てあって、その間にタイムラグ
が不可避的に存在する。このように弁体開放に際しタイ
ムラグが存在すると、高圧ガスが有しているエネルギー
はミクロに観察すれば徐々に解放されることになり、従
って折角の高エネルギーを飛翔体の発射に集中的に利用
することができない欠点が指摘される。
Problems to be Solved by the Invention In order to release high-pressure gas stored in a closed space all at once,
Generally, it is necessary to use a valve body as a release means and operate it in a very short period of time to fully open a passage hole that has been blocked by the valve body. However, the higher the gas pressure, the more strongly the valve body is pressed against the valve seat, so it is difficult to open the valve body in a short time, and a time lag inevitably exists. do. If there is a time lag when opening the valve body, the energy held by the high-pressure gas will be gradually released when observed microscopically, and therefore the high energy will be used intensively to launch the projectile. The shortcomings of not being able to do so are pointed out.

ところで今回発明者等は、一般に金属材料を材質とする
飛翔体の使用に代えて、炭酸ガスを固化させたドライア
イスに代表される昇華性物体を飛翔体とする新たな構想
に係る発射システムにつき提案並びに開発を行ない、該
システムにつき本願と同日付けで特許出願を行なったに
の発射システムは、前記昇華性物体からなる飛翔体を高
圧ガスの噴射作用下に高速で飛翔させ、これを対象物に
肘当てることにより所要の物理的仕事を達成させること
を内容としているものである。この場合、前記発射シス
テムに装填される飛翔体は、先に述べた如く昇華性でし
かも極低温であるために、従来の金属製飛翔体をガス噴
射作用下に発射させる公知の高圧ガス噴射機構は、その
ままでは到底実用に供し得ない、また、昇華性物体の飛
翔体をガス噴射作用で発射させる場合も、先に述べた高
圧ガスを一挙に瞬時解放して、高エネルギーの全てを飛
翔体の発射に有効利用することの要請は、更に大きいも
のと云わなければならない。
By the way, the present inventors have proposed a launch system based on a new concept that uses a sublimable object such as dry ice made of solidified carbon dioxide gas as a flying object, instead of using a flying object that is generally made of a metal material. The launch system, which was proposed and developed, and for which a patent application was filed on the same date as the present application, flies a projectile made of the sublimable object at high speed under the jet action of high-pressure gas, and sends it to the target object. The idea is to accomplish a required physical task by placing your elbow on the body. In this case, since the flying object loaded into the launch system is sublimable and has an extremely low temperature as described above, a conventional high-pressure gas injection mechanism that fires a metal flying object under the action of gas injection is used. cannot be put to practical use as it is.Also, when launching a projectile of a sublimable object by a gas jet action, the high-pressure gas mentioned above is instantly released all at once, and all of the high energy is released into the projectile. It must be said that the demand for effective use for the launch of nuclear weapons is even greater.

発明の目的 この発明は、前述した昇華性飛翔体の発射システムに使
用される高圧ガス噴射機構において、高圧ガスを密閉空
間中に封じ込めている弁体を僅かに移動させてガス圧の
一部を該弁体に作用させるだけで、急速に弁体を全開し
て高圧ガスを一挙に解放させ、その高いエネルギーを該
飛翔体の発射に有効に作用させ得る新規なガス噴射機構
を提供することを目的とする。
Purpose of the Invention The present invention is directed to a high-pressure gas injection mechanism used in the above-mentioned sublimable flying object launch system, in which a part of the gas pressure is released by slightly moving a valve body that confines high-pressure gas in a closed space. To provide a novel gas injection mechanism capable of rapidly fully opening the valve body and releasing high-pressure gas at once by simply acting on the valve body, and effectively using the high energy to launch the projectile. purpose.

課題を解決するための手段 前記課題を克服し、所期の目的を好適に達成するため本
発明は、ドライアイス等の昇華性物体からなる飛翔体に
高圧ガスの噴射圧力を作用させて、該飛翔体を発射筒か
ら高速で発射させる発射装置に使用される高圧ガス噴射
機構であって、外部より高圧ガスの供給を受け、当該ガ
スを昇圧状態で一時的に貯留する環状ガス昇圧室と、前
記環状ガス昇圧室の中心を貫通して軸方向に延在し、前
記発射筒と飛翔体装填機構を介して同軸的に連通ずるガ
ス噴射路と、 前記環状ガス昇圧室に周方向に所定間隔で穿設され、半
径方向に延在して前記ガス噴射路と連通ずる複数のガス
導入孔と、 前記ガス噴射路に軸方向への進退自在に配設され、常に
は前記複数のガス導入孔を同時的に閉成する摺動弁と、 前記摺動弁に軸方向の直線運動を付与するアクチュエー
タとからなり、 前記摺動弁は、前記アクチュエータに接続して直線動作
を行なう作動桿に摺動自在に挿入されて、該摺動弁と作
動桿との間に弾力的に介挿した圧縮コイルばねの作用下
に、前記ガス導入孔を閉成する位置に保持され。
Means for Solving the Problems In order to overcome the above-mentioned problems and suitably achieve the intended purpose, the present invention applies jet pressure of high-pressure gas to a flying object made of a sublimable object such as dry ice. A high-pressure gas injection mechanism used in a launcher that launches a flying object from a launch tube at high speed, and includes an annular gas boosting chamber that receives a supply of high-pressure gas from the outside and temporarily stores the gas in a pressurized state; a gas injection path extending axially through the center of the annular gas pressurizing chamber and coaxially communicating with the launch tube via the projectile loading mechanism; a plurality of gas introduction holes that are bored in the gas injection path and extend in the radial direction and communicate with the gas injection path; and an actuator that applies linear movement in the axial direction to the sliding valve, and the sliding valve has a sliding valve that is connected to the actuator to perform linear movement. It is movably inserted and held in a position to close the gas introduction hole under the action of a compression coil spring elastically interposed between the sliding valve and the operating rod.

該摺動弁にガス圧が僅かに作用することにより、前記圧
縮コイルばねの弾力に抗しつつ作動桿に沿い移動して、
前記ガス導入孔の全てを瞬時に開放するよう構成したこ
とを特徴とする。
By slightly applying gas pressure to the sliding valve, it moves along the operating rod while resisting the elasticity of the compression coil spring,
The present invention is characterized in that all of the gas introduction holes are configured to open instantly.

実施例 次に、本発明に係る高圧ガス噴射機構につき、好適な実
施例を挙げて、添付図面を参照しながら以下説明する。
Embodiments Next, a preferred embodiment of the high-pressure gas injection mechanism according to the present invention will be described below with reference to the accompanying drawings.

なお本実施例では、昇華性飛翔体として、炭酸ガスを円
筒状に固化させてなるドライアイスを材質とし、また該
飛翔体の駆動源として不活性ガス、殊に窒素ガスを使用
するものとする。これは、■液化天然ガス(LNO)を
常温ガスに還元する際に放出される多量の冷熱により、
石油化学工業やアンモニア工業で副次生産される炭酸ガ
スを冷却固化して低置かつ大量にドライアイスを製造で
き、また■LNG産業の副産物である窒素ガスも有効活
用できるからである。従って。
In this example, the material of the sublimable flying object is dry ice made by solidifying carbon dioxide gas into a cylindrical shape, and an inert gas, especially nitrogen gas, is used as the driving source for the flying object. . This is due to the large amount of cold energy released when reducing liquefied natural gas (LNO) to room temperature gas.
This is because dry ice can be produced in large quantities by cooling and solidifying carbon dioxide, which is a by-product of the petrochemical industry and ammonia industry, and nitrogen gas, which is a by-product of the LNG industry, can also be effectively used. Therefore.

本発明の応用分野は、これらドライアイスや窒素ガスの
使用に必ずしも限定されるものではない。
The field of application of the present invention is not necessarily limited to the use of dry ice or nitrogen gas.

第1図は、本発明の好適実施例に係る高圧ガス噴射機構
を一部切欠斜視状態で示し、第7図に示す発射システム
に設けた飛翔体装填機構12および発射筒66の上流側
に位置する機構本体10を拡大したものである。なお第
7図は、各種試料の破壊試験を行なう装置に前記昇華性
飛翔体の発射システムを応用したものを示し、該飛翔体
が試料に衝突した際の強大な衝撃を吸収するため、試料
収納室68の後方に衝撃吸収室70が設けられている。
FIG. 1 shows a partially cutaway perspective view of a high-pressure gas injection mechanism according to a preferred embodiment of the present invention, and is located upstream of the projectile loading mechanism 12 and the launch tube 66 provided in the launch system shown in FIG. This is an enlarged view of the mechanism main body 10. Figure 7 shows an application of the above-mentioned sublimation projectile launch system to an apparatus for destructive testing of various samples. A shock absorption chamber 70 is provided behind the chamber 68.

そして前記発射システムは、第2図に示すドライアイス
飛翔体76を装填機構12に装填した後、後述するガス
噴射機構10から一挙に噴射される高圧ガスを該飛翔体
76に作用させ、その噴射圧力により発射筒66より飛
翔させて1例えば試料収納室68に収納した試料(図示
せず)に衝突させ所要の仕事を行なう。
The launching system loads the dry ice flying object 76 shown in FIG. It is caused to fly from the launch tube 66 by pressure and collide with, for example, a sample (not shown) stored in a sample storage chamber 68 to perform a required work.

第1図に戻って、実施例に係る高圧ガス噴射機構10が
、飛翔体76の装填機構12(この機構も顕著な技術的
特徴を有するので、本日付けで別途特許出願を完了した
)に接続して設けられている。
Returning to FIG. 1, the high-pressure gas injection mechanism 10 according to the embodiment is connected to the loading mechanism 12 of the flying object 76 (this mechanism also has remarkable technical features, so a separate patent application has been filed as of today). It is provided.

この高圧ガス噴射機構10は、外部から供給された高圧
ガスを昇圧貯留する環状のガス昇圧室22と、このガス
昇圧室22の中心を貫通して前記発射筒66に連通ずる
ガス噴射路26と、ガス昇圧室22の周りに所定間隔で
穿設され、前記ガス噴射路26と連通ずる複数のガス導
入孔24と、このガス噴射路26に進退自在に配設され
、常には前記ガス導入孔24(複数)を同時的に閉成す
る摺t・弁28と、この摺動弁28に直線運動を付与す
る空気圧シリンダの如きアクチュエータ34とから基本
的に構成されている。
The high-pressure gas injection mechanism 10 includes an annular gas pressurization chamber 22 that pressurizes and stores high-pressure gas supplied from the outside, and a gas injection passage 26 that passes through the center of the gas pressurization chamber 22 and communicates with the firing tube 66. , a plurality of gas introduction holes 24 that are bored at predetermined intervals around the gas pressurization chamber 22 and communicate with the gas injection path 26; 24 (plurality) at the same time, and an actuator 34 such as a pneumatic cylinder that imparts linear motion to the slide valve 28.

すなわち、厚肉の高圧ガス導管20が大径の鋼鉄製円筒
体14の中心をこれと同軸的に貫通延在すると共に、一
対の円形側板16.16の中心ち密嵌的に貫通している
。これら円形側板16.16は。
That is, the thick-walled high-pressure gas conduit 20 extends coaxially through the center of the large-diameter steel cylinder 14, and also passes through the centers of the pair of circular side plates 16, 16 in a tight fit. These circular side plates 16.16.

前記円筒体14の両端開口部を密着的に塞いで。Closely close the openings at both ends of the cylindrical body 14.

締付ボルト18により所要個所を閉め付は固定されてい
る。各側板16と高圧ガス導管20および円筒体14と
の間にリング状シール体52が夫々配設され、これら円
筒体14の内周面、高圧ガス導管20の外周面および各
側板16の内面によって環状ガス昇圧室22が画成され
ている。一方の側板16にガス注入孔56が穿設され、
このガス注入孔56に設けたニップル弁58を介して、
後述の如く高圧窒素ガスがガス昇圧室22に供給される
。前記ニップル弁58は、ガス導管60を介して昇圧器
62に接続され、この昇圧器62は窒素ガスボンベ64
に接続されている。
The required locations are tightened and fixed by tightening bolts 18. A ring-shaped seal body 52 is disposed between each side plate 16 and the high-pressure gas conduit 20 and the cylindrical body 14, and the inner circumferential surface of the cylindrical body 14, the outer circumferential surface of the high-pressure gas conduit 20, and the inner surface of each side plate 16 An annular gas pressurization chamber 22 is defined. A gas injection hole 56 is bored in one side plate 16,
Through the nipple valve 58 provided in this gas injection hole 56,
As will be described later, high pressure nitrogen gas is supplied to the gas pressurization chamber 22. The nipple valve 58 is connected to a pressure booster 62 via a gas conduit 60, which booster 62 is connected to a nitrogen gas cylinder 64.
It is connected to the.

高圧ガス導管20には、その中心部に円筒状ガス噴射路
26が形成されて長手方向に延在し、該ガス噴射路26
の一方の開口部は後述する基幹部40で塞がれると共に
、他方の開口部は前記飛翔体装填機構12の一方開口部
に連通している。このガス噴射路26には、耐蝕・耐圧
性に富む金属を材質とする円筒状ライニング46が密着
嵌合されている。また第1図および殊に第3図から判明
する如く、前記高圧ガス導管20には、その局方向に所
定間隔で複数のガス導入孔24が穿設され、これらガス
導入孔24は半径方向に延在して前記環状ガス昇圧室2
2とガス噴射路26とを空間的に連通している。
A cylindrical gas injection passage 26 is formed in the center of the high pressure gas conduit 20 and extends in the longitudinal direction.
One opening is closed by a main body 40, which will be described later, and the other opening communicates with one opening of the flying object loading mechanism 12. A cylindrical lining 46 made of a metal with high corrosion resistance and pressure resistance is tightly fitted into the gas injection passage 26 . Further, as is clear from FIG. 1 and especially FIG. 3, the high-pressure gas conduit 20 is provided with a plurality of gas introduction holes 24 at predetermined intervals in the local direction, and these gas introduction holes 24 are arranged in the radial direction. Extending the annular gas pressurization chamber 2
2 and the gas injection path 26 are spatially communicated with each other.

高圧ガス導管20における前記ガス噴射路26には、摺
動弁28が軸方向への進退自在に設けられて、前記周方
向に所定間隔で開設されている複数のガス導入孔24の
閉成・開放が可能になっている。すなわち摺動弁28は
、ガス噴射路26に密嵌したライニング46の内面に、
シール体30゜30を介して密着的に摺動可能に内挿し
た円筒体から構成され、第2図および第4図に示す如く
、前記複数のガス導入孔24を完全に閉成する位置と、
第6図に示す如くガス導入孔24の全てを完全に開放す
る位置との間を移動し得るようになっている。なお、こ
の摺動弁28の装填機構12側に指向する先端部は1周
方向にテーパが付されて截頭円錐面29となっている。
A slide valve 28 is provided in the gas injection path 26 of the high-pressure gas conduit 20 so as to be able to move forward and backward in the axial direction, and closes and closes the plurality of gas introduction holes 24 opened at predetermined intervals in the circumferential direction. It is possible to open. That is, the sliding valve 28 has an inner surface of the lining 46 that is tightly fitted into the gas injection passage 26.
It is composed of a cylindrical body that is slidably inserted tightly through a sealing body 30, and as shown in FIG. 2 and FIG. ,
As shown in FIG. 6, it can be moved between a position where all of the gas introduction holes 24 are completely opened. The distal end of the slide valve 28 facing toward the loading mechanism 12 is tapered in the circumferential direction to form a truncated conical surface 29.

前記摺動弁28は、所要のアクチュエータ34゜例えば
図示の流体圧シリンダにより直線駆動されるようになっ
ている。すなわち第2図に示す如く。
The sliding valve 28 is linearly driven by a required actuator 34, such as the illustrated hydraulic cylinder. That is, as shown in FIG.

高圧ガス導管20の後端部には、円筒状ブロック部材か
らなる基幹部40が着脱自在に挿入固定されて、前記ガ
ス噴射路26の一端部を閉塞し得るようになっている。
A main body 40 made of a cylindrical block member is removably inserted and fixed into the rear end of the high-pressure gas conduit 20, so that it can close one end of the gas injection path 26.

該基幹部40は、ハンドル44の操作によって、高圧ガ
ス導管20の後端部にねじ込み固定されるロック位置と
、取り外しされるアンロツタ位置との間を回動され得る
ようになっている。
By operating a handle 44, the main body 40 can be rotated between a locked position where it is screwed and fixed to the rear end of the high pressure gas conduit 20 and an unrotter position where it is removed.

基幹部40の外部側後端には、例えば複動式の空気圧シ
リンダ34が設けられ、該シリンダのピストンロッド4
2は1図示の如くガス噴射路26と軸線を整列させてい
る作動桿36の一端部に端部接続されている。この作動
桿36は、前記基幹部40にガス噴射路側で固定されて
いる保持部材32に摺動自在に貫挿されると共に、前記
摺動弁28の中心に同じく摺動自在に貫挿されている。
For example, a double-acting pneumatic cylinder 34 is provided at the outer rear end of the main body 40, and the piston rod 4 of the cylinder
2 is connected to one end of an actuating rod 36 whose axis is aligned with the gas injection passage 26 as shown in FIG. The operating rod 36 is slidably inserted into a holding member 32 fixed to the main body 40 on the gas injection path side, and is also slidably inserted into the center of the slide valve 28. .

摺動弁28に挿通された作動桿36は、その端部に係止
板74を有し、この係止板74により前記摺動弁28の
前方への軸方向移動が規制されている。但し該摺動弁2
8は前記作動桿36に対して。
The operating rod 36 inserted into the slide valve 28 has a locking plate 74 at its end, and the locking plate 74 restricts forward axial movement of the slide valve 28 . However, the sliding valve 2
8 is for the operating rod 36.

前記係止板74が設けられている側と反対側の方向への
軸方向移動は自由になし得るようになっている。
The axial movement in the direction opposite to the side where the locking plate 74 is provided can be freely performed.

この場合、第2図に示す如く、円筒状の保持部材32に
圧縮コイルばね38が外挿されて、その一端部を前記基
幹部40の内面に当接させ、他方のバネ端部は前記摺動
弁28の右端部に弾力的に当接させている。圧縮コイル
ばね38は、常には摺動弁28を、第2図において前記
係止板74により規制される位置まで左方向へ付勢して
いる。
In this case, as shown in FIG. 2, a compression coil spring 38 is fitted onto the cylindrical holding member 32, one end of which is brought into contact with the inner surface of the main body 40, and the other end of the spring is placed against the inner surface of the main body 40. It is brought into elastic contact with the right end portion of the valve train 28. The compression coil spring 38 normally urges the slide valve 28 leftward to a position where it is regulated by the locking plate 74 in FIG.

しかし後述する如く、この摺動弁28の截頭円錐面29
に対してガス圧が僅かでも加わった場合には、圧縮コイ
ルばね38はそのガス圧により圧縮されて、当該摺動弁
28の軸方向右側への移動を許容する。
However, as will be described later, the truncated conical surface 29 of this sliding valve 28
If even a small amount of gas pressure is applied to the gas pressure, the compression coil spring 38 is compressed by the gas pressure, allowing the slide valve 28 to move to the right in the axial direction.

なお、前記摺動弁28とガス導入孔24との位置関係は
、流体圧シリンダ34のピストンロッド42が延出して
付勢待機している状態において。
Note that the positional relationship between the slide valve 28 and the gas introduction hole 24 is such that the piston rod 42 of the fluid pressure cylinder 34 is in an extended and biased state.

圧縮コイルばね38により弾力付勢されて摺動弁28が
係止板74の配設位置で移動規制され、これにより複数
のガス導入孔24を全て閉成するようになっている。ま
た空気圧シリンダ34が付勢されて、ピストンロッド4
2が第2図において右方向に移動すると、摺動弁28の
截頭円錐面29が前記ガス導入孔24の開設位置に差し
掛かるよう予め位置設定されているものとする。
The sliding valve 28 is elastically biased by the compression coil spring 38 and its movement is restricted at the position where the locking plate 74 is disposed, thereby closing all the plurality of gas introduction holes 24. Also, the pneumatic cylinder 34 is energized, and the piston rod 4
2 moves rightward in FIG. 2, the truncated conical surface 29 of the slide valve 28 is positioned in advance so that it approaches the open position of the gas introduction hole 24.

第1図および第2図に示す如く、高圧ガス導管20には
、ガス噴射路26にまで連通ずる排気孔48が穿通され
、この排気孔48に排気弁50が設けられている。これ
は、飛翔体の発射準備時に、図示しない真空ポンプを前
記排気弁5oに接続して、ガス噴射路26および装填機
構12の内部の脱気を行なうためのものである。
As shown in FIGS. 1 and 2, the high-pressure gas conduit 20 is penetrated with an exhaust hole 48 that communicates with the gas injection path 26, and the exhaust hole 48 is provided with an exhaust valve 50. This is for evacuating the gas injection path 26 and the loading mechanism 12 by connecting a vacuum pump (not shown) to the exhaust valve 5o when preparing to launch the projectile.

実施例の作用 次に、このように構成した本実施例に係る高圧ガス噴射
機構の作用につき説明する。使用に際し前記装填機構1
2にはドライアイス製の飛翔体76が装填され、また排
気弁50に接続した真空ポンプ(図示せず)を駆動する
ことにより、ガス噴射路26および装填機構12におけ
る脱気がなされる。なお第7図および第8図に示す破壊
試験装置では、その発射筒66、試料収納室68および
衝撃吸収室70中の脱気も同時になされて、システム全
体の内部が高真空に保持される。
Function of the Embodiment Next, the function of the high-pressure gas injection mechanism according to the present embodiment configured as described above will be explained. In use, the loading mechanism 1
2 is loaded with a flying object 76 made of dry ice, and the gas injection path 26 and loading mechanism 12 are degassed by driving a vacuum pump (not shown) connected to the exhaust valve 50. In the destructive testing apparatus shown in FIGS. 7 and 8, the launch tube 66, sample storage chamber 68, and shock absorption chamber 70 are simultaneously degassed, and the interior of the entire system is maintained at a high vacuum.

第2図および第4図に示す如く、空気圧シリンダ34を
作動させない待機状態において、摺動弁28は全てのガ
ス導入孔24を閉成する位置に規制されている。従って
環状ガス昇圧室22の内部は完全に密閉されており、こ
のガス昇圧室22中に窒素ガスがニップル弁58および
注入孔56を介して注入される。なお窒素ガスは、第2
図に示す如く、可搬性のガスボンベ64に充填されてお
り、昇圧器62を介して昇圧された後に、ガス導管60
を経て前記ニップル弁58に供給される。
As shown in FIGS. 2 and 4, in a standby state in which the pneumatic cylinder 34 is not operated, the slide valve 28 is regulated to a position that closes all gas introduction holes 24. Therefore, the inside of the annular gas pressurization chamber 22 is completely sealed, and nitrogen gas is injected into the gas pressurization chamber 22 via the nipple valve 58 and the injection hole 56. Note that the nitrogen gas
As shown in the figure, a portable gas cylinder 64 is filled, and after being pressurized via a booster 62, a gas conduit 60 is
It is supplied to the nipple valve 58 through the.

ガス昇圧室22には窒素ガスが充分高い圧力をもって大
量に貯留され、所要の圧力充填が完了した時点で、摺動
弁28を作動させて高圧ガスを一挙に解放して装填機構
12中の飛翔体76に作用させることになる。すなわち
、シリンダ34を空気圧付勢して、ピストンロッド42
を第2図において右方向に直線移動させる。これにより
該ロッド42に接続する作動桿36は、摺動弁28を右
方向に直線移動させ、第5図に示す如く、該摺動弁28
の戴頭円錐面29をガス噴射路26に穿設した前記複数
のガス導入孔24の開設位置にまで差し掛からせる。こ
のためガス導入孔24は僅かに開放し、ガス昇圧室22
中に一時貯留された高圧ガスの一部が該ガス導入孔24
から逃出して、摺動弁28の戴頭円錐面29に軸方向の
押圧力を作用させるに至る。従って摺動弁28は、前記
圧縮コイルばね38の圧縮弾力に抗して作動桿36に沿
い右方向に急速に直線移動し、第6図に示す如く、全て
のガス導入孔24を完全に開放する。
A large amount of nitrogen gas is stored in the gas pressurization chamber 22 at a sufficiently high pressure, and when the required pressure filling is completed, the sliding valve 28 is operated to release the high pressure gas all at once, causing it to fly into the loading mechanism 12. It will act on the body 76. That is, by pneumatically biasing the cylinder 34, the piston rod 42
is moved linearly to the right in FIG. As a result, the actuating rod 36 connected to the rod 42 moves the sliding valve 28 linearly to the right, as shown in FIG.
The truncated conical surface 29 of the gas injection path 26 is caused to reach the opening position of the plurality of gas introduction holes 24 formed in the gas injection path 26. Therefore, the gas introduction hole 24 is slightly opened, and the gas pressurization chamber 22
A part of the high pressure gas temporarily stored in the gas introduction hole 24
This causes a pressing force in the axial direction to be applied to the truncated conical surface 29 of the sliding valve 28. Therefore, the slide valve 28 rapidly moves linearly to the right along the operating rod 36 against the compressive elasticity of the compression coil spring 38, completely opening all the gas introduction holes 24, as shown in FIG. do.

このためガス昇圧室22中の高圧ガスは、ガス噴射路2
6に向けて一挙に解放される。
Therefore, the high pressure gas in the gas pressurization chamber 22 is
6 will be released all at once.

すなわち、摺動弁28が右方向に付勢され、その戴頭円
錐面29がガス導入孔24を僅かに開放するだけで、一
部解放されたガス圧力が当該摺動弁28に全面的に作用
し、右方向へ極めて高速で駆動することになる。従って
ガス導入孔24は瞬時にその全てが一挙に開放され、解
放された高圧ガスは大きなエネルギーを持って前記装填
機構12に装填した飛翔体76に直接作用し、該飛翔体
76を発射筒66から高速発射させる。第7図に示す例
では、飛翔体76は試料収納室68に収納した試料に大
きなエネルギーを持って衝突し、破壊その他の物理的仕
事を行なうことになる。
That is, when the slide valve 28 is biased to the right and its truncated conical surface 29 slightly opens the gas introduction hole 24, the partially released gas pressure is applied to the entire slide valve 28. This results in a very high speed drive to the right. Therefore, all of the gas introduction holes 24 are instantly opened at once, and the released high-pressure gas has a large amount of energy and acts directly on the flying object 76 loaded into the loading mechanism 12, pushing the flying object 76 into the firing tube 66. Fire it at high speed. In the example shown in FIG. 7, the flying object 76 collides with a large amount of energy against the sample stored in the sample storage chamber 68, causing destruction or other physical work.

発明の詳細 な説明した如く1本発明に係る高圧ガス噴射機構によれ
ば、ドライアイスに代表される昇華性物体からなる飛翔
体を、極めて短時間で解放された高圧ガスの大きな噴射
圧力によって高速で発射させることができる。すなわち
密閉空間中に高圧で封じ込められているガスを、噴射機
構に設けた弁体を僅かに移動させるだけで、この高圧ガ
スの一部が弁体を開放方向に瞬時に強制移動させ、この
ため極めて短時間で弁体の完全開放が図られて、−挙に
解放されたガスの集中エネルギーを飛翔体の発射に有効
使用し得る。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, the high-pressure gas injection mechanism according to the present invention blows a flying object made of a sublimable object such as dry ice at high speed by using a large injection pressure of high-pressure gas released in an extremely short period of time. It can be fired with. In other words, by just slightly moving the valve element installed in the injection mechanism, a portion of this high-pressure gas instantly forcibly moves the valve element in the opening direction, which causes The valve body can be completely opened in a very short time, and the concentrated energy of the released gas can be effectively used for launching a projectile.

なお図示の実施例では、高速の飛翔体を試料に衝突させ
て物体の物理的特性を解析する試験装置に応用した場合
につき説明したが、この昇華性飛翔体の発射装置自体は
、この用途に限定されるものでなく各種の分野に応用さ
れる。また前述した如く、昇華性飛翔物体としてはドラ
イアイスに限定されるものでなく、更に高圧ガスも窒素
以外に。
Although the illustrated embodiment is applied to a test device that analyzes the physical properties of an object by colliding a high-speed projectile with a sample, this sublimation projectile launcher itself is suitable for this purpose. It is not limited and can be applied to various fields. Furthermore, as mentioned above, the sublimating flying object is not limited to dry ice, and high-pressure gases other than nitrogen may also be used.

人体に影響を与えることのないものであれば、ヘリウム
等の各種不活性ガス、その他水素ガス等を経済的理由そ
の他の要因に応じて、種々選択使用が可能である。
Various inert gases such as helium, other hydrogen gases, etc. can be selected and used depending on economic reasons and other factors, as long as they do not affect the human body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る高圧ガス噴射機構の好適な実施
例を示す一部切欠斜視図、第2図は、第1図に示す発射
機構の縦断面図、第3図は、第2図の■−■線横線面断
面図4図、第5図並びに第6図は、実施例に係る噴射機
構において摺動弁がガス導入口に対して取り得る相対位
置を経時的に示す説明縦断面図、第7図は、本実施例に
係る高圧ガス噴射機構を使用した@壊試験装瞠の全体側
面図、第8図は第7図に示す破壊試験装置の平面図であ
る。 0・・・高圧ガス噴射機構 2・・・飛翔体装填機横 4・・・ガス導入孔 8・・・摺動弁 6・・・作動界 6・・・発射筒 2・・・環状ガス昇圧室 6・・・ガス噴射路 4・・・アクチュエータ 8・・・圧縮コイルばね 6・・・飛翔体
FIG. 1 is a partially cutaway perspective view showing a preferred embodiment of the high-pressure gas injection mechanism according to the present invention, FIG. 2 is a longitudinal cross-sectional view of the firing mechanism shown in FIG. 1, and FIG. 4, 5, and 6 are horizontal cross-sectional views taken along the line ■-■ in the figure. FIGS. 7 is an overall side view of the destructive test equipment using the high-pressure gas injection mechanism according to this embodiment, and FIG. 8 is a plan view of the destructive test equipment shown in FIG. 7. 0... High-pressure gas injection mechanism 2... Flying object loading machine side 4... Gas inlet hole 8... Sliding valve 6... Working field 6... Launch tube 2... Annular gas pressure increase Chamber 6... Gas injection path 4... Actuator 8... Compression coil spring 6... Flying object

Claims (1)

【特許請求の範囲】 ドライアイス等の昇華性物体からなる飛翔体(76)に
高圧ガスの噴射圧力を作用させて、該飛翔体(76)を
発射筒(66)から高速で発射させる発射装置に使用さ
れる高圧ガス噴射機構(10)であって、外部より高圧
ガスの供給を受け、当該ガスを昇圧状態で一時的に貯留
する環状ガス昇圧室(22)と、前記環状ガス昇圧室(
22)の中心を貫通して軸方向に延在し、前記発射筒(
66)と飛翔体装填機構(12)を介して同軸的に連通
するガス噴射路(26)と、前記環状ガス昇圧室(22
)に周方向に所定間隔で穿設され、半径方向に延在して
前記ガス噴射路(26)と連通する複数のガス導入孔(
24)と、前記ガス噴射路(26)に軸方向への進退自
在に配設され、常には前記複数のガス導入孔(24)を
同時的に閉成する摺動弁(28)と、 前記摺動弁(28)に軸方向の直線運動を付与するアク
チュエータ(34)とからなり、前記摺動弁(28)は
、前記アクチュエータ(34)に接続して直線動作を行
なう作動桿(36)に摺動自在に挿入されて、該摺動弁
(28)と作動桿(36)との間に弾力的に介挿した圧
縮コイルばね(38)の作用下に、前記ガス導入孔(2
4)を閉成する位置に保持され、該摺動弁(28)にガ
ス圧が僅かに作用することにより、前記圧縮コイルばね
(38)の弾力に抗しつつ作動桿(36)に沿い移動し
て、前記ガス導入孔(24)の全てを瞬時に開放する よう構成したことを特徴とする高圧ガス噴射機構。
[Claims] A launcher that applies jet pressure of high-pressure gas to a flying object (76) made of a sublimable object such as dry ice, and fires the flying object (76) from a launch tube (66) at high speed. The high-pressure gas injection mechanism (10) used in
extending axially through the center of the launch tube (22);
66) and a gas injection path (26) that coaxially communicates with the projectile loading mechanism (12) via the projectile loading mechanism (12), and the annular gas pressurization chamber (22).
) are provided at predetermined intervals in the circumferential direction, extending in the radial direction and communicating with the gas injection path (26)
24), a slide valve (28) disposed in the gas injection path (26) so as to be able to move forward and backward in the axial direction, and that always closes the plurality of gas introduction holes (24) at the same time; The slide valve (28) includes an actuator (34) that applies a linear motion in the axial direction to the slide valve (28), and the slide valve (28) has an actuating rod (36) that is connected to the actuator (34) to perform the linear motion. The gas introduction hole (2) is slidably inserted into the gas introduction hole (2) under the action of a compression coil spring (38) elastically interposed between the slide valve (28) and the operating rod (36).
4) is held in the closing position, and by slightly applying gas pressure to the sliding valve (28), it moves along the operating rod (36) while resisting the elasticity of the compression coil spring (38). A high-pressure gas injection mechanism characterized in that it is configured to instantly open all of the gas introduction holes (24).
JP18825289A 1989-07-19 1989-07-19 High pressure gas injection mechanism Expired - Fee Related JP2879096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18825289A JP2879096B2 (en) 1989-07-19 1989-07-19 High pressure gas injection mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18825289A JP2879096B2 (en) 1989-07-19 1989-07-19 High pressure gas injection mechanism

Publications (2)

Publication Number Publication Date
JPH0351744A true JPH0351744A (en) 1991-03-06
JP2879096B2 JP2879096B2 (en) 1999-04-05

Family

ID=16220442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18825289A Expired - Fee Related JP2879096B2 (en) 1989-07-19 1989-07-19 High pressure gas injection mechanism

Country Status (1)

Country Link
JP (1) JP2879096B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422338A (en) * 2013-08-21 2015-03-18 李希龙 Single air compressing energy storage air gun power unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422338A (en) * 2013-08-21 2015-03-18 李希龙 Single air compressing energy storage air gun power unit

Also Published As

Publication number Publication date
JP2879096B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
JP4132076B2 (en) Pneumatically driven bullet launcher
US4204456A (en) Pneumatic ejector for bomb
CA2826664C (en) Pressure wave generator with movable control rod for generating a pressure wave in a medium
US5339876A (en) Apparatus and methods for removing hazardous contents from compressed gas cylinders
US4552327A (en) Hydraulic ejector
US20050188977A1 (en) Pneumatic shooting device
US10166560B2 (en) Continuous launcher
US20090145414A1 (en) Pneumatic launcher
US4696182A (en) Impact test apparatus
US5596978A (en) Rapid fire compressed air gun
WO2006033677A2 (en) Compressed gas cartridge puncture apparatus
US4349200A (en) Gas gun for ballistic testing
US5715803A (en) System for removing hazardous contents from compressed gas cylinders
US3428037A (en) High velocity air gun with frangible valve trigger means
JPS6078299A (en) Propulsive device for projectile
JPH0351744A (en) High-pressure gas injection mechanism
US7726124B2 (en) Blast simulator with high velocity actuator
CN114633899B (en) Combined valve system of air gun for impact power test of aircraft strength test
CN217520938U (en) Hydraulic drive's second grade light gas superelevation strain rate loading drive arrangement
CN114754963A (en) Multistage air gun metal diaphragm filling system for airplane high-speed impact power test
JPH04113199A (en) High pressure gas injection device
US3208646A (en) Hydropneumatic accumulator
CA2188393C (en) A device for controlling a spacecraft by gating gas via a moving nozzle
US3626451A (en) Apparatus and method for the dynamic testing or ordnance
JP2879095B2 (en) Sublimation projectile loading mechanism

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350