JPH0351721Y2 - - Google Patents

Info

Publication number
JPH0351721Y2
JPH0351721Y2 JP32484U JP32484U JPH0351721Y2 JP H0351721 Y2 JPH0351721 Y2 JP H0351721Y2 JP 32484 U JP32484 U JP 32484U JP 32484 U JP32484 U JP 32484U JP H0351721 Y2 JPH0351721 Y2 JP H0351721Y2
Authority
JP
Japan
Prior art keywords
signal
synchronous rectifier
infrared
capacitor
coupling capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP32484U
Other languages
Japanese (ja)
Other versions
JPS60113531U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP32484U priority Critical patent/JPS60113531U/en
Publication of JPS60113531U publication Critical patent/JPS60113531U/en
Application granted granted Critical
Publication of JPH0351721Y2 publication Critical patent/JPH0351721Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(イ) 産業上の利用分野 本考案は赤外線検出装置に関する。 (ロ) 従来技術 第1図に、この種装置の原理的回路を示す。被
測定赤外線1を光学的チヨツパ2に通すことによ
り、赤外線センサ3に、被測定赤外線1とチヨツ
パ2の放出する赤外線4とがチヨツパ2のチヨツ
プ周期に同期して交互に入射される。赤外線セン
サ3は、例えば焦電型のものからなり、上記交互
入射の両赤外線の強度差に応じた信号を出力す
る。この信号は、もちろん上記チヨツプ周期に同
期して変化するものであり、その後、交流増幅器
5で増幅され、次いで、チヨツパ2のチヨツパ周
波数を中心通過周波数とするバンドパスフイルタ
6を経て、第2図に示す如くほゞ正弦波信号Aと
なる。同図にて、実線は被測定赤外線1の強度が
チヨツパ赤外線4のそれより大の場合を示し、又
破線は逆の関係の場合を示しており、更に各波形
の振幅は上記両赤外線1,4の強度差に対応して
いる。 同期整流器7は、チヨツパ2のチヨツプ周期に
同期せる同期パルスBにて、信号Aを整流し、こ
の結果、信号Aの半波整流波形からなる信号Cを
発生する。第2図B,Cにこれらの波形を示す。
上記同期パルスBは、同期信号パルス発生器8に
て発生され、波形整形器9で波形整形されたもの
である。今、光学的チヨツパ2を定速回転する有
孔円板チヨツパとすると、同期信号パルス発生器
8は、斯るチヨツパにて光路が断続されるフオト
インタラプタで構成される。 同期整流器7の出力信号Cは、その後、積分器
10で直流に変換され、更に直流増幅器11を経
て最終の直流信号D(第2図D)となる。この信
号Dのレベルは、被測定赤外線1とチヨツパ赤外
線2との強度差に対応している。被測定赤外線1
の強度は、被測定物の温度に対応しており、又チ
ヨツパ赤外線4のそれは室温に対応したものであ
り、従つて信号Dのレベルは、被測定物温度と室
温との差を現わすことになるので、信号Dのレベ
ルから室温補正をすることにより被測定物の温度
を知ることができる。 さて、上記装置において、特に同期整流器7に
より前段の回路定数が温度変化により変化して、
同期整流器7への入力が直流ドリフトすると、そ
の影響が最終の信号Dのレベル変化となつて現わ
れ、測定誤差をもたらす。この点を改良すべく、
上記信号Aをカツプリングコンデンサを通して同
期整流器7に入力することにより、ドリフトの原
因となる直流分を斯るコンデンサでカツトするこ
とが考えられ、これと類似の回路が特開昭55−
97612号公報に示されている。 然るに、この様な改良装置にあつては、上記温
度ドリフトの影響は除去されるが、他の直流分の
影響が出ることが判明した。これを第3図の要部
具体的回路にて説明する。 第3図にて、第1図と同一部分には同一番号を
付して示し、コンデンサ12は上記温度ドリフト
除去のために挿入されたカツプリングコンデンサ
である。同期整流器7のFET13は、Oボルト
とーEボルトとの2値レベルをとる同期パルスB
を入力し、同パルスBがOボルトのときオンとな
る。この結果、同期整流器7はその出力信号Cと
して第4図に示す波形のものを出力する。同図に
て、実線は、被測定赤外線1の強度が、チヨツパ
赤外線4のそれより大の場合(即ち被測定物の温
度TBがチヨツパ温度TCより大の場合)を、又破
線は逆の場合を夫々示している。注意すべきは、
出力信号Cには直流分VDHやVDLが含まれている
ことである。そして、直流分VDHやVDLの大きさ
は、温度差T=|TB−TC|の4乗に比例してい
る。この様な直流分の発生は、同期整流器7にお
いて、FET13のオン時、抵抗14,15間の
中点Pの電位が強制的にOボルトになるためにコ
ンデンサ12に充電々流が流れることによるもの
と考えられる。 出力信号Cが上記の如き直流分を含むことによ
り、最終的に直流増幅器11より生じる信号Dの
電圧VDと上記温度差Tとの関係は、 VD=αT4+βT4=(α+β)T4 で表わされる。こゝにα、βは夫々信号Cの正弦
波分及び直流分に対する比例係数である。 従つて、αやβの係数が一定である限り、直流
増幅器11の感度調整により、βの影響を補正す
ることができるが、カツプリングコンデンサ12
の静電容量が温度により変化すると、βが温度に
依存して変化することになり、この様な変化はも
はや補正できず、それは信号Dに誤差を含ましめ
ることになる。 (ハ) 考案の目的 本考案は、上記の如くカツプリングコンデンサ
を用いかつ、斯るコンデンサの存在により生じる
従来の欠点を除去せんとするものである。 (ニ) 考案の構成 本考案の特徴は、上記カツプリングコンデンサ
の蓄積電荷を放電させる放電用抵抗を設けた点に
ある。 (ホ) 実施例 第5図に本実施例の要部を示し、第1図、第3
図と同一部分には同一番号が付されている。本実
施例の特徴は、カツプリングコンデンサ12の一
端とアースとの間に放電用抵抗16を接続した点
にある。即ち、既述の理由によりカツプリングコ
ンデンサ12に電荷が蓄積され、上記直流分VDH
やVDLが発生するのであるが、斯る蓄積電荷が抵
抗16を通じて放電し、よつて上記直流分VDH
VDLの値が小さく抑えられるのである。そしてこ
の様に直流分の値が小さいことは、コンデンサ1
2の静電容量がたとえ温度変化により変つてもそ
の影響はほとんどなく、直流増幅器11(第1
図)より出力される信号Dは誤差をほとんど含ま
ず正確なものとなる。 尚、抵抗16は交流分も同時に通すので、その
値をあまり小さくすると、本来の交流信号が小さ
くなりS/N比の低下という問題が生ずる。従つ
て、抵抗16の値Rは、コンデンサ12の静電容
量Cとの積で表わされる放電時定数τとチヨツパ
2(第1図)のチヨツパ周波数との関係で決定さ
れる。即ち、τがチヨツパの半周期に比べて小さ
くなるCとRとの組合わせで、信号Cの値が最大
になる様Rの値を選べばよい。本実施例の回路定
数の1例を下表に示す。
(a) Industrial application field The present invention relates to an infrared detection device. (b) Prior Art Figure 1 shows the principle circuit of this type of device. By passing the infrared ray 1 to be measured through the optical chopper 2, the infrared ray 1 to be measured and the infrared 4 emitted by the chopper 2 are alternately incident on the infrared sensor 3 in synchronization with the chopping period of the chopper 2. The infrared sensor 3 is made of, for example, a pyroelectric type, and outputs a signal corresponding to the difference in intensity between the two alternately incident infrared rays. This signal, of course, changes in synchronization with the chopper period, and is then amplified by an AC amplifier 5, and then passes through a bandpass filter 6 whose center pass frequency is the chopper frequency of the chopper 2, as shown in FIG. The result is a substantially sinusoidal signal A as shown in FIG. In the same figure, the solid line shows the case where the intensity of the infrared ray 1 to be measured is greater than that of the chopper infrared 4, and the broken line shows the case where the opposite relationship exists, and furthermore, the amplitude of each waveform is It corresponds to the strength difference of 4. The synchronous rectifier 7 rectifies the signal A using a synchronous pulse B synchronized with the chop cycle of the chopper 2, and as a result generates a signal C consisting of a half-wave rectified waveform of the signal A. These waveforms are shown in FIGS. 2B and 2C.
The synchronization pulse B is generated by a synchronization signal pulse generator 8 and has its waveform shaped by a waveform shaper 9. Now, assuming that the optical chopper 2 is a perforated disc chopper rotating at a constant speed, the synchronizing signal pulse generator 8 is constituted by a photointerrupter whose optical path is interrupted by such a chopper. The output signal C of the synchronous rectifier 7 is then converted into DC by an integrator 10, and further passes through a DC amplifier 11 to become a final DC signal D (FIG. 2D). The level of this signal D corresponds to the difference in intensity between the infrared ray 1 to be measured and the infrared ray 2 to be measured. Measured infrared ray 1
The intensity of signal D corresponds to the temperature of the object to be measured, and that of the chopper infrared 4 corresponds to room temperature.Therefore, the level of signal D represents the difference between the temperature of the object to be measured and the room temperature. Therefore, by correcting the room temperature from the level of the signal D, the temperature of the object to be measured can be determined. Now, in the above device, the circuit constants of the previous stage change due to temperature changes, especially due to the synchronous rectifier 7.
When the input to the synchronous rectifier 7 drifts in direct current, the effect appears as a change in the level of the final signal D, resulting in a measurement error. In order to improve this point,
By inputting the above signal A to the synchronous rectifier 7 through a coupling capacitor, it is possible to cut off the DC component that causes drift with such a capacitor.
This is shown in Publication No. 97612. However, in the case of such an improved device, it has been found that although the influence of the above-mentioned temperature drift is eliminated, the influence of other direct current components appears. This will be explained with reference to the main part specific circuit shown in FIG. In FIG. 3, the same parts as in FIG. 1 are denoted by the same numbers, and the capacitor 12 is a coupling capacitor inserted to eliminate the above-mentioned temperature drift. The FET 13 of the synchronous rectifier 7 receives a synchronous pulse B that takes two levels of O volts and -E volts.
is input and turns on when the same pulse B is O volts. As a result, the synchronous rectifier 7 outputs the waveform shown in FIG. 4 as its output signal C. In the figure, the solid line indicates the case where the intensity of the measured infrared ray 1 is greater than that of the tipper infrared 4 (that is, the case where the temperature T B of the measured object is greater than the tipper temperature T C ), and the dashed line indicates the opposite case. The following cases are shown. It should be noted that
The output signal C includes DC components V DH and V DL . The magnitude of the DC component V DH or V DL is proportional to the fourth power of the temperature difference T=|T B −T C |. The generation of such a DC component is due to the fact that in the synchronous rectifier 7, when the FET 13 is turned on, the potential at the midpoint P between the resistors 14 and 15 is forced to become O volts, and a charging current flows into the capacitor 12. considered to be a thing. Since the output signal C includes the DC component as described above, the relationship between the voltage V D of the signal D finally generated from the DC amplifier 11 and the temperature difference T is as follows: V D = αT 4 + βT 4 = (α+β)T Represented by 4 . Here, α and β are proportional coefficients for the sine wave component and DC component of the signal C, respectively. Therefore, as long as the coefficients of α and β are constant, the influence of β can be corrected by adjusting the sensitivity of the DC amplifier 11.
If the capacitance of D changes with temperature, β will change depending on the temperature, and such a change can no longer be corrected, which causes an error in the signal D. (c) Purpose of the invention The present invention uses a coupling capacitor as described above and aims to eliminate the conventional drawbacks caused by the presence of such a capacitor. (d) Structure of the invention The feature of the invention lies in the provision of a discharging resistor for discharging the charge accumulated in the coupling capacitor. (E) Example Figure 5 shows the main parts of this example, and Figures 1 and 3 show the main parts of this example.
The same parts as in the figure are given the same numbers. The feature of this embodiment is that a discharge resistor 16 is connected between one end of the coupling capacitor 12 and the ground. That is, due to the above-mentioned reason, charge is accumulated in the coupling capacitor 12, and the DC component V DH
However, the accumulated charge is discharged through the resistor 16, and the DC component V DH and V DL are generated.
This allows the value of V DL to be kept small. And this small value of the DC component means that the capacitor 1
Even if the capacitance of the DC amplifier 11 (first
The signal D outputted from FIG. 1 is accurate and contains almost no errors. Incidentally, since the resistor 16 also passes an alternating current component, if its value is made too small, the original alternating current signal becomes small, causing a problem of a decrease in the S/N ratio. Therefore, the value R of the resistor 16 is determined by the relationship between the discharge time constant τ expressed as the product of the capacitance C of the capacitor 12 and the chopper frequency of the chopper 2 (FIG. 1). That is, the value of R may be selected so that the value of signal C is maximized by a combination of C and R where τ is smaller than the half cycle of the chopper. An example of the circuit constants of this embodiment is shown in the table below.

【表】 (ヘ) 考案の効果 本考案によれば、被測定赤外線を所定周期で赤
外線センサに入力し、該センサの出力に基づく交
流信号を、上記周期に同期せる同期パルスにて整
流する同期整流器に通した後、直流信号に変換す
る装置において、上記同期整流器より前段にカツ
プリングコンデンサと、該コンデンサの蓄積電荷
を放電させる放電用抵抗とを設け、上記交流信号
を上記カツプリングコンデンサを介して上記同期
整流器に入力させるものであるから、上記同期整
流器より前段での回路定数の温度変化によるドリ
フトが上記カツプリングコンデンサで除去され、
かつさもなければ同期整流の結果大きく現われる
であろう、上記カツプリングコンデンサの蓄積電
荷が抑えられ、その結果、正確な直流信号を得る
ことができる。
[Table] (F) Effects of the invention According to the invention, infrared rays to be measured are input to an infrared sensor at a predetermined period, and an alternating current signal based on the output of the sensor is rectified by a synchronous pulse synchronized with the above period. In a device that converts the AC signal into a DC signal after passing through a rectifier, a coupling capacitor and a discharging resistor for discharging the accumulated charge of the capacitor are provided at a stage before the synchronous rectifier, and the AC signal is passed through the coupling capacitor. Since the circuit constant is inputted to the synchronous rectifier by the coupling capacitor, the drift due to temperature change in the circuit constant at the stage before the synchronous rectifier is removed by the coupling capacitor.
Moreover, the accumulated charge on the coupling capacitor, which would otherwise be significant as a result of synchronous rectification, is suppressed, so that an accurate DC signal can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は従来例を示すもので、第1
図、第3図は回路図、第2図、第4図は信号波形
図、第5図は本考案の実施例を示す回路図であ
る。 3……赤外線センサ、5……交流増幅器、6…
…バンドパスフイルタ、7……同期整流器、10
……積分器、11……直流増幅器。
Figures 1 to 4 show conventional examples.
3 are circuit diagrams, FIGS. 2 and 4 are signal waveform diagrams, and FIG. 5 is a circuit diagram showing an embodiment of the present invention. 3...Infrared sensor, 5...AC amplifier, 6...
...Band pass filter, 7...Synchronous rectifier, 10
...Integrator, 11...DC amplifier.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被測定赤外線を所定周期で赤外線センサに入力
し、該センサの出力に基づく交流信号を、上記周
期に周期せる同期パルスにて整流する同期整流器
に通した後、直流信号に変換する装置において、
上記同期整流器より前段にカツプリングコンデン
サと、該コンデンサの蓄積電荷を放電させる放電
用抵抗とを設け、上記交流信号を上記カツプリン
グコンデンサを介して上記同期整流器に入力させ
ることを特徴とする赤外線検出装置。
In a device that inputs infrared rays to be measured into an infrared sensor at a predetermined period, passes an alternating current signal based on the output of the sensor through a synchronous rectifier that rectifies it with a synchronous pulse that has the periodicity, and then converts it into a direct current signal,
Infrared detection characterized in that a coupling capacitor and a discharging resistor for discharging accumulated charge in the capacitor are provided at a stage upstream of the synchronous rectifier, and the alternating current signal is inputted to the synchronous rectifier via the coupling capacitor. Device.
JP32484U 1984-01-05 1984-01-05 infrared detection device Granted JPS60113531U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32484U JPS60113531U (en) 1984-01-05 1984-01-05 infrared detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32484U JPS60113531U (en) 1984-01-05 1984-01-05 infrared detection device

Publications (2)

Publication Number Publication Date
JPS60113531U JPS60113531U (en) 1985-08-01
JPH0351721Y2 true JPH0351721Y2 (en) 1991-11-07

Family

ID=30472061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32484U Granted JPS60113531U (en) 1984-01-05 1984-01-05 infrared detection device

Country Status (1)

Country Link
JP (1) JPS60113531U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713644B2 (en) * 1986-11-14 1995-02-15 日本電装株式会社 Semiconductor acceleration detector

Also Published As

Publication number Publication date
JPS60113531U (en) 1985-08-01

Similar Documents

Publication Publication Date Title
JPS62161058A (en) Method for detecting rotational speed of motor
US3887877A (en) Feedback electrostatic voltmeter
KR940020121A (en) Signal detection method and phase modulation degree detection method
JPH0351721Y2 (en)
US4928045A (en) Circuit arrangement for generating a measurement signal associated with the frequency of an alternating current signal
JP2570422B2 (en) DC current measurement method
JP2795956B2 (en) Phase control circuit
JPS6211818B2 (en)
JPH0450509Y2 (en)
KR930007539Y1 (en) Circuit for lvdt output
JPS59220830A (en) Analog input system of digital processor
SU1147930A1 (en) Device for measuring vibration amplitude
JPH0450510Y2 (en)
SU938144A1 (en) Device for article ultrasonic checking
SU807183A1 (en) Device for registering magnetic noise envelope
SU1702511A1 (en) Sine-wave signal generator
JPS6288916A (en) Movement sensor
SU362457A1 (en) QUANTUM CONVERTER OF THE INTENSITY OF IONIZING RADIATION INTO THE FREQUENCY OF FOLLOWING
SU1171982A1 (en) D.c.amplifier
JPH0622177Y2 (en) Flow measuring device
JPH1194881A (en) Ac current detector
JPH0331210B2 (en)
RU1568683C (en) Radiant energy meter
SU410405A1 (en)
SU1117559A1 (en) Eddy-current metal detector