JPH0351701A - Measuring method for surface of sample using tunnel current - Google Patents

Measuring method for surface of sample using tunnel current

Info

Publication number
JPH0351701A
JPH0351701A JP18442689A JP18442689A JPH0351701A JP H0351701 A JPH0351701 A JP H0351701A JP 18442689 A JP18442689 A JP 18442689A JP 18442689 A JP18442689 A JP 18442689A JP H0351701 A JPH0351701 A JP H0351701A
Authority
JP
Japan
Prior art keywords
sample
film
probe
tunnel current
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18442689A
Other languages
Japanese (ja)
Inventor
Takahiro Oguchi
小口 高弘
Kunihiro Sakai
酒井 邦裕
Toshimitsu Kawase
俊光 川瀬
Akihiko Yamano
明彦 山野
Hiroyasu Nose
博康 能瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18442689A priority Critical patent/JPH0351701A/en
Publication of JPH0351701A publication Critical patent/JPH0351701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To enhance resolution by laminating a conductive monomolecular film which has a hydrophilic part and a hydrophobic part and comprises organic molecules, and measuring the roughness of the surface by using a tunnel current. CONSTITUTION:A conductive monomolecular film 2 which has a hydrophilic part and a hydrophobic part and comprises organic molecules is laminated on the surface of an insulating sample 1. Leading electrodes 3 to the outside are attached. The irregularities on the surface of the sample are observed. A bias voltage is applied across a probe and the sample through the electrodes 3. A tunnel current flowing between the probe and the sample is inputted into a control circuit. Thus, a minute movement controlling mechanism is controlled. The distance between the electrodes 3 is controlled with the control circuit so that the tunnel current is constant all the time. Thus, the probe is controlled, and the surface of the sample is observed. In this way, the surface roughness of the sample can be measured readily for the large area with high resolution.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、走査型トンネル顕微鏡あるいはその原理を応
用した精密測定装置等によるトンネル電流を用いた試料
表面の測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for measuring the surface of a sample using a tunneling current using a scanning tunneling microscope or a precision measuring device applying its principle.

[従来の技術] 最近、物質表面及び表面近傍の電子構造を直接観察でき
る走査型トンネル顕微鏡(以後STMと略す)が開発さ
れ[G、Binning et al、、He1vet
icaPhysica、Acta、55,726 (1
982)] 、単結晶、非晶質を問わず実空間像の高い
分解能の測定ができるようになり、しかも媒体に、電流
による損傷を与えずに低電力で観測できる利点をも有し
、さらには超高真空中のみならず大気中や溶液中でも動
作し種々の材料に対して用いることができることから広
範囲な応用が期待されている。
[Prior Art] Recently, a scanning tunneling microscope (hereinafter abbreviated as STM), which can directly observe the electronic structure on and near the surface of a material, has been developed [G., Binning et al., He1vet.
icaPhysica, Acta, 55,726 (1
982)], it has become possible to measure real space images with high resolution regardless of whether they are single crystal or amorphous, and it also has the advantage of being able to observe with low power without damaging the medium due to electric current. It operates not only in ultra-high vacuum but also in the atmosphere and in solutions, and can be used for various materials, so it is expected to have a wide range of applications.

かかるSTMは金属の探針(プローブ電極)と導電性物
質(試料)の間に電圧を加えて1nI11程度の距離ま
で近づけると両者の間に電流が流れる(トンネル電流)
ことを利用している。この電流は両者の距離変化に非常
に敏感であり、電流もしくは両者の平均的な距離を一定
に保つように探針な走査することにより実空間の表面情
報を得ることができる。
In such an STM, when a voltage is applied between a metal probe (probe electrode) and a conductive substance (sample) and they are brought close to a distance of about 1nI11, a current flows between them (tunnel current).
I'm taking advantage of that. This current is very sensitive to changes in the distance between the two, and surface information in real space can be obtained by scanning the probe while keeping the current or the average distance between the two constant.

STMで試料表面の観察を行う際、探針と試料間に加え
る電圧(バイアス電圧)の大部分が探針−試料間隙にか
かる必要を有することから、試料の抵抗は数LOOKΩ
以下でなければならない。
When observing a sample surface with STM, most of the voltage (bias voltage) applied between the tip and sample needs to be applied to the tip-sample gap, so the resistance of the sample is several LOOKΩ.
Must be less than or equal to

そのために、STMで絶縁物あるいは高抵抗な半導体等
の表面観察を直接行うことは不可能であった。そこで、
かかる場合には、試料表面にAu、 Pt、 Pt−P
d等の導電性金属をスパッタリング法、蒸着法等にてコ
ーティングしく ApplieaPhysics Le
tter P、1656〜165752(20) Ma
y198g)  あるいは絶縁性試料の導電性金属レプ
リカを作製し、このレプリカをSTMで観察するという
方法が採られていた(Science P、1013 
vol。
Therefore, it has been impossible to directly observe the surface of an insulator or a high-resistance semiconductor using STM. Therefore,
In such a case, Au, Pt, Pt-P is coated on the sample surface.
Coating with conductive metal such as d by sputtering method, vapor deposition method, etc.AppliaPhysics Le
tter P, 1656-165752 (20) Ma
y198g) Alternatively, a method was adopted in which a conductive metal replica of an insulating sample was created and this replica was observed using STM (Science P, 1013
vol.

239198g) 。239198g).

[発明が解決しようとする課題] しかしながら、上述のような金属コーティング法、金属
レプリカ法等によるSTMを用いた絶縁物の表面観察は
、コーティング等の際に用いられる導電性金属のグレイ
ン形状等によりその解像度が制限され、lOn+aオー
ダー以上の分解能を得るのは困難とされていた。また、
階段上に表面凹凸や微細バダ−ンのある試料面において
は、スデツブカバレージを均一に好ましく、金属コーテ
ィングすることが難しかった。
[Problems to be Solved by the Invention] However, surface observation of insulators using STM using the metal coating method, metal replica method, etc. described above is difficult due to the grain shape of the conductive metal used during coating, etc. Its resolution is limited, and it has been considered difficult to obtain a resolution of the order of lOn+a or higher. Also,
On a sample surface with surface irregularities or fine bumps on steps, uniform coverage of the steps was desirable and it was difficult to coat with metal.

すなわち1本発明の目的とするところは、上記のような
問題点を解決した導電性の層を試料面にコーティングし
て試料を測定する、トンネル電流を用いた試料表面の測
定方法を提供することにある。
That is, one object of the present invention is to provide a method for measuring the surface of a sample using tunneling current, which solves the above-mentioned problems and coats the surface of the sample with a conductive layer and measures the sample. It is in.

[課題を解決するための手段] 本発明の特徴とするところは、走査型トンネル顕微鏡や
かかる装置の原理を応用したパターン線幅測定装置等の
トンネル電流を用いた試料表面の測定において、測定対
象とする試料表面に、親水性部位と疎水性部位とを有す
る有機分子から成る導電性の単分子膜、単分子累積膜9
重合膜いずれかの膜を積層して測定することにある。
[Means for Solving the Problems] The present invention is characterized in that when measuring the surface of a sample using a tunneling current, such as a scanning tunneling microscope or a pattern line width measuring device applying the principle of such a device, A conductive monomolecular film or monomolecular cumulative film 9 made of organic molecules having a hydrophilic site and a hydrophobic site is applied to the surface of the sample.
The purpose of this method is to laminate and measure polymeric membranes.

すなわち、本発明は、STMの原理を用いて試料、特に
絶縁性試料の表面を観察する際、試料表面に導電コーテ
ィング層として両親媒性分子の導電性単分子膜又は単分
子累積膜又はその重合膜を用いることにより、絶縁性試
料の表面−をnmオーダーの分解能で評価しようとする
ものである。
That is, the present invention provides a method for observing the surface of a sample, especially an insulating sample, using the principle of STM, using a conductive monolayer or a monomolecular cumulative film of amphiphilic molecules as a conductive coating layer on the surface of the sample, or a polymerization thereof. By using a film, the surface of an insulating sample is to be evaluated with a resolution on the nanometer order.

ここで、対象とする試料としては、特に絶縁性試料、ま
たは、絶縁部位と導電部位の混在する試料等が挙げられ
る。
Here, examples of the target sample include insulating samples, samples in which insulating parts and conductive parts coexist, and the like.

また、かかる試料にコーティングする導電膜を形成する
導電性有機物質として、TTF−TCNQに代表される
電荷移動錯体の分子性結晶、ポリアセチレンに代表され
る導電性ポリマー等が挙げられる。
Examples of the conductive organic material forming the conductive film coated on the sample include molecular crystals of charge transfer complexes represented by TTF-TCNQ, conductive polymers represented by polyacetylene, and the like.

これらの化合物群の両親媒性分子を溶媒に溶かし、水面
上に展開すると、単分子膜が形成され、Langmui
r−Blodgett法(La法)によりこの単分子膜
を基板上(試料表面)に移し取ることで単分子累積膜等
が形成される。このような単分子膜の累積構造を持つ導
電性La膜の室温における面内型導度は、l s/cm
程度が実現されており、これを用いれば、十分なだけの
導電性を有するコーティング層が形成できる。
When the amphiphilic molecules of these compound groups are dissolved in a solvent and spread on the water surface, a monomolecular film is formed, and Langmui
By transferring this monomolecular film onto a substrate (sample surface) by the r-Blodgett method (La method), a monomolecular cumulative film or the like is formed. The in-plane conductivity at room temperature of a conductive La film with such a monolayer cumulative structure is l s/cm
It is possible to form a coating layer with sufficient electrical conductivity.

本発明で用いられる単分子膜、単分子累積膜等は、第5
図に示す装置で形成される。
The monomolecular film, monomolecular cumulative film, etc. used in the present invention are
It is formed by the apparatus shown in the figure.

図中において、26は表面圧針であり、表面制御装置2
7に継いで移動障壁28の移動制御を行い、定の表面圧
を保つものである。29は水相で純水あるいは金属イオ
ンを含む水である。30は成膜基板(試料)、31は成
膜基板ホルダーで上下することができるようになってい
る。
In the figure, 26 is a surface pressure needle, and the surface control device 2
7, the movement of the moving barrier 28 is controlled to maintain a constant surface pressure. 29 is an aqueous phase, which is pure water or water containing metal ions. 30 is a film forming substrate (sample), and 31 is a film forming substrate holder which can be moved up and down.

上記のような装置は下記のように操作される。A device as described above is operated as follows.

先ず液面を清浄にし、ベンゼン、クロロホルム、アンド
ントリル−ベンゼン(l対l)等の溶媒に溶かした導電
性分子の溶液を液面上に滴下し、気体膜を形成させる6
次いで移動障壁28を除々に左に動かし分子が展開して
いる液面の領域を次第に縮めて面密度を増し、固体膜を
形成させる。この単分子膜の状態は表面圧センサー32
によって液面上に展開されている単分子膜の表面圧を測
定することによって検知される。前記、移動障壁28の
左右の動きは、この表面圧センサーの測定値に基づいて
制御される。一般に成膜基板30へ移しとるのに好適な
単分子膜の表面圧は15〜30dyn/ca+とされて
いるが、例えば膜構造物質の化学構造、温度条件によっ
ては好適な表面圧の値が上記範囲からはみ出ることもあ
るので上記範囲は一応の目安である。
First, the liquid surface is cleaned, and a solution of conductive molecules dissolved in a solvent such as benzene, chloroform, andandhryl-benzene (1:1) is dropped onto the liquid surface to form a gas film6.
Next, the moving barrier 28 is gradually moved to the left to gradually reduce the area of the liquid surface where the molecules are spread, thereby increasing the areal density and forming a solid film. The state of this monomolecular film is determined by the surface pressure sensor 32.
It is detected by measuring the surface pressure of a monomolecular film spread on the liquid surface. The horizontal movement of the movable barrier 28 is controlled based on the measured value of this surface pressure sensor. In general, the surface pressure of a monomolecular film suitable for transferring to the film-forming substrate 30 is said to be 15 to 30 dyn/ca+, but depending on the chemical structure of the film structure material and temperature conditions, for example, the suitable surface pressure value may vary as above. The above range is just a guideline, as it may exceed the range.

上記状態下で成膜基板30を上下させることによって基
板の表面に当該固体膜となった単分子膜を付着させて移
し取ることができる。更に同一の成膜基板30に複数回
単分子膜を重ねて移し取ることによって単分子累積膜を
得ることができる。
By moving the film-forming substrate 30 up and down under the above conditions, the monomolecular film that has become a solid film can be attached to the surface of the substrate and transferred. Furthermore, a monomolecular cumulative film can be obtained by stacking and transferring a monomolecular film a plurality of times onto the same film-forming substrate 30.

上記成膜基板30の上下移動は通常0.1−1cm/w
inの速度で行われる。
The vertical movement of the film forming substrate 30 is usually 0.1-1 cm/w.
This is done at a speed of in.

尚、単分子膜の基板への移し取りの方法としては、上記
した垂直浸漬性以外に水平付着法1回転ドラム法等を用
いることができる。
As a method for transferring the monomolecular film to the substrate, in addition to the above-mentioned vertical dipping method, a horizontal adhesion method, a one-rotation drum method, etc. can be used.

[作  用] 例えば、絶縁性試料をトンネル電流を用いた走査型トン
ネル顕微鏡等で表面測定を行う場合、前述の導電膜を試
料表面にコーティングすることで、試料の抵抗は数10
0にΩ以下のオーダーとなり、STMの探針とかかる試
料間に十分なバイアス電圧を加えることが可能となる。
[Function] For example, when measuring the surface of an insulating sample using a scanning tunneling microscope using a tunneling current, by coating the sample surface with the above-mentioned conductive film, the resistance of the sample can be reduced to several tens of thousands.
The bias voltage is on the order of Ω or less than 0, making it possible to apply a sufficient bias voltage between the STM probe and the sample.

さらに、LB膜はns+〜サブ止という分子サイズの厚
さをもつ均一な薄膜で、ステップカバレージも良く、比
較的大面積のコーティングも可能なため、試料の表面凹
凸情報を分子サイズで反映することができる。従って、
従来の金属コーティング法等に比べ、表面の解像度が大
幅に向上するものである。
Furthermore, the LB film is a uniform thin film with a molecular-sized thickness ranging from ns+ to sub-thickness, has good step coverage, and can be coated over a relatively large area, making it possible to reflect the surface roughness information of the sample at the molecular size. I can do it. Therefore,
Compared to conventional metal coating methods, the surface resolution is significantly improved.

[実施例] 以下に、本発明の具体的実施例を挙げる。[Example] Specific examples of the present invention are listed below.

支血且ユ 絶縁性試料に導電性LB膜をコーティングし、その表面
粗さを37M観察した。導電性LB膜は第5図に示す装
置で形成した。
A conductive LB film was coated on an insulating sample of blood and the surface roughness was observed for 37M. The conductive LB film was formed using the apparatus shown in FIG.

LB膜の構成分子として、ビステトラシアノキノジメタ
ンードコシルビリジウム(CI+3−+−C1l−+−
2+0(■[TCNQl m)を用い、これをアセトニ
トリルとベンゼンのl対l混合溶液に1 sg/mlの
濃度で溶炉シタ後、KHCOm テpH6,8LC調整
されりCdC1z 711度4 x 10−’mol/
i’ *水温17℃の第5図の装置の水相上に展開した
As a constituent molecule of the LB film, bis-tetracyanoquinodimethane docosyl biridium (CI+3-+-C1l-+-
2+0 (■[TCNQl m) was added to a 1:1 mixed solution of acetonitrile and benzene at a concentration of 1 sg/ml in a blast furnace, then KHCOm was adjusted to pH 6.8LC and CdC1z 711 degrees 4 x 10-' mol/
i' *Developed on the aqueous phase of the apparatus shown in Figure 5 at a water temperature of 17°C.

溶媒のアセトニトリル、ベンゼンを蒸発除去した後、表
面圧を20dyn/cmまで高め、単分子膜を形成した
0表面圧を一定に保ちながら、あらかじめ水相中に浸漬
してあった疎水処理した絶縁性試料30を水面を横切る
方法に速度5 am/winで静かに引き上げ、続いて
5 mm/a+inで静かに浸漬する。この工程を繰り
返して10層の単分子膜を累積した。
After the solvents acetonitrile and benzene were removed by evaporation, the surface pressure was increased to 20 dyn/cm, and a monomolecular film was formed.The hydrophobically treated insulating material, which had been immersed in the water phase in advance, was kept at a constant zero surface pressure. The sample 30 is gently pulled across the surface of the water at a rate of 5 am/win, followed by a gentle immersion at 5 mm/a+in. This process was repeated to accumulate 10 monolayer layers.

このようにして導電性LB膜をコーティングした試料に
、第1図に示すように外部への取り出し用電極3を付設
し、観察用試料として、この試料表面凹凸の観察をST
Mで行った。第2図に1本実施例で用いたSTMの構成
図を示す。図中4はトンネル電流をモニターする探針で
あり、タングステン針の先端を電解研磨したものを用い
ている。
The sample coated with the conductive LB film in this way is provided with an electrode 3 for taking it out to the outside as shown in Figure 1, and used as an observation sample to observe the surface irregularities of the sample.
I went with M. FIG. 2 shows a configuration diagram of the STM used in this embodiment. In the figure, reference numeral 4 denotes a probe for monitoring tunnel current, which is a tungsten needle whose tip has been electrolytically polished.

そして、第1図に示した導電膜をコーティングした絶縁
性試料が、X、Y方向及びZ方向への粗動機構5の上に
置かれ、試料には3の取り出し用電極を介して、探針−
試料間に印加回路6によってバイアス電圧が印加されて
いる。図中7は、円筒形圧電素子からなる探針の試料面
内方向(X、Y方向)及び深針−試料量方向(Z方向)
への微動制御機構である。8は、探針−試料間に流れる
トンネル電流を検出する回路であり、この出力が9の制
御回路に入り、7の微動制御機構を制御する。
Then, the insulating sample coated with the conductive film shown in FIG. Needle-
A bias voltage is applied between the samples by an application circuit 6. 7 in the figure indicates the in-plane direction of the sample (X, Y directions) of the probe made of a cylindrical piezoelectric element, and the depth probe-sample amount direction (Z direction).
It is a fine movement control mechanism. 8 is a circuit for detecting the tunnel current flowing between the probe and the sample, and the output of this circuit is input to the control circuit 9 to control the fine movement control mechanism 7.

試料の観察は、バイアス電圧印加回路6によりIVの電
圧を印加した状態で粗動機構5を制御し、両極間(探針
−試料間)にlpAの電流が流れる距離まで近づける0
次に、両極間にl nAが流れるように微動制御機構7
を制御する。制御回路9は、常にトンネル電流が一定と
なるように微動制御機構7を介して両極間の距離を制御
している。
To observe the sample, the coarse movement mechanism 5 is controlled with a voltage of IV applied by the bias voltage application circuit 6, and the sample is brought close to the distance where a current of lpA flows between the two poles (between the tip and the sample).
Next, the fine movement control mechanism 7 is set so that lnA flows between the two poles.
control. The control circuit 9 controls the distance between the two poles via the fine movement control mechanism 7 so that the tunnel current is always constant.

この状態で制御回路9を用いて、微動制御機構7を介し
、探針4をX−Y面内で走査し、表面観察を行ったとこ
ろ、 nmオーダーの分解能で試料表面観察が行えた。
In this state, when the probe 4 was scanned in the X-Y plane using the control circuit 9 and the surface was observed via the fine movement control mechanism 7, the sample surface could be observed with a resolution on the order of nanometers.

及立丘ユ 第3図に、本発明の第2の実施例を示す、これは、絶縁
性試料上に形成される微細パターンの線幅測定に於いて
STMの原理を応用するものであり、探針先端からのト
ンネル電流によってパターンのエツジを検知し、光学的
計測手法によってエツジ間隔を測定することで、nmオ
ーダーの分解能を確保できる線幅測定装置である。
A second embodiment of the present invention is shown in FIG. 3, which applies the principle of STM in measuring the line width of a fine pattern formed on an insulating sample. This is a line width measurement device that can secure nanometer-order resolution by detecting the edges of a pattern using tunneling current from the tip of the probe and measuring the edge spacing using an optical measurement method.

先ず、微細パターンの形成されている絶縁性試料上に、
第5図に示す装置で導電性LB膜をコーティングした。
First, on an insulating sample on which a fine pattern is formed,
A conductive LB film was coated using the apparatus shown in FIG.

L8膜の構成分子として、テトラメチルテトラチフルバ
レンーオクタデシルテトラシアノキノジメタン(TMT
TF/Cl8TCNQ) ;にl mg/mI!の1度
で溶かした後、水温20℃の第5図の装置の水相上に展
開した。
As a constituent molecule of the L8 membrane, tetramethyltetratifulvalene-octadecyltetracyanoquinodimethane (TMT
TF/Cl8TCNQ); to l mg/mI! After melting at 1 degree, it was spread on the aqueous phase of the apparatus shown in FIG. 5 at a water temperature of 20 degrees Celsius.

溶媒のベンゼンを蒸発除去した後、表面圧を25dyn
/ca+まで高め、単分子膜を形成した0表面圧を一定
に保ちながら、あらかじめ水相中に浸漬してあった疎水
処理した絶縁性試料30を水面を横切る方向に速度10
mm/lll1nで静かに引き上げ、続いて速度10o
+a+/lll1nで静かに浸漬する。この工程な経て
、2層の単分子膜を累積した。この試料にも実施例1と
同様に取り出し用電極3を付設した。
After removing the solvent benzene by evaporation, the surface pressure was reduced to 25 dyn.
/ca+ to form a monomolecular film.While keeping the surface pressure constant, the hydrophobically treated insulating sample 30, which had been previously immersed in the water phase, was moved at a speed of 10 in the direction across the water surface.
Gently pull up at mm/lll1n, then at a speed of 10o
Gently soak in +a+/lll1n. Through this process, two monolayers were accumulated. This sample was also provided with the extraction electrode 3 in the same manner as in Example 1.

次に、この微細パターンの線幅測定を行った。Next, the line width of this fine pattern was measured.

第3図、第4図を用いてかかる測定を説明する。This measurement will be explained using FIGS. 3 and 4.

導電性LB膜のコーティングされた被測定試料lOには
、バイアス電圧印加回路6によってバイアス電圧が印加
され、被測定試料lOと対向してlnm以下の距離に近
接させた探針4との間に流れるトンネル電流11をトン
ネル電流検出回路8で検出する。
A bias voltage is applied to the sample to be measured lO coated with the conductive LB film by a bias voltage application circuit 6, and a bias voltage is applied between the sample to be measured lO and the probe 4 which is placed close to the sample lO at a distance of 1 nm or less. A tunnel current detection circuit 8 detects the flowing tunnel current 11.

平均トンネル電流が一定になるようにLPF12 、探
針縦方向位置制御回路13.探針縦方向位置制御手段1
4により、探針4のZ方向位置制御を行う。ステージ駆
動手段15によってステージ16を横方向に移動させ、
被測定試料lOを走査する。この特待られる探針縦方向
位置制御信号3a(第4図参照)から、バタ、−ンのエ
ツジをエツジ検出回路17で検出し、エツジ検出信号3
b(第4図参照)を線幅算出回路18に送る。一方、可
干渉光源19からの可干渉光をビームスプリッタ20に
よって2つに分け、方の光は、ミラー21を介してステ
ージ16に固定されたミラー22へ反射させ、反射光を
ビームスプリッタ20に再入射させる。他方の光は、探
針4の近傍に固定されたミラー23に反射させビームス
プリッタ20に再入射させる。
The LPF 12 and the probe longitudinal position control circuit 13 are installed so that the average tunneling current is constant. Probe longitudinal position control means 1
4, the position of the probe 4 in the Z direction is controlled. The stage 16 is moved laterally by the stage driving means 15,
The sample to be measured lO is scanned. The edge of the butterfly is detected by the edge detection circuit 17 from this desired probe longitudinal position control signal 3a (see FIG. 4), and the edge detection circuit 17
b (see FIG. 4) is sent to the line width calculation circuit 18. On the other hand, the coherent light from the coherent light source 19 is split into two by the beam splitter 20, the first light is reflected via the mirror 21 onto the mirror 22 fixed to the stage 16, and the reflected light is sent to the beam splitter 20. Re-inject it. The other light is reflected by a mirror 23 fixed near the probe 4 and made to enter the beam splitter 20 again.

かかるビームスプリッタ20により、2つの反射光は再
び合成され、干渉光としてフォトダイオード24に入射
する。このときステージ16即ち被測定試料10と探針
4との横方向相対移動によりフォトダイオード24に入
射する干渉光に明暗の強度変化が生じる0例えば、可干
渉光の波長がλとすると相対移動量がん/2の場合には
、一周期分の明暗変化となる。従って、フォトダイオー
ド24からの光強度変化信号3c (第4図参照)から
、相対横方向移動量をnmの精度で読み取ることができ
、横方向移動量検出回路25によって横方向移動量信号
3d(第4図参照)が得られ、線幅算出回路18へ送ら
れる。線幅算出回路18では、エツジ検出信号3bと横
方向移動量信号3dをもとに被測定パターン線幅測定値
3e (第4図参照)を算出する。尚、本実施例では、
可干渉光源19として単一周波数レーザを用いたマイケ
ルソン型光波干渉法を応用した例を示したが、ゼーマン
レーザ等の二周波直交偏光レーザを用いた光ヘテロゲイ
ン干渉法を応用してもよい。
The two reflected lights are combined again by the beam splitter 20 and enter the photodiode 24 as interference light. At this time, due to the lateral relative movement between the stage 16, that is, the sample to be measured 10, and the probe 4, a change in brightness and darkness occurs in the interference light incident on the photodiode 24.For example, if the wavelength of the coherent light is λ, the relative movement amount is In the case of cancer/2, the brightness changes for one cycle. Therefore, the relative lateral movement amount can be read with nm precision from the light intensity change signal 3c (see FIG. 4) from the photodiode 24, and the lateral movement amount detection circuit 25 detects the lateral movement amount signal 3d (see FIG. 4). (see FIG. 4) is obtained and sent to the line width calculation circuit 18. The line width calculating circuit 18 calculates a measured pattern line width value 3e (see FIG. 4) based on the edge detection signal 3b and the lateral movement amount signal 3d. In addition, in this example,
Although an example has been shown in which Michelson type optical interferometry using a single frequency laser is applied as the coherent light source 19, optical heterogain interferometry using a dual frequency orthogonally polarized laser such as a Zeeman laser may also be applied.

[発明の効果] 以上述べたように、本発明の測定方法によれば、絶縁性
試料、または絶縁性部位と導・電性部位の混在する試料
の表面粗さ等をSTM等を用いて、従来の金属コーティ
ング法等に比べ容易に大面積にわたり、高い分解能で測
定できる。
[Effects of the Invention] As described above, according to the measurement method of the present invention, the surface roughness etc. of an insulating sample or a sample in which insulating parts and conductive/conductive parts are mixed can be measured using STM etc. Compared to conventional metal coating methods, measurements can be easily made over a large area and with high resolution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の特徴とする導電膜をコーチ、インク
した絶縁性試料の概略断面図である。 第2図は、実施例1で用いたSTMの構成図を示す。 第3図は、実施例2で用いた線幅測定装置の構成図を示
す。 第4図は、実施例2で用いた装置によって得られる信号
を表わしたものである。 第5図は、LB膜作製のための装置を示す。 l・・・絶縁性試料    2・・・導電膜3・・・取
り出し用電極  4・・・探針5・・・粗動機構   
    6・・・バイアス電圧印加回路7・・・微動制
御機構     8・・・トンネル電流検出回路9・・
・制御回路     IO・・・被測定試料11・・・
トンネル電流   12・・・LPF13・・・探針縦
方向位置制御回路 14・・・探針縦方向位置制御手段 15・・・ステージ駆動手段 16・・・ステージ17
・・・エツジ検出回路  19・・・可干渉光源18・
・・線幅算出回路   21,22.23・・・ミラー
20・・・ビームスプリッタ 24・・・フォトダイオード 25・・・横方向移動量検出回路 26・・・表面圧針 27・・・表面制御装置 28・・・移動障壁 29・・・水相 30・・・成膜基板(試料) 31・・・成膜基板ホルダー 32・・・表面圧センサー
FIG. 1 is a schematic cross-sectional view of an insulating sample coated with and inked a conductive film, which is a feature of the present invention. FIG. 2 shows a configuration diagram of the STM used in Example 1. FIG. 3 shows a configuration diagram of the line width measuring device used in Example 2. FIG. 4 shows signals obtained by the device used in Example 2. FIG. 5 shows an apparatus for producing an LB film. l... Insulating sample 2... Conductive film 3... Extraction electrode 4... Probe 5... Coarse movement mechanism
6... Bias voltage application circuit 7... Fine movement control mechanism 8... Tunnel current detection circuit 9...
・Control circuit IO...Measurement sample 11...
Tunnel current 12... LPF 13... Probe longitudinal position control circuit 14... Probe longitudinal position control means 15... Stage driving means 16... Stage 17
...Edge detection circuit 19...Coherent light source 18.
... Line width calculation circuit 21, 22, 23 ... Mirror 20 ... Beam splitter 24 ... Photodiode 25 ... Lateral movement amount detection circuit 26 ... Surface pressure needle 27 ... Surface control device 28...Movement barrier 29...Aqueous phase 30...Film formation substrate (sample) 31...Film formation substrate holder 32...Surface pressure sensor

Claims (1)

【特許請求の範囲】[Claims] (1)トンネル電流を用いた試料表面の測定において、
測定対象とする試料表面に、親水性部位と疎水性部位と
を有する有機分子から成る導電性の単分子膜、単分子累
積膜、重合膜いずれかの膜を積層して測定することを特
徴とするトンネル電流を用いた試料表面の測定方法。
(1) In measuring the sample surface using tunnel current,
The method is characterized in that a conductive monomolecular film, a monomolecular cumulative film, or a polymeric film consisting of organic molecules having a hydrophilic part and a hydrophobic part is laminated on the surface of the sample to be measured. A method for measuring the surface of a sample using tunneling current.
JP18442689A 1989-07-19 1989-07-19 Measuring method for surface of sample using tunnel current Pending JPH0351701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18442689A JPH0351701A (en) 1989-07-19 1989-07-19 Measuring method for surface of sample using tunnel current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18442689A JPH0351701A (en) 1989-07-19 1989-07-19 Measuring method for surface of sample using tunnel current

Publications (1)

Publication Number Publication Date
JPH0351701A true JPH0351701A (en) 1991-03-06

Family

ID=16152949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18442689A Pending JPH0351701A (en) 1989-07-19 1989-07-19 Measuring method for surface of sample using tunnel current

Country Status (1)

Country Link
JP (1) JPH0351701A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251578A (en) * 1991-06-04 1993-10-12 Toyota Jidosha Kabushiki Kaisha Cooling system for internal combustion engine
US5386805A (en) * 1991-06-06 1995-02-07 Toyota Jidosha Kabushiki Kaisha Cooling system of an internal combustion engine
JP2009056551A (en) * 2007-08-31 2009-03-19 Toyama Univ Tool positioning method and tool positioning device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251578A (en) * 1991-06-04 1993-10-12 Toyota Jidosha Kabushiki Kaisha Cooling system for internal combustion engine
US5386805A (en) * 1991-06-06 1995-02-07 Toyota Jidosha Kabushiki Kaisha Cooling system of an internal combustion engine
JP2009056551A (en) * 2007-08-31 2009-03-19 Toyama Univ Tool positioning method and tool positioning device

Similar Documents

Publication Publication Date Title
Lü et al. Kelvin probe force microscopy on surfaces: investigation of the surface potential of self-assembled monolayers on gold
US7033476B2 (en) Separation and counting of single molecules through nanofluidics, programmable electrophoresis, and nanoelectrode-gated tunneling and dielectric detection
US7348206B2 (en) Formation of self-assembled monolayers of redox SAMs on silicon for molecular memory applications
US5317152A (en) Cantilever type probe, and scanning tunnel microscope and information processing apparatus employing the same
EP0412850B1 (en) Substrate for recording medium, recording medium, method for preparing the same, recording and reproducing device, and recording, reproducing and erasing method by use of such recording medium
US20020021139A1 (en) Molecular probe station
Heim et al. Conductivity of DNA probed by conducting–atomic force microscopy: Effects of contact electrode, DNA structure, and surface interactions
JP2775464B2 (en) Position detection device
JP4696022B2 (en) Probe microscope and measuring method using probe microscope
Takami et al. Construction of independently driven double-tip scanning tunneling microscope
EP0438256A2 (en) Information processing apparatus, information processing method, and recording medium employed therefor
Baba et al. Simultaneous in situ electrochemical, surface plasmon optical, and atomic force microscopy measurements: Investigation of conjugated polymer electropolymerization
JPH0351701A (en) Measuring method for surface of sample using tunnel current
JP2972858B2 (en) Method for measuring dynamic contact angle of sulfur-containing organic molecule self-assembled film
JP3647199B2 (en) Information recording / reproducing method and recording / reproducing apparatus
Knoll et al. Supramolecular interfacial architectures for controlled electron transfer
CA1333637C (en) Method of driving device having mim structure
Kopiec et al. Multifrequency Kelvin probe force microscopy on self assembled molecular layers and quantitative assessment of images’ quality
Tang et al. Fabrication of highly oriented microstructures and nanostructures of ferroelectric P (VDF-TrFE) copolymer via dip-pen nanolithography
US8084093B2 (en) Process for producing nano-device using potential singular points on substrate
JP2967308B2 (en) Micro cantilever probe, method of manufacturing the same, surface observation device and information processing device provided with the same
Lebyedyeva et al. Development of a Controlled In Situ Thin-Film Technology for Porous Anodic Alumina-Based Nanostructures
Nabok et al. Study of electron tunnelling through thin polymer films using a mercury probe technique
Pienpinijtham et al. Tip-Enhanced Raman Scattering in Liquid/Solution
EP0441626B1 (en) Medium, process for preparing the same, information processing device, information processing method