JPH0351663Y2 - - Google Patents

Info

Publication number
JPH0351663Y2
JPH0351663Y2 JP1985108656U JP10865685U JPH0351663Y2 JP H0351663 Y2 JPH0351663 Y2 JP H0351663Y2 JP 1985108656 U JP1985108656 U JP 1985108656U JP 10865685 U JP10865685 U JP 10865685U JP H0351663 Y2 JPH0351663 Y2 JP H0351663Y2
Authority
JP
Japan
Prior art keywords
heat
heat storage
medium
storage tank
sensible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985108656U
Other languages
Japanese (ja)
Other versions
JPS6218579U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985108656U priority Critical patent/JPH0351663Y2/ja
Publication of JPS6218579U publication Critical patent/JPS6218579U/ja
Application granted granted Critical
Publication of JPH0351663Y2 publication Critical patent/JPH0351663Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Central Heating Systems (AREA)

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 この考案は、蓄熱装置に関し、特に潜熱蓄熱材
を用いたソーラーシステムなどの蓄熱装置に関す
るものである。
[Detailed description of the invention] (a) Industrial application field This invention relates to a heat storage device, and particularly to a heat storage device such as a solar system using a latent heat storage material.

(ロ) 従来の技術 一般に、熱エネルギーを蓄熱する蓄熱体は、大
きく分けて、水や石などの物質の温度変化に伴う
熱保有量の変化を利用する顕熱系材料と、硫酸ソ
ーダ水和塩あるいは氷のように融解熱(凝固熱)
とその融点前後の顕熱を利用する潜熱系材料とが
ある。
(b) Conventional technology In general, heat storage bodies that store thermal energy are broadly divided into sensible heat materials that utilize changes in heat retention due to changes in the temperature of substances such as water and stones, and those that use sodium sulfate hydrated materials. Heat of fusion (heat of solidification) like salt or ice
There are also latent heat materials that utilize sensible heat around the melting point.

従来、一般に実用化され普及している蓄熱装置
又は槽は、ほとんどが水の顕熱を利用したもので
単位容積当りの蓄熱量が潜熱利用方式に比して小
さいという顕熱利用方式の原理的なデメリツトが
あつた。
Conventionally, most of the heat storage devices or tanks that have been put into practical use and are widely used utilize the sensible heat of water, and the principle of the sensible heat utilization method is that the amount of heat stored per unit volume is smaller than that of the latent heat utilization method. There were some disadvantages.

(ハ) 考案が解決しようとする問題点 この考案は以上の事情に鑑みてなされたもので
あり、その主要な目的の一つは、顕熱利用方式の
デメリツトをできるだけ補うべく、蓄熱の利用効
率を高めることにあり、特にその利用効率を常に
高い状態に保障できるようにすることにある。
(c) Problems that the invention aims to solve This invention was made in view of the above circumstances, and one of its main objectives is to improve the efficiency of heat storage utilization in order to compensate for the disadvantages of the sensible heat utilization method as much as possible. The objective is to increase the utilization efficiency of the system, and in particular to ensure that its utilization efficiency is always high.

(ニ) 問題点を解決するための手段及びその作用 この考案は密封された蓄熱タンクに、集熱熱媒
と熱交換を行なう顕熱蓄熱熱媒が内装されると共
に該顕熱蓄熱熱媒の相変化に伴なつて発生する熱
媒蒸気を蓄えるための蒸気空間が形成され、該顕
熱蓄熱熱媒により蓄えられた熱を潜熱として蓄え
る潜熱蓄熱熱媒の封入容器が前記顕熱蓄熱熱媒内
に配され、更に蓄熱タンクの蒸気空間から延び、
凝縮部を負荷と熱交換させたヒートパイプを具備
し、且つ、電磁弁を介して蓄熱タンクの底部に接
続される顕熱蓄熱熱媒のサブタンク、蓄熱タンク
の蒸気空間に通じる排気部を備えたアスピレータ
及びポンプをそれぞれ循環接続してなるアスピレ
ータ部と、蓄熱タンクの蒸気空間内蒸気圧の高・
低に対応して前記ポンプの作動・停止を、蓄熱タ
ンクの顕熱蓄熱熱媒のレベルの高・低に対応して
前記電磁弁の閉開作動をそれぞれ制御する制御信
号を出力する制御部とを備えてなる蓄熱装置であ
る。
(d) Means for solving the problem and its effect This invention is a method in which a sealed heat storage tank is equipped with a sensible heat storage medium that exchanges heat with a heat collecting heat medium. A vapor space is formed for storing the heat medium vapor generated due to the phase change, and the enclosure of the latent heat storage heat medium stores the heat stored by the sensible heat storage heat medium as latent heat. and further extends from the vapor space of the heat storage tank,
Equipped with a heat pipe that exchanges heat between the condensing part and the load, a sub-tank for sensible heat storage heat medium connected to the bottom of the heat storage tank via a solenoid valve, and an exhaust part communicating with the vapor space of the heat storage tank. The aspirator part, which is formed by circulating an aspirator and a pump, and the high vapor pressure in the vapor space of the heat storage tank.
a control unit that outputs a control signal that controls the operation or stopping of the pump in response to a low level, and the closing/opening operation of the solenoid valve in response to a high or low level of the sensible heat storage medium in the heat storage tank; This is a heat storage device comprising:

すなわち、この考案は、蓄熱タンクに、その蒸
気空間から外部負荷へ延びるヒートパイプを設け
ることによつて、ヒートパイプの損失の少ない熱
の取り出しができる点を利用して顕熱利用方式の
欠点を補うことができる。
In other words, this idea solves the drawbacks of the sensible heat utilization method by providing a heat pipe in the heat storage tank that extends from the vapor space to the external load, and takes advantage of the fact that heat can be extracted with less loss in the heat pipe. It can be supplemented.

更にこの考案は、蓄熱タンクの蒸気空間を、ア
スピレータを含む特定の構成によつて、減圧状態
に維持し、常にヒートパイプによる熱の取り出し
ができるよう保障するものである。
Furthermore, this invention ensures that the vapor space of the heat storage tank is maintained at a reduced pressure by a specific configuration including an aspirator, and that heat can always be extracted by the heat pipe.

(ホ) 実施例 以下図に示す実施例に基づいてこの考案を詳述
する。なお、これによつてこの考案が限定される
ものではない。
(e) Examples This invention will be described in detail based on the examples shown in the figures below. Note that this invention is not limited to this.

まず第1図において、蓄熱装置Aは、主とし
て、蓄熱タンク1と、この蓄熱タンクから外部負
荷へ延びるヒートパイプ9と、アスピレータ部3
1と、制御器25とからなる。
First, in FIG. 1, a heat storage device A mainly includes a heat storage tank 1, a heat pipe 9 extending from the heat storage tank to an external load, and an aspirator section 3.
1 and a controller 25.

ここで、密封されたステンレス製蓄熱タンク1
には、顕熱蓄熱熱媒3が内装されると共に該顕熱
蓄熱熱媒3の相変化に伴なつて発生する熱媒蒸気
3Aを蓄えるための蒸気空間5が形成され、該顕
熱蓄熱熱媒3により蓄えられた熱を潜熱として蓄
える潜熱蓄熱熱媒4が封入容器7に封入され、該
封入容器7が前記顕熱蓄熱熱媒3内に配されてい
る。
Here, sealed stainless steel heat storage tank 1
A sensible heat storage heat medium 3 is installed inside the unit, and a steam space 5 is formed for storing heat medium vapor 3A generated as a result of phase change of the sensible heat storage heat medium 3. A latent heat storage heat medium 4 that stores the heat stored by the medium 3 as latent heat is enclosed in an enclosure 7, and the enclosure 7 is disposed within the sensible heat storage heat medium 3.

そして、前記蓄熱タンク1の下部には、顕熱蓄
熱熱媒3に熱を与えるための蓄熱用熱交換器6が
内装され、該熱交換器6を太陽熱により加熱され
た集熱熱媒2が流れる。また、前記顕熱蓄熱熱媒
3は例えば水のように顕熱量が大で比熱が大きい
ものが使用される。また潜熱蓄熱熱媒4は、例え
ばN−パラフインのような有機物を主成分とする
有機物混合体から成り、ポリエチレン(又はポリ
プロピレン)製の前記封入容器7に充填されてい
る。そして蓄熱タンク1の上部に前記蒸気空間5
が形成され、蓄熱タンク1の上端に熱媒蒸気出口
8が形成され、該出口に中空状のヒートパイプ9
が、フレア接合され気密封止された結合器10を
介して接続されている。ヒートパイプ9の先端凝
縮部9aに給水管11が外嵌され、該給水管11
及び凝縮部9aで給湯用熱交換器12が構成され
る。なお、図中13は給水口、14は出湯口であ
る。また前記蓄熱タンク1にはその外周壁に断熱
材15が巻付けられており、蓄熱タンク1、断熱
材15、潜熱蓄熱熱媒4、顕熱蓄熱熱媒3、熱交
換器6により蓄熱ユニツト6が構成されている。
なお、17は集熱器、30は循環ポンプである。
A heat storage heat exchanger 6 for supplying heat to the sensible heat storage heat medium 3 is installed in the lower part of the heat storage tank 1. flows. Further, as the sensible heat storage heat medium 3, a material having a large amount of sensible heat and a large specific heat, such as water, is used. The latent heat storage medium 4 is made of an organic substance mixture mainly composed of organic substances, such as N-paraffin, and is filled in the enclosing container 7 made of polyethylene (or polypropylene). The vapor space 5 is located above the heat storage tank 1.
A heat medium vapor outlet 8 is formed at the upper end of the heat storage tank 1, and a hollow heat pipe 9 is connected to the outlet.
are connected via a flare-jointed and hermetically sealed coupler 10. A water supply pipe 11 is fitted onto the tip condensing part 9a of the heat pipe 9, and the water supply pipe 11
A hot water supply heat exchanger 12 is configured by the condensing section 9a. In addition, in the figure, 13 is a water supply port, and 14 is a tap water outlet. A heat insulating material 15 is wrapped around the outer peripheral wall of the heat storage tank 1, and a heat storage unit 6 is formed by the heat storage tank 1, the heat insulating material 15, the latent heat storage heat medium 4, the sensible heat storage heat medium 3, and the heat exchanger 6. is configured.
Note that 17 is a heat collector and 30 is a circulation pump.

上記構成において、集熱器17に配管されてい
る熱交換器6によつて、まず顕熱蓄熱熱媒3に熱
が伝達される。顕熱蓄熱熱媒3に蓄わえられた熱
は、潜熱蓄熱熱媒4の相変位温度までは潜熱蓄熱
熱媒4の顕熱として、またその相変位温度で潜熱
として蓄熱される。即ち蓄熱タンク1の蓄熱形態
は、顕熱蓄熱熱媒3の顕熱として、潜熱蓄熱熱媒
4の顕熱および潜熱としての三通りに、かつ共存
した蓄熱形態となる。
In the above configuration, heat is first transferred to the sensible heat storage medium 3 by the heat exchanger 6 piped to the heat collector 17 . The heat stored in the sensible heat storage heat medium 3 is stored as sensible heat of the latent heat storage heat medium 4 up to the phase shift temperature of the latent heat storage heat medium 4, and as latent heat at that phase shift temperature. That is, the heat storage form of the heat storage tank 1 is a heat storage form that coexists in three ways: as sensible heat of the sensible heat storage heat medium 3, and as sensible heat and latent heat of the latent heat storage heat medium 4.

蒸気空間5は、予め顕熱蓄熱熱媒3を蓄熱タン
ク1に搬入するまえに系全体を真空に引き、一定
量の顕熱蓄熱熱媒3を封入して得られる顕熱蓄熱
熱媒3の飽和蒸気空間であり、その熱媒蒸気3A
の圧力は通常蓄熱タンク1の内部圧力に従う。熱
の伝達は、ヒートパイプ9によつてその飽和の熱
媒蒸気3Aがその凝縮部9aに移送され、熱交換
される。つまり飽和蒸気3Aが凝縮して潜熱を給
水管11内の水(外部負荷)に与え、熱輸送が行
なわれる。一方、凝縮して液体となつた熱媒蒸気
3Aは、蓄熱タンク1へ液流となつて帰る。ま
た、蒸気空間5では、凝縮部9aでの圧力低下に
よつて蒸気3Aを結合管10の方へ送り出し、そ
の不足分を顕熱蓄熱熱媒3の顕熱−潜熱相変化に
よつて充足する。ここで取られた熱は、潜熱蓄熱
熱媒4に蓄熱されている熱量から補填される。
The vapor space 5 is made up of a sensible heat storage heat medium 3 obtained by evacuating the entire system before transporting the sensible heat storage heat medium 3 into the heat storage tank 1 and enclosing a certain amount of the sensible heat storage heat medium 3. It is a saturated vapor space, and its heat medium vapor 3A
The pressure usually follows the internal pressure of the heat storage tank 1. For heat transfer, the saturated heat medium vapor 3A is transferred to the condensing section 9a by the heat pipe 9, and heat is exchanged therewith. That is, the saturated steam 3A condenses and gives latent heat to the water (external load) in the water supply pipe 11, thereby performing heat transport. On the other hand, the heat medium vapor 3A that has been condensed into a liquid returns to the heat storage tank 1 as a liquid stream. Further, in the steam space 5, the pressure decrease in the condensing section 9a sends the steam 3A toward the coupling pipe 10, and the shortage is filled by the sensible heat-latent heat phase change of the sensible heat storage heat medium 3. . The heat taken here is supplemented from the amount of heat stored in the latent heat storage heat medium 4.

更に第1図に示す蓄熱装置Aは、強制循環型ア
スピレータ部31を有し、蓄熱タンク1の蒸気空
間5と前記アスピレータ部のアスピレータ20の
排気部aは排気管26で連結される。アスピレー
タ部31には循環ポンプ21が接続され、その循
環ポンプの吸込側で、循環往管27を分岐させ、
蓄熱タンクの底部へ補給路29が形成され、該補
給路は電磁弁22で開閉させる。又、蓄熱タンク
1には、蒸気空間5の圧力と温度検知するための
蒸気圧センサー23、及び熱媒3の水位を検出す
るレベルセンサー24が内挿され、制御器25に
より前記循環ポンプ21及び電磁弁22の動作制
御を行わせる。なお、上記説明の蒸気圧センサー
23は、圧力以外に温度も検知するが、これは飽
和蒸気圧には温度依存性があるためであり蒸気空
間を飽和蒸気圧に保持するためには圧力と温度の
検出が不可欠となる。更にアスピレータ部31に
はサブタンク18が設けられ該タンクには熱媒3
が満たされる。又、電磁弁22は常時閉である。
Furthermore, the heat storage device A shown in FIG. 1 has a forced circulation type aspirator part 31, and the vapor space 5 of the heat storage tank 1 and the exhaust part a of the aspirator 20 of the aspirator part are connected by an exhaust pipe 26. A circulation pump 21 is connected to the aspirator section 31, and a circulation outgoing pipe 27 is branched on the suction side of the circulation pump.
A replenishment path 29 is formed at the bottom of the heat storage tank, and the replenishment path is opened and closed by a solenoid valve 22. In addition, a vapor pressure sensor 23 for detecting the pressure and temperature of the steam space 5 and a level sensor 24 for detecting the water level of the heat medium 3 are inserted into the heat storage tank 1, and a controller 25 controls the circulation pump 21 and the temperature. The operation of the solenoid valve 22 is controlled. The vapor pressure sensor 23 described above also detects temperature in addition to pressure, but this is because saturated vapor pressure has temperature dependence, and in order to maintain the vapor space at saturated vapor pressure, pressure and temperature are required. detection is essential. Furthermore, a sub-tank 18 is provided in the aspirator section 31, and a heat medium 3 is supplied to the sub-tank 18.
is fulfilled. Further, the solenoid valve 22 is normally closed.

かくして蒸気空間5の圧力が上昇すると、蒸気
圧センサー23は蒸気空間の温度と圧力を検知し
その信号を受けて制御器25が制御信号を出力
し、循環ポンプ21が運転を始め、サブタンク1
8の熱媒3が循環往管27→循環ポンプ21→ア
スピレータ20(b→c)→循環還管28と循環
する。この時アスピレータ20の内部はノズル2
0−1で流路が絞られており、高流速でb→cを
流過することとなり、その吸引作用で排気管26
を経由して蒸気空間5が排気される。そして蒸気
空間5が一定値に減圧されれば、制御器25によ
つて循環ポンプ21を停止させる。この時アスピ
レータ20内の逆止球20−2はa側に吸引さ
れ、排気路26が閉となる。なお、サブタンク1
8には熱媒3の補給手段19(熱媒3として水を
用い、ボールタツプで水位制御をしている)が設
けられる。
When the pressure in the steam space 5 increases in this way, the steam pressure sensor 23 detects the temperature and pressure in the steam space, and in response to that signal, the controller 25 outputs a control signal, the circulation pump 21 starts operating, and the subtank 1
The heat medium 3 of 8 circulates in the order of circulation outgoing pipe 27 → circulation pump 21 → aspirator 20 (b → c) → circulation return pipe 28. At this time, the inside of the aspirator 20 is the nozzle 2.
The flow path is constricted at 0-1, and the flow passes from b to c at a high flow rate, and the suction action causes the exhaust pipe 26
The steam space 5 is evacuated via. When the pressure in the steam space 5 is reduced to a constant value, the controller 25 stops the circulation pump 21. At this time, the check ball 20-2 inside the aspirator 20 is attracted to the a side, and the exhaust path 26 is closed. In addition, sub tank 1
8 is provided with a replenishing means 19 for the heating medium 3 (water is used as the heating medium 3, and the water level is controlled by a ball tap).

ところで、排気装置としては他にロータリー真
空ポンプが良く知られており、気相部の排気に利
用されるが、以上の実施例のごとき蒸気空間の排
気には、蒸気によるオイル劣化が甚しく、使用は
好ましくない。つまり、アスピレータ20が、安
価で且つ蒸気空間5の排気としては優れている。
ただ、このような蒸気の排出は、原理的には不凝
縮性ガスと共に熱媒3の蒸気をも放出してしまう
ので、使用中に蓄熱タンク内の熱媒3が減少して
いき、蓄熱性能が低下するという問題がある。し
かしながら、以上の実施例では、前述した排気機
能に加えて一般のアスピレータ20が持つ上記問
題をも併せて解決できるものである。
Incidentally, a rotary vacuum pump is another well-known exhaust device and is used for exhausting the gas phase, but when exhausting the steam space as in the above embodiment, the oil is severely degraded by the steam. Use is not recommended. In other words, the aspirator 20 is inexpensive and excellent for exhausting the vapor space 5.
However, in principle, such discharge of steam would also release the vapor of the heat medium 3 along with the noncondensable gas, so the heat medium 3 in the heat storage tank will decrease during use, and the heat storage performance will decrease. There is a problem that the value decreases. However, in the above embodiment, in addition to the above-described exhaust function, the above-mentioned problems of the general aspirator 20 can also be solved.

即ち、蓄熱タンク1内の熱媒3が規定レベル以
下になるとレベルセンサー24が作動し制御器2
5により電磁弁22を「開」にする。すると大気
圧に開放されているサブタンク18の熱媒3が減
圧下にある蓄熱タンク1へ両者の圧力差で自動補
給される。そして規定レベルになれば電磁弁22
が閉じられる。
That is, when the heat medium 3 in the heat storage tank 1 falls below a specified level, the level sensor 24 is activated and the controller 2 is activated.
5 to open the solenoid valve 22. Then, the heat medium 3 in the sub-tank 18, which is open to atmospheric pressure, is automatically replenished to the heat storage tank 1, which is under reduced pressure, due to the pressure difference between the two. When the specified level is reached, the solenoid valve 22
is closed.

なお、熱の移動は、ヒートパイプ熱輸送である
から、従来のシステムが蓄熱タンク1までの給水
配管を必要としたのに対し、これが不要となる。
また本実施例では、家庭用太陽熱給湯システムに
ついて説明したが、この考案では、太陽熱集熱給
湯システム、冷暖房等他の場合も容易に応用展開
し得るものである。
Note that since the heat is transferred by heat pipe heat transport, the conventional system requires water supply piping to the heat storage tank 1, but this becomes unnecessary.
Further, in this embodiment, a domestic solar hot water supply system has been described, but this invention can be easily applied to other cases such as a solar heat collecting hot water supply system, air conditioning and heating.

以上、要するに、特に熱の取り出し(くみ出
し)に関しては、ヒートパイプを利用している
が、該ヒートパイプの性能を、最大限発揮させる
ためには、蒸気空間を常に減圧状態(顕熱蓄熱熱
媒の飽和蒸気圧の状態)に保持する必要がある。
しかし実際には、蓄熱タンクの内壁、顕熱蓄熱熱
媒などから、不凝縮性の気体が発生し、蒸気空間
の圧力を飽和蒸気圧以上に上昇させ使用期間中
に、装置の性能が低下することになる。上述のア
スピレータ部31は、まさにその装置の性能の低
下を自動的に熱媒の損失なく、防止できるもので
ある。
In summary, heat pipes are used especially for heat extraction, but in order to maximize the performance of the heat pipes, the steam space must always be kept in a reduced pressure state (sensible heat storage heat medium). (saturated vapor pressure).
However, in reality, non-condensable gas is generated from the inner wall of the heat storage tank, the sensible heat storage medium, etc., which increases the pressure in the steam space above the saturated vapor pressure, reducing the performance of the equipment during the period of use. It turns out. The above-mentioned aspirator section 31 can automatically prevent the performance of the device from deteriorating without loss of heat medium.

(ヘ) 考案の効果 以上の説明から明らかな様に、この考案によれ
ば、ヒートパイプの利用により、蓄熱が高効率に
取り出せ、且つ特定のアスピレータの採用によ
り、熱媒の蒸気空間を常に一定の減圧状態に保持
できるばかりか、熱媒量も一定に保持し、長期の
蓄熱性能の維持が熱媒の損失なく可能となる。
(f) Effects of the device As is clear from the above explanation, according to this device, heat storage can be extracted with high efficiency by using a heat pipe, and by using a specific aspirator, the vapor space of the heating medium can be kept constant at all times. Not only can the reduced pressure state be maintained, but the amount of heat medium can also be maintained constant, making it possible to maintain long-term heat storage performance without loss of heat medium.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案の一実施例を示す構成説明
図、第2図はそのアスピレータ部の拡大断面図で
ある。 A……蓄熱装置、1……蓄熱タンク、5……蒸
気空間、9……ヒートパイプ、18……サブタン
ク、20……アスピレータ部、21……循環ポン
プ、22……電磁弁、23……蒸気圧センサー、
24……レベルセンサー、25……制御器。
FIG. 1 is a structural explanatory diagram showing an embodiment of this invention, and FIG. 2 is an enlarged sectional view of the aspirator portion thereof. A... Heat storage device, 1... Heat storage tank, 5... Steam space, 9... Heat pipe, 18... Sub-tank, 20... Aspirator section, 21... Circulation pump, 22... Solenoid valve, 23... vapor pressure sensor,
24...Level sensor, 25...Controller.

Claims (1)

【実用新案登録請求の範囲】 密封された蓄熱タンクに、集熱熱媒と熱交換を
行なう顕熱蓄熱熱媒が内装されると共に該顕熱蓄
熱熱媒の相変化に伴なつて発生する熱媒蒸気を蓄
えるための蒸気空間が形成され、該顕熱蓄熱熱媒
により蓄えられた熱を潜熱として蓄える潜熱蓄熱
熱媒の封入容器が前記顕熱蓄熱熱媒内に配され、 更に蓄熱タンクの蒸気空間から延び、凝縮部を
負荷と熱交換させたヒートパイプを具備し、且
つ、電磁弁を介して蓄熱タンクの底部に接続され
る顕熱蓄熱熱媒のサブタンク、蓄熱タンクの蒸気
空間に通じる排気部を備えたアスピレータ及びポ
ンプをそれぞれ循環接続してなるアスピレータ部
と、蓄熱タンクの蒸気空間内蒸気圧の高・低に対
応して前記ポンプの作動・停止を、蓄熱タンクの
顕熱蓄熱熱媒のレベルの高・低に対応して前記電
磁弁の閉開作動をそれぞれ制御する制御信号を出
力する制御部とを備えてなる蓄熱装置。
[Scope of Claim for Utility Model Registration] A sealed heat storage tank is equipped with a sensible heat storage medium that exchanges heat with a collecting heat medium, and the heat generated as a result of the phase change of the sensible heat storage medium. A vapor space for storing medium vapor is formed, and a sealed container for a latent heat storage heat medium that stores the heat stored by the sensible heat storage heat medium as latent heat is disposed within the sensible heat storage heat medium, and further a heat storage tank is provided. A sensible heat storage heat medium sub-tank extending from the steam space, equipped with a heat pipe that exchanges heat between the condensing part and the load, and connected to the bottom of the heat storage tank via a solenoid valve, communicating with the steam space of the heat storage tank. The aspirator section is formed by connecting an aspirator and a pump with an exhaust section, respectively, and the sensible heat storage heat of the heat storage tank is activated or stopped according to the high or low vapor pressure in the vapor space of the heat storage tank. A heat storage device comprising: a control section that outputs control signals for respectively controlling closing and opening operations of the electromagnetic valve in response to high and low levels of the medium.
JP1985108656U 1985-07-15 1985-07-15 Expired JPH0351663Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985108656U JPH0351663Y2 (en) 1985-07-15 1985-07-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985108656U JPH0351663Y2 (en) 1985-07-15 1985-07-15

Publications (2)

Publication Number Publication Date
JPS6218579U JPS6218579U (en) 1987-02-04
JPH0351663Y2 true JPH0351663Y2 (en) 1991-11-06

Family

ID=30986052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985108656U Expired JPH0351663Y2 (en) 1985-07-15 1985-07-15

Country Status (1)

Country Link
JP (1) JPH0351663Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064102A (en) * 2005-08-31 2007-03-15 Isuzu Motors Ltd Rotary positive displacement steam engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4301797B2 (en) * 2002-11-01 2009-07-22 英男 稲葉 Energy thermal storage system and exhaust heat utilization method
JP5693197B2 (en) * 2010-12-15 2015-04-01 株式会社日立製作所 Solar heat utilization system and control method of solar heat utilization system
JP5940778B2 (en) * 2011-08-08 2016-06-29 トヨタ自動車株式会社 Cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064102A (en) * 2005-08-31 2007-03-15 Isuzu Motors Ltd Rotary positive displacement steam engine

Also Published As

Publication number Publication date
JPS6218579U (en) 1987-02-04

Similar Documents

Publication Publication Date Title
JPH0351663Y2 (en)
JPH0678871B2 (en) Water heater
US4645125A (en) Heat transport method
US4407129A (en) Closed loop solar collecting system operating a thermoelectric generator system
CN211503300U (en) Multimode-driven underground energy storage system
JPS60122286A (en) Steam pressure pump
CN107575974A (en) A kind of indoor refrigeration and heating
CN211120793U (en) Movable heat reservoir
JP3303644B2 (en) Loop heat transport system
CN110986400A (en) Underground energy storage system with double liquid storage cavity structure and control method thereof
JPH0428993B2 (en)
US4354483A (en) Closed loop solar collector system with dual reservoirs and fluid bypass
WO1982003677A1 (en) Jacketed tank hermetic drain-back solar water heating system
US4412529A (en) Closed loop solar collector system with dual reservoirs and fluid bypass
JP2774359B2 (en) Loop type heat pipe
CN214763483U (en) Gas-liquid separator
CN107270528A (en) Constant temperature water boiler and constant temperature boiling system
JPH0262792B2 (en)
US4397300A (en) Closed loop solar collector system with dual chamber fluid supply arrangement
JPS6215733Y2 (en)
KR950003126B1 (en) Refrigerating system
JPS6124837Y2 (en)
JPS62134424A (en) Heat transfer device
JPH0123085Y2 (en)
JP2549390Y2 (en) Solar heat collection system