JPH0350746B2 - - Google Patents

Info

Publication number
JPH0350746B2
JPH0350746B2 JP27066784A JP27066784A JPH0350746B2 JP H0350746 B2 JPH0350746 B2 JP H0350746B2 JP 27066784 A JP27066784 A JP 27066784A JP 27066784 A JP27066784 A JP 27066784A JP H0350746 B2 JPH0350746 B2 JP H0350746B2
Authority
JP
Japan
Prior art keywords
group
general formula
substituted
reaction
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27066784A
Other languages
Japanese (ja)
Other versions
JPS61148148A (en
Inventor
Shinichi Kawahara
Shozo Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP27066784A priority Critical patent/JPS61148148A/en
Publication of JPS61148148A publication Critical patent/JPS61148148A/en
Publication of JPH0350746B2 publication Critical patent/JPH0350746B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Furan Compounds (AREA)
  • Pyrrole Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(利用分野) 本発明はN−置換アミドの製造方法に関する。
詳しくは特定のN−ハロメチルアミドと特定の芳
香環化合物とを、酸触媒と塩基性化合物との共存
下に反応させるN−置換アミドを製造する方法を
提供するものである。 (従来技術及び発明が解決しようとする問題点) 従来、アミド化合物の製法として塩化アルミニ
ウム触媒を用いて特定の芳香環化合物とN−ハロ
メチルアミド化合物とを反応させN−置換アミド
を製造することが知られている(ケミストリ ア
ンド インダストリ(Chemistry and industry
1982年号808頁)。 しかしながら、上記方法は複素環系芳香環化合
物を原料とするときは応用出来ず、また工業的に
みても収率、操作等の面で必ずしも満足のいく方
法とは云えなかつた。 (問題点を解決するための手段) 本発明者らは、長年芳香環化合物特に複素環を
有するアミド化合物の製造研究を続けてきた。そ
の結果、N−ハロメチルアミドと芳香環化合物を
反応させて前述の化合物を製造するに際し、酸触
媒と塩基性化合物との存在下に該反応を行うこと
により収率よく目的物を得ることができることを
見い出し、本発明を完成するに至つた。 即ち、本発明は、 (イ) 一般式()、 (但し、R1は置換又は非置換の炭化水素基、
R2及びR3は同種又は異種の水素原子又はアル
キル基、R4は水素原子又は置換もしくは非置
換のアルキル基、Xはハロゲン原子である。) で示されるN−ハロメチルアミドと、 (ロ) 一般式()、 Ar−H……() (但し、Arは置換又は非置換のアリール基或
いは置換又は非置換のヘテロアリール基であ
る。) で示される芳香環化合物、 とを反応させて、 一般式()、 (但し、R1、R2、R3、R4及びArは上記と同じ
である。) で示されるN−置換アミドを製造する方法に於
いて、該反応系に酸触媒と塩基性化合物との共
存させて反応させることを特徴とするN−置換
アミドの製造方法である。 本発明の最大の特徴は前記一般式()で示さ
れるN−ハロメチルアミドと前記一般式()で
示される芳香環化合物との反応に際して、酸触媒
と塩基性化合物とを共存させて反応を行うことで
ある。 本発明で用いる上記酸触媒は特に限定されず公
知の酸触媒が好適に採用出来る。一般にはルイス
酸、ブレンステツド酸等が使用出来る。特にルイ
ス酸は後述する塩基性化合物との相互作用が良好
で最も好適である。該酸触媒として好適に使用さ
れるものを更に具体的に例示すると、銅、銀、
金、ベリリウム、マグネシウム、亜鉛、カドミウ
ム、水銀、ホウ素、アルミニウム、ガリウム、イ
ンジウム、タリウム、ケイ素、ゲルマニウム、ス
ズ、鉛、トリウム、ジルコニウム、パナジウム、
クロミウム、モリブデン、タングステン、マンガ
ン、鉄、ニツケル、白金等の金属ハライドが好ま
しく、最もすぐれた効果を期待出来るのは鉄及び
亜鉛のハライドである。また該ハライドとしては
塩素、臭素、沃素及び弗素が特に限定されず使用
出来るが、取扱い上からは塩素及び臭素が最も好
適である。 本発明で用いる前記塩基性化合物は特に限定さ
れず公知のものから適宜必要に応じて選択して使
用すればよい。一般には本発明の反応がハロゲン
化水素を副生する反応であるので、該副生するハ
ロゲン化水素を捕捉する能力を有するものが好適
である。特に第3級アミン化合物、炭酸塩等の塩
基性化合物は好適である。例えば第3級アミン化
合物としては、一般式
(Field of Application) The present invention relates to a method for producing N-substituted amides.
Specifically, the present invention provides a method for producing an N-substituted amide in which a specific N-halomethylamide and a specific aromatic ring compound are reacted in the coexistence of an acid catalyst and a basic compound. (Prior art and problems to be solved by the invention) Conventionally, as a method for producing an amide compound, a specific aromatic ring compound and an N-halomethylamide compound are reacted using an aluminum chloride catalyst to produce an N-substituted amide. is known (Chemistry and industry).
(1982 issue, p. 808). However, the above method cannot be applied when a heterocyclic aromatic ring compound is used as a raw material, and from an industrial perspective, it cannot necessarily be said to be a satisfactory method in terms of yield, operation, etc. (Means for Solving the Problems) The present inventors have been conducting research on the production of aromatic ring compounds, particularly amide compounds having a heterocycle, for many years. As a result, when producing the above-mentioned compound by reacting N-halomethylamide with an aromatic ring compound, it is possible to obtain the desired product in good yield by carrying out the reaction in the presence of an acid catalyst and a basic compound. They discovered what they could do and completed the present invention. That is, the present invention provides (a) general formula (), (However, R 1 is a substituted or unsubstituted hydrocarbon group,
R 2 and R 3 are the same or different hydrogen atoms or alkyl groups, R 4 is a hydrogen atom or a substituted or unsubstituted alkyl group, and X is a halogen atom. ) N-halomethylamide represented by the general formula (), Ar-H...() (However, Ar is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. ) is reacted with the aromatic ring compound represented by the general formula (), (However, R 1 , R 2 , R 3 , R 4 and Ar are the same as above.) In the method for producing the N-substituted amide shown by, an acid catalyst and a basic compound are added to the reaction system. This is a method for producing an N-substituted amide, characterized in that the reaction is carried out in the coexistence of N-substituted amide. The greatest feature of the present invention is that an acid catalyst and a basic compound are allowed to coexist in the reaction between the N-halomethylamide represented by the general formula () and the aromatic ring compound represented by the general formula (). It is something to do. The acid catalyst used in the present invention is not particularly limited, and known acid catalysts can be suitably employed. Generally, Lewis acids, Bronsted acids, etc. can be used. In particular, Lewis acids are most suitable because they have good interaction with the basic compounds described below. More specific examples of those preferably used as the acid catalyst include copper, silver,
Gold, beryllium, magnesium, zinc, cadmium, mercury, boron, aluminum, gallium, indium, thallium, silicon, germanium, tin, lead, thorium, zirconium, panadium,
Metal halides such as chromium, molybdenum, tungsten, manganese, iron, nickel, and platinum are preferred, and halides of iron and zinc are expected to have the best effects. Further, as the halide, chlorine, bromine, iodine and fluorine can be used without particular limitation, but chlorine and bromine are most suitable from the viewpoint of handling. The basic compound used in the present invention is not particularly limited, and may be appropriately selected from known compounds as needed. Since the reaction of the present invention generally produces hydrogen halide as a by-product, it is preferable to use a reaction mixture that has the ability to capture the hydrogen halide produced as a by-product. Particularly suitable are basic compounds such as tertiary amine compounds and carbonates. For example, as a tertiary amine compound, the general formula

【式】(但し、 RA、RB及びRCは同種又は異種の炭化水素基であ
る。で示されるものが特に制限されず用いうる。
また上記一般式中、RA、RB及びRCで示される炭
化水素基は特に限定されるものではないが入手の
容易さからメチル基、エチル基、イソプロピル
基、アリル基、ブチル基、シクロヘキシル基、フ
エニル基、ナフチル基等の炭素原子数1〜10の炭
化水素基が好適である。また炭酸塩としては特に
限定されず公知のものを使用出来るが入手の容易
さから一般にはアルカリ土類及びアルカリ金属の
炭素塩が好適に使用される。 本発明の目的生成物即ち前記一般式()で示
されるN−置換アミドは、そのほとんどが新規化
合物である。例えば上記一般式()で示される
化合物のうち、一般式(A) (但し、Rは水素原子又はアルキル基;Xは酸素
原子又は硫黄原子;Yはハロゲン原子;Z1は水素
原子、ハロゲン原子又はアルキル基;Z2は水素原
子、アルキル基、アルコキシ基。)で示される複
素環系芳香環化合物及び一般式(B) (但し、R5〜R7及びR10〜R12は同種又は異種の
水素原子、アルキル基、アルコキシ基で、R8
R9及びR13は同種又は異種の水素原子又はアルキ
ル基で、Xはハロゲン原子である。)で示される
炭化水素系芳香環化合物のN−置換−ハロメチル
アミドは公知である。従つて、上記一般式(A)及び
(B)以外の前記一般式()で示される化合物は新
規化合物である。これらの新規化合物は特に除草
活性が優れたもので一般に除草剤として使用され
る。そして前記一般式()で示される化合物の
うち新規化合物の構造式は赤外吸収スペクトル、
1H−核磁気共鳴スペクトル、 13C−核磁気共鳴
スペクトル、質量分析、元素分析等の機器分析に
よつて確認することが出来る。またこれらの化合
物は融点、沸点、屈折率等の特定の物理定数をも
有するものである。更にまた上記一般式()で
示される化合物はその純度によつても多少異なる
が通常は無色、淡黄色、淡褐色の固体あるいは粘
稠物である。 上記の如く前記一般式()で示されるN−置
換アミドのうち新規な化合物に相当する原料とな
る前記一般式()のN−ハロメチルアミドと前
記一般式()の芳香環化合物との組合せは新規
である。 しかしながら、本発明に於ける反応は前記一般
式()、()及び()の構造から明らかなよ
うに、一般式()で示されるN−ハロメチルア
ミドの骨格が で示される“X”と一般式()で示されるAr
−Hの“H”とが反応して、ハロゲン化水素が生
ずるものであるから、ハロゲン化水素が副生し、
しかも上記骨格が残存する機能を有するものであ
れば必要に応じてこれらの原料化合物を選択して
使用することが出来る。一般に好適に使用出来る
各原料について例示すれば次の通りである。 本発明で用いる原料であるN−ハロメチルアミ
ドは一般式()、即ち、 (但し、R1は置換又は非置換の炭化水素基、R2
及びR3は同種又は異種の水素原子又はアルキル
基、R4は水素原子又は置換もしくは非置換のア
ルキル基、Xはハロゲン原子である。)で示され
るN−ハロメチルアミドである。上記一般式
()中、R1で示される炭化水素基は特に制限さ
れず必要に応じた炭素原子数のものが使用出来る
が原料入手の容易さから、メチル基、エチル基、
イソプロピル基、アリル基、ブチル基、シクロヘ
キシル基、フエニル基、ナフチル基等炭素原子数
1〜10の炭化水素基が好ましい。又該炭化水素基
は置換基によつて置換されていてもよく、該置換
基の種類は何ら制限されず必要に応じたものが使
用できる。しかし原料の入手の容易さから、該置
換基としては一般にメチル基、エチル基、イソプ
ロピル基、ブチル基等炭素数1〜5の低級アルキ
ル基;メトキシ基、エトキシ基、プロポキシ基、
ブトキシ基等の炭素数1〜5の低級アルコキシ
基;メトキシカルボニル基、エトキシカルボニル
基、プロポキシカルボニル基、ブトキシカルボニ
ル基等の炭素数1〜5の低級アルコキシカルボニ
ル基;メチルチオ基、エチルチオ基、プロピルチ
オ基、ブチルチオ基等の炭素数1〜5の低級アル
キルチオ基;アセチル基、プロピオニル基、ブタ
ニル基等の炭素数1〜5の低級アルキルカルボニ
ル基;シアノ基;ニトロ基;ハロゲン原子(塩
素、臭素、ヨウ素、フツ素、いずれも採用しうる
が、原料入手の容易さから、塩素及び臭素が好
適)の群から選ばれた一種又は二種以上(二種以
上の場合、同種又は異種のいずれでもよい)の置
換基が好適に使用される。また前記一般式()
中、R2、R3及びR4で示されるアルキル基も何ら
制限されないが、原料入手の容易さから、メチル
基、エチル基、イソプロピル基、ブチル基等の炭
素数1〜5の低級アルキル基が好ましい。そして
該R4のアルキル基は、置換基によつて置換され
ていてもよく、該置換基の種類は何ら制限されず
必要に応じたものが使用でき、上記R1に置換さ
れる置換基と同様の置換基が使用できる。更に該
Xで示されるハロゲン原子は、塩素、臭素、ヨウ
素、フツ素の各原子が何ら制限されずに採用され
るが、原料入手の容易さから、塩素原子及び臭素
原子が好適に使用される。 本発明で使用する他の原料化合物は前記一般式
()即ちAr−Hで示される芳香環化合物であ
る。該芳香環化合物は大別すると複素環系芳香環
化合物と炭化水素系芳香環化合物とがある。本発
明に於いては非置換又は置換のこれら芳香環化合
物が特に限定されず用いうるが一般には五員環の
複素環系芳香環化合物と六員環の炭化水素系芳香
環化合物とが最も好適である。また上記複素環系
芳香環化合物としては一般に次のようなものが好
適に使用される。
[Formula] (where R A , R B and R C are the same or different types of hydrocarbon groups. Those represented by the formula can be used without particular limitation.
In the above general formula, the hydrocarbon groups represented by R A , R B and R C are not particularly limited, but due to their easy availability, methyl group, ethyl group, isopropyl group, allyl group, butyl group, cyclohexyl group, etc. A hydrocarbon group having 1 to 10 carbon atoms, such as a phenyl group or a naphthyl group, is suitable. The carbonate is not particularly limited and any known carbonate may be used, but carbonates of alkaline earth and alkali metals are generally preferably used because of their ease of availability. Most of the target products of the present invention, ie, the N-substituted amides represented by the above general formula (), are new compounds. For example, among the compounds represented by the above general formula (), general formula (A) (However , R is a hydrogen atom or an alkyl group; Heterocyclic aromatic ring compound shown and general formula (B) (However, R 5 to R 7 and R 10 to R 12 are the same or different hydrogen atoms, alkyl groups, and alkoxy groups, and R 8 ,
R 9 and R 13 are the same or different hydrogen atoms or alkyl groups, and X is a halogen atom. N-substituted halomethylamides of hydrocarbon aromatic ring compounds represented by ) are known. Therefore, the above general formula (A) and
The compounds represented by the general formula () other than (B) are new compounds. These new compounds have particularly excellent herbicidal activity and are generally used as herbicides. Among the compounds represented by the above general formula (), the structural formula of the new compound has an infrared absorption spectrum,
It can be confirmed by instrumental analysis such as 1H-nuclear magnetic resonance spectrum, 13C -nuclear magnetic resonance spectrum, mass spectrometry, and elemental analysis. These compounds also have specific physical constants such as melting point, boiling point, and refractive index. Furthermore, the compound represented by the above general formula () is usually a colorless, pale yellow, or pale brown solid or viscous substance, although it varies somewhat depending on its purity. As mentioned above, a combination of the N-halomethylamide of the general formula () and the aromatic ring compound of the general formula (), which is a raw material corresponding to a new compound among the N-substituted amides represented by the general formula (). is new. However, as is clear from the structures of the general formulas (), (), and (), the reaction in the present invention is based on the structure of the N-halomethylamide represented by the general formula (). "X" shown by and Ar shown by general formula ()
-H reacts with "H" to produce hydrogen halide, so hydrogen halide is produced as a by-product.
Moreover, as long as the above-mentioned skeleton has a remaining function, these raw material compounds can be selected and used as required. Examples of raw materials that can generally be suitably used are as follows. N-halomethylamide, which is a raw material used in the present invention, has the general formula (), that is, (However, R 1 is a substituted or unsubstituted hydrocarbon group, R 2
and R 3 are the same or different hydrogen atoms or alkyl groups, R 4 is a hydrogen atom or a substituted or unsubstituted alkyl group, and X is a halogen atom. ) is N-halomethylamide. In the above general formula (), the hydrocarbon group represented by R 1 is not particularly limited and any number of carbon atoms can be used as required.
Hydrocarbon groups having 1 to 10 carbon atoms such as isopropyl group, allyl group, butyl group, cyclohexyl group, phenyl group, and naphthyl group are preferred. Further, the hydrocarbon group may be substituted with a substituent, and the type of the substituent is not limited at all, and any type of substituent can be used as required. However, due to the ease of obtaining raw materials, the substituents are generally lower alkyl groups having 1 to 5 carbon atoms such as methyl group, ethyl group, isopropyl group, butyl group; methoxy group, ethoxy group, propoxy group,
Lower alkoxy groups with 1 to 5 carbon atoms such as butoxy; lower alkoxycarbonyl groups with 1 to 5 carbon atoms such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl; methylthio, ethylthio, propylthio , a lower alkylthio group having 1 to 5 carbon atoms such as butylthio group; a lower alkylcarbonyl group having 1 to 5 carbon atoms such as an acetyl group, propionyl group, butanyl group; cyano group; nitro group; halogen atom (chlorine, bromine, iodine , fluorine, any of which can be used, but chlorine and bromine are preferred from the viewpoint of easy availability of raw materials). (If two or more types are used, they may be the same or different types.) The following substituents are preferably used. Also, the general formula ()
Among them, the alkyl groups represented by R 2 , R 3 and R 4 are not limited at all, but lower alkyl groups having 1 to 5 carbon atoms such as methyl group, ethyl group, isopropyl group and butyl group is preferred. The alkyl group of R 4 may be substituted with a substituent, and the type of the substituent is not limited at all and any one can be used as required. Similar substituents can be used. Further, as the halogen atom represented by X, chlorine, bromine, iodine, and fluorine atoms can be used without any restriction, but chlorine and bromine atoms are preferably used because of the ease of obtaining raw materials. . Other raw material compounds used in the present invention are aromatic ring compounds represented by the general formula (), that is, Ar--H. The aromatic ring compounds can be broadly classified into heterocyclic aromatic ring compounds and hydrocarbon aromatic ring compounds. In the present invention, these unsubstituted or substituted aromatic ring compounds can be used without particular limitation, but in general, five-membered heterocyclic aromatic ring compounds and six-membered hydrocarbon aromatic ring compounds are most preferred. It is. Further, as the above-mentioned heterocyclic aromatic ring compound, the following compounds are generally suitably used.

【式】【formula】

【式】【formula】

【式】 (但し、Aは酸素原子、硫黄原子又はN−R(R
は水素原子又は炭素原子数5以下のアルキル基)
である。) 本発明で使用する芳香環化合物はその芳香環に
結合する水素原子が他の原子又は基によつて置換
されていてもよい。これらの置換される原子又は
基は特に限定されないが一般には塩素、臭素、沃
素、弗素のハロゲン原子、アルキル基、ニトロ
基、アミノ基等が好適で、また次のような置換基
もしばしば好適に使用される。 −OR5、−SR5
[Formula] (However, A is an oxygen atom, a sulfur atom, or N-R(R
is a hydrogen atom or an alkyl group having 5 or less carbon atoms)
It is. ) In the aromatic ring compound used in the present invention, the hydrogen atom bonded to the aromatic ring may be substituted with another atom or group. These substituted atoms or groups are not particularly limited, but generally halogen atoms such as chlorine, bromine, iodine, and fluorine, alkyl groups, nitro groups, amino groups, etc. are preferred, and the following substituents are also often preferred. used. -OR5 , -SR5 ,

【式】【formula】

【式】− B−COOR6[Formula]-B-COOR 6 ,

【式】−B−CN、− NHCOR5(但し、R5はアルキル基で;R6は水素
原子、アルキル基、一価の金属イオン、二価の金
属イオン又はアンモニウム塩であり、;Bは
[Formula] -B-CN, -NHCOR 5 (However, R 5 is an alkyl group; R 6 is a hydrogen atom, an alkyl group, a monovalent metal ion, a divalent metal ion, or an ammonium salt; B is

【式】または[expression] or

【式】 (但し、R8は水素原子又はアルキル基であり、l
は0又は10以下の正の整数である)であり、R7
は水素原子又はアルキル基である。) 更にまたこれらの置換基のアルキル基としては
一般に炭素原子数1〜5の直鎖状もしくは分枝状
の低級アルキル基が好ましく使用される。 原料である前記一般式()で示される化合物
は水に対して活性であるため、反応系内の化合
物、すなわち、前記一般式()及び()で示
される化合物、必要に応じて使用する溶媒、酸触
媒、塩基性化合物等はすべて乾燥状態のものを使
用し、反応系の気相を乾燥状態に保持するのが好
ましい。 前記一般式()及び()で示される化合物
の仕込みモル比は必要に応じて適宜決定して使用
すればよいが、等モルで使用するのが一般的であ
る。 前記一般式()で示される化合物に対する酸
触媒の仕込みモル比は制限されるものではない
が、一般には0.01〜5の範囲であることが好まし
い。また塩基性化合物の酸触媒に対する仕込みモ
ル比も特に制限されるものではないが、0.1〜100
の範囲、更に好ましくは0.5〜50の範囲であるこ
とが望ましい。 本発明における前記反応に際しては、一般に有
機溶媒を用いるのが好ましい。該溶媒としては、
二硫化炭素、塩化メチレン、クロロホルム、四塩
化炭素、エチレンクロライド、ジエチルエーテ
ル、ニトロメタン、ベンゼン、トルエン、ニトロ
ベンゼンなどが挙げられる。 前記反応における原料、酸触媒、塩基性化合物
及び溶媒の添加順序は特に限定されないが、一般
には溶媒を反応器に仕込み、酸触媒を添加し、次
いで撹拌しながら塩基性化合物を添加する。所定
時間撹拌した後、溶媒に溶解した一般式()で
示される化合物を撹拌しながら添加し、最後に溶
媒に溶解した一般式()で示される化合物を撹
拌しながら添加するのが好ましい。もちろん、上
記各成分を連続的に反応系に添加し、生成した反
応物を連続的に該反応系から取り出すこともでき
る。 前記反応における温度は広い範囲から選択で
き、一般には−20℃〜150℃、好ましくは0℃〜
120℃の範囲から選べば十分である。反応時間は
原料、酸触媒、反応温度及び溶媒の種類によつて
も異なるが、通常は5分〜10日間、好ましくは20
分〜50時間の範囲から選べば十分である。また反
応系は反応中撹拌を行うのが好ましい。 反応系から目的生成物すなわち前記一般式
()で示される化合物を単離精製する方法は特
に限定されず公知の方法を採用できる。例えば反
応液を氷冷し、氷水に撹拌しながらそそぐ。10分
間撹拌後水層と有機層を分液し有機層を5%炭酸
水素ナトリウム水溶液で振る。分液した水層を希
塩酸で酸性にしエーテル抽出する。該エーテル層
を水、5%炭酸水素ナトリウム及び水で順次洗滌
後、芒硝、塩化カルシウム等の乾燥剤で乾燥後、
エーテルを留去し、残渣をカラムクロマトグラフ
イーによつて単離精製する。カラムクロマトグラ
フイーの代りに再結晶による精製あるいは両者を
併用することも可能である。また、真空蒸留等の
精製手段も利用し得る場合もある。 原料として使用する前記一般式()で示され
る化合物のうち、置換基の種類、数及び置換位置
によつては、生成する一般式()で示される化
合物が、複数得られることがある。これらは上述
のカラムクロマトグラフイー、分別再結晶等精製
方法によつて単離精製することができる。 (発明の効果) 本発明によつて前記一般式()で示されるN
−ハロメチルアミドと、前記一般式()で示さ
れる芳香環化合物とからN−置換−メチルアミド
を収率よく製造することが出来る。特に複素環系
芳香環化合物についても高収率で複素環を結合し
たメチルアミドが得られる利点は極めて大きいと
云える。 (実施例) 以下、本発明の実施例を示すが、本発明はこれ
に限定されるものではない。尚以下の実施例及び
比較例における生成物の構造決定は実施例1と同
じ方法で行つた。 実施例 1 塩化亜鉛12.67gを塩化メチレン30mlにけんだ
くさせ、氷水冷下撹拌しながら、トリエチルアミ
ン9.11gを塩化メチレン30mlに溶解した溶液を滴
下した。氷水冷下2時間撹拌を続けた後、室温に
もどし3−メトキシチオフエン3.43gを塩化メチ
レン10mlに溶解した溶液を滴下した。次いでN−
クロロメチル−クロロアセト−2,6−ジメチル
アニリド7.38gを塩化メチレン20mlに溶解した溶
液を撹拌しながら滴下した。次いで撹拌しながら
5時間加熱還流した。次いで室温まで冷却し、氷
水50mlに撹拌しながらそそいだ。10分間撹拌した
後、分液し、有機層を順次5%炭酸水素ナトリウ
ム水溶液、水、1N−塩酸、水、5%炭酸水素ナ
トリウム水溶液及び水で洗浄した。有機層を芒硝
で乾燥後、低沸物を留去して得た残渣を真空蒸留
することにより、沸点182℃/0.2mmHgの目的物
7.54gを白色固体として得た。該単離生成物は下
記の種々の測定結果により、下記式に示す〔2−
(N−クロロアセチル−2′,6′−ジメチルアニリ
ノ)メチル−3−メトキシチオフエンであること
を確認した。 IRのチヤートは添付図面の第1図に示すとお
りであつた。3130cm-1及び3080cm-1に芳香環の炭
素−水素結合に基づく吸収、3000〜2850cm-1に脂
肪族の炭素−水素結合に基づく吸収、1660cm-1
アミド基の炭素−酸素結合に基づく強い吸収が観
察された。 添付図面の第2図に 1H−NMRのチヤートを
示した。7.4〜7.0ppmにベンゼン環のプロトン及
びチオフエン環4位のプロトンがマルチプレツト
でプロトン4個分あらわれ、6.70ppmにチオフエ
ン5位のプロトンがダブレツト(スピン結合定数
6Hz)でプロトン1個あらわれ、4.87ppmに窒素
原子とチオフエン環を結ぶメチレンのプロトンが
シングレツトで2個分あらわれ、3.67ppmにクロ
ロアセチル基のプロトンがシングレツトで2個分
あらわれ、3.48ppmにメトキシ基のプロトンがシ
ングレツトで3個分あらわれ、2.04ppmにメチル
基のプロトンがシングレツトで6個分あらわれ
た。 マススクトル測定の結果、次のようなピークが
認められた。m/e323、324及び325(分子イオン
ピーク、M に相当)m/e288(M −Clに相
当)。 元素分析値は炭素59.51wt%、水素5.59wt%、
窒素4.25wt%、塩素10.81wt%、イオウ9.82wt%
であり、C16H18NO2ClS(分子量323.84)の理論値
である炭素59.34wt%、水素5.60wt%、窒素
4.33wt%、塩素10.95wt%、イオウ9.90wt%と分
析誤差範囲内で一致した。 比較例 1 実施例1に於ける、トリエチルアミンの塩化メ
チレン溶液の使用を削除した以外は実施例1と同
様に反応及び後処理を行つた。その結果、実施例
1で得たものと同一の生成物を0.51g得た。 比較例 2 比較例1の塩化亜鉛に代り三塩化アルミニウム
を使用した以外は比較例1と同様に実施した。そ
の結果、反応生成物はタール状となり、実施例1
で得たものと同一の生成物を得ることが出来なか
つた。 比較例 3 実施例1に於いて、塩化亜鉛に代り三塩化アル
ミニムを使用した以外は実施例1と同様に実施し
た。その結果、反応生成物はタール状のものとな
り、実施例1で得たものと同一の生成物を得るこ
とが出来なかつた。 実施例 2 実施例1に於ける溶媒として塩化メチレンの代
りにクロロホルムを用いた以外は、実施例1と同
様に反応及び後処理を行い、実施例1で得たもの
と同一の生成物を6.53g得た。 実施例 3 実施例1に於ける塩化亜鉛の使用量を4.50gに
変え、かつトリエチルアミンの使用量を3.04gに
変えた以外はすべて実施例1と同様に反応及び後
処理を行い、実施例1で得たものと同一の生成物
を5.66g得た。 実施例 4 実施例1に於けるトリエチルアミンの代りにト
リブチルアミン16.65g用いた以外は実施例1と
同様に反応及び後処理を行ない、実施例1で得た
ものと同一の生成物を7.36g得た。 実施例 5 実施例1に於けるトリエチルアミンの代りに、
炭酸ナトリウム20.0g用いた以外は実施例1と同
様に反応及び後処理を行ない、実施例1で得たも
のと同一の生成物を2.31g得た。 実施例 6 実施例1に於けるトリエチルアミンの代りに、
炭酸カリウム25.0g用いた以外は実施例1と同様
に反応及び後処理を行ない、実施例1で得たもの
と同一の生成物を2.28g得た。 実施例 7 実施例1に於ける塩化亜鉛の代わりに塩化第二
鉄5.49gを用い、かつトリエチルアミンの使用量
を3.03gに変えた以外は実施例1と同様に反応及
び後処理を行ない、実施例1で得たものと同一の
生成物を2.95g得た。 実施例 8 実施例1に於ける塩化亜鉛の代りに、臭化亜鉛
20.94gを用いた以外は実施例1と同様に反応及
び後処理を行ない、実施例1で得たものと同一の
生成物を7.51g得た。 実施例 9 実施例1に於ける塩化亜鉛の代りに、臭化第二
鉄10.00gを用いかつトリエチルアミンの使用量
を3.03gに変えた以外は実施例1と同様に反応及
び後処理を行ない、実施例1で得たものと同一の
生成物を2.81g得た。 実施例 10 実施例1に於けるトリエチルアミンの代りに、
炭酸カルシウム19.0gを用いた以外は実施例1と
同様に反応及び後処理を行ない、実施例1で得た
ものと同一の生成物を19.5g得た。 実施例 11 実施例1に於ける3−メトキシチオフエンの代
りにチオフエン−3−酢酸4.27gを用いて実施例
1と同様に反応及び後処理を行つたところ、下記
式()で示される5−(N−クロロアセチル−
2′,6′−ジエチルアニリノ)メチル−3−チオフ
エン酢酸と、下記式()で示される2−(N−
クロロアセチル−2′,6′−ジエチルアニリノ)メ
チル−3−チオフエン酢酸を単離した。 化合物()の元素分析値は炭素60.15wt%、
水素5.78wt%、窒素3.53wt%、塩素9.21wt%であ
り、化合物()の元素分析値は炭素59.95wt%、
水素5.71wt%、窒素3.45wt%、塩素9.50wt%であ
つた。両者ともC19H22NO8ClSの理論値である炭
素60.07wt%、水素5.84wt%、窒素3.69wt%、塩
素9.33wt%と分析誤差範囲内で一致した。 マススペクトルでは、両者とも分子イオンピー
クは379であり、C19H22NO8ClSの理論分子量と
一致した。 化合物()の 1H−NMRスペクトルでは7.5
〜6.6ppmに芳香環のプロトンがマルチプレツト
でプロトン5個分あらわれ、4.85ppmに窒素原子
とチオフエン環を結ぶメチレンのプロトンがシン
グレツトでプロトン2個分あらわれ、3.67ppmに
クロロアセチル基のメチレンのプロトンがシング
レツトでプロトン2個分あらわれ、3.52ppmに酢
酸基のメチレンのプロトンがシングレツトでプロ
トン2個分あらわれ、2.31ppmにエチル基のメチ
レンのプロトンがカルテツト(スピン結合定数7
Hz)でプロトン4個分あらわれ、1.06ppmにエチ
ル基のメチルのプロトンがトリプレツト(スピン
結合定数8Hz)でプロトン6個分あらわれた。化
合物()のプロトン−NMRスペクトルでは、
7.5〜6.6ppmに芳香環のプロトンがマルチプレツ
トでプロトン5個分あらわれ、4.95ppmに窒素と
チオフエン環を結ぶメチレンのプロトンがシング
レツトでプロトン2個分あらわれ、3.67ppmにク
ロロアセチル基のメチレンのプロトンがシングレ
ツトでプロトン2個分あらわれ、3.29ppmに酢酸
基のメチレンのプロトンがシングレツトでプロト
ン2個分あらわれ、2.31ppmにエチル基のメチレ
ンのプロトンがカルテツト(スピン結合定数7
Hz)でプロトン4個分あらわれ、1.06ppmにエチ
ル基のメチルのプロトンがトリプレツト(スピン
結合定数8Hz)でプロトン6個分あらわれた。化
合物()及び()いずれも、それぞれの 1H
−NMRスペクトルの各ピークのケミカルシフ
ト、分裂パターン、スピン結合定数及び相対強度
比は、前記の構造式を支持するものである。 実施例 12 実施例1に記載した方法と同様に反応を行ない
一般式()で示す種々のアミドメチル化された
芳香環化合物を合成した。 生成物の構造を表1に示した。なお表1中に記
載したR1、R2、R3、R4及びArの構造については
次の表示のものを指す。 即ち、R1
[Formula] (However, R 8 is a hydrogen atom or an alkyl group, and l
is 0 or a positive integer less than or equal to 10), and R 7
is a hydrogen atom or an alkyl group. Furthermore, as the alkyl group of these substituents, a linear or branched lower alkyl group having 1 to 5 carbon atoms is generally preferably used. Since the compound represented by the general formula () as a raw material is active against water, the compound in the reaction system, that is, the compound represented by the general formula () and () above, and the solvent used as necessary. , an acid catalyst, a basic compound, etc. are all used in a dry state, and it is preferable to maintain the gas phase of the reaction system in a dry state. The molar ratio of the compounds represented by the general formulas () and () may be appropriately determined and used as required, but it is common to use equimolar amounts. The molar ratio of the acid catalyst to the compound represented by the general formula () is not limited, but is generally preferably in the range of 0.01 to 5. Furthermore, the molar ratio of the basic compound to the acid catalyst is not particularly limited, but is between 0.1 and 100.
The range is preferably 0.5 to 50, more preferably 0.5 to 50. In the reaction in the present invention, it is generally preferable to use an organic solvent. As the solvent,
Examples include carbon disulfide, methylene chloride, chloroform, carbon tetrachloride, ethylene chloride, diethyl ether, nitromethane, benzene, toluene, and nitrobenzene. The order of adding the raw materials, acid catalyst, basic compound, and solvent in the reaction is not particularly limited, but generally the solvent is charged into a reactor, the acid catalyst is added, and then the basic compound is added while stirring. After stirring for a predetermined time, it is preferable to add the compound represented by the general formula () dissolved in the solvent with stirring, and finally add the compound represented by the general formula () dissolved in the solvent while stirring. Of course, it is also possible to continuously add the above-mentioned components to the reaction system and to continuously take out the generated reactants from the reaction system. The temperature in the reaction can be selected from a wide range, generally -20°C to 150°C, preferably 0°C to
It is sufficient to choose from the range of 120℃. The reaction time varies depending on the raw materials, acid catalyst, reaction temperature, and type of solvent, but is usually 5 minutes to 10 days, preferably 20 days.
It is sufficient to choose from a range of minutes to 50 hours. Further, the reaction system is preferably stirred during the reaction. The method for isolating and purifying the target product, ie, the compound represented by the general formula () from the reaction system, is not particularly limited, and any known method can be employed. For example, the reaction solution is ice-cooled and poured into ice water with stirring. After stirring for 10 minutes, separate the aqueous and organic layers, and shake the organic layer with a 5% aqueous sodium hydrogen carbonate solution. The separated aqueous layer is acidified with dilute hydrochloric acid and extracted with ether. After sequentially washing the ether layer with water, 5% sodium bicarbonate and water, and drying with a desiccant such as Glauber's salt or calcium chloride,
The ether is distilled off, and the residue is isolated and purified by column chromatography. It is also possible to use purification by recrystallization instead of column chromatography, or to use both in combination. In some cases, purification means such as vacuum distillation may also be used. Among the compounds represented by the general formula () used as raw materials, a plurality of compounds represented by the general formula () may be produced depending on the type, number, and substitution position of the substituents. These can be isolated and purified by the above-mentioned purification methods such as column chromatography and fractional recrystallization. (Effect of the invention) According to the present invention, N represented by the general formula ()
N-substituted-methylamide can be produced in good yield from -halomethylamide and the aromatic ring compound represented by the general formula (). In particular, it can be said that the advantage of being able to obtain a methylamide in which a heterocyclic ring is bonded in high yield even for a heterocyclic aromatic ring compound is extremely large. (Example) Examples of the present invention will be shown below, but the present invention is not limited thereto. The structures of the products in the following Examples and Comparative Examples were determined in the same manner as in Example 1. Example 1 12.67 g of zinc chloride was suspended in 30 ml of methylene chloride, and a solution of 9.11 g of triethylamine dissolved in 30 ml of methylene chloride was added dropwise while stirring under ice-water cooling. After continuing to stir for 2 hours under ice-water cooling, the mixture was returned to room temperature and a solution of 3.43 g of 3-methoxythiophene dissolved in 10 ml of methylene chloride was added dropwise. Then N-
A solution of 7.38 g of chloromethyl-chloroaceto-2,6-dimethylanilide dissolved in 20 ml of methylene chloride was added dropwise with stirring. The mixture was then heated under reflux for 5 hours while stirring. The mixture was then cooled to room temperature and poured into 50 ml of ice water with stirring. After stirring for 10 minutes, the layers were separated, and the organic layer was washed successively with 5% aqueous sodium hydrogen carbonate solution, water, 1N hydrochloric acid, water, 5% aqueous sodium hydrogen carbonate solution, and water. After drying the organic layer with sodium sulfate, low-boiling substances were distilled off and the resulting residue was vacuum distilled to obtain the desired product with a boiling point of 182℃/0.2mmHg.
Obtained 7.54 g as a white solid. The isolated product is shown in the following formula [2-
It was confirmed that it was (N-chloroacetyl-2',6'-dimethylanilino)methyl-3-methoxythiophene. The IR chart was as shown in Figure 1 of the attached drawings. Absorption based on aromatic ring carbon-hydrogen bonds at 3130 cm -1 and 3080 cm -1 , absorption based on aliphatic carbon-hydrogen bonds between 3000 and 2850 cm -1 , and strong absorption based on carbon-oxygen bonds in amide groups at 1660 cm -1 Absorption was observed. Figure 2 of the attached drawings shows a 1 H-NMR chart. At 7.4 to 7.0 ppm, the proton of the benzene ring and the proton at the 4th position of the thiophene ring appear as a multiple of 4 protons, and at 6.70 ppm, the proton at the 5th position of the thiophene ring appears as a doublet (spin coupling constant 6 Hz), and 1 proton appears at 4.87 ppm. Two singlets of methylene protons connecting the nitrogen atom and the thiophene ring appear at , two singlets of chloroacetyl group protons appear at 3.67ppm, three singlets of methoxy group protons appear at 3.48ppm, Six methyl group protons appeared as a singlet at 2.04 ppm. As a result of the mass vector measurement, the following peaks were observed. m/e 323, 324 and 325 (molecular ion peak, corresponding to M) m/e 288 (corresponding to M-Cl). Elemental analysis values are carbon 59.51wt%, hydrogen 5.59wt%,
Nitrogen 4.25wt%, chlorine 10.81wt%, sulfur 9.82wt%
and the theoretical value of C 16 H 18 NO 2 ClS (molecular weight 323.84) is 59.34 wt% carbon, 5.60 wt% hydrogen, and nitrogen.
4.33wt%, chlorine 10.95wt%, and sulfur 9.90wt%, all within the analytical error range. Comparative Example 1 The reaction and post-treatment were carried out in the same manner as in Example 1, except that the use of the methylene chloride solution of triethylamine in Example 1 was omitted. As a result, 0.51 g of the same product as that obtained in Example 1 was obtained. Comparative Example 2 The same procedure as Comparative Example 1 was carried out except that aluminum trichloride was used instead of zinc chloride. As a result, the reaction product became tar-like, and Example 1
It was not possible to obtain a product identical to that obtained in . Comparative Example 3 The same procedure as in Example 1 was carried out except that aluminum trichloride was used instead of zinc chloride. As a result, the reaction product became tar-like, and the same product as that obtained in Example 1 could not be obtained. Example 2 The reaction and post-treatment were carried out in the same manner as in Example 1, except that chloroform was used instead of methylene chloride as the solvent in Example 1, and the same product as that obtained in Example 1 was obtained in 6.53 I got g. Example 3 The reaction and post-treatment were carried out in the same manner as in Example 1 except that the amount of zinc chloride used in Example 1 was changed to 4.50 g and the amount of triethylamine used was changed to 3.04 g. 5.66 g of product identical to that obtained in step 1 was obtained. Example 4 The reaction and post-treatment were carried out in the same manner as in Example 1, except that 16.65 g of tributylamine was used instead of triethylamine in Example 1, and 7.36 g of the same product as that obtained in Example 1 was obtained. Ta. Example 5 Instead of triethylamine in Example 1,
The reaction and post-treatment were carried out in the same manner as in Example 1, except that 20.0 g of sodium carbonate was used, and 2.31 g of the same product as that obtained in Example 1 was obtained. Example 6 Instead of triethylamine in Example 1,
The reaction and post-treatment were carried out in the same manner as in Example 1, except that 25.0 g of potassium carbonate was used, and 2.28 g of the same product as that obtained in Example 1 was obtained. Example 7 The reaction and post-treatment were carried out in the same manner as in Example 1, except that 5.49 g of ferric chloride was used instead of zinc chloride in Example 1, and the amount of triethylamine used was changed to 3.03 g. 2.95 g of product identical to that obtained in Example 1 was obtained. Example 8 Zinc bromide was used instead of zinc chloride in Example 1.
The reaction and post-treatment were carried out in the same manner as in Example 1, except that 20.94 g was used, and 7.51 g of the same product as that obtained in Example 1 was obtained. Example 9 The reaction and post-treatment were carried out in the same manner as in Example 1, except that 10.00 g of ferric bromide was used instead of zinc chloride in Example 1, and the amount of triethylamine used was changed to 3.03 g. 2.81 g of product identical to that obtained in Example 1 was obtained. Example 10 Instead of triethylamine in Example 1,
The reaction and post-treatment were carried out in the same manner as in Example 1, except that 19.0 g of calcium carbonate was used, and 19.5 g of the same product as that obtained in Example 1 was obtained. Example 11 When 4.27 g of thiophene-3-acetic acid was used in place of 3-methoxythiophene in Example 1 and the reaction and post-treatment were carried out in the same manner as in Example 1, 5 as shown in the following formula () was obtained. -(N-chloroacetyl-
2',6'-diethylanilino)methyl-3-thiopheneacetic acid and 2-(N-
Chloroacetyl-2',6'-diethylanilino)methyl-3-thiopheneacetic acid was isolated. The elemental analysis value of compound () is carbon 60.15wt%,
Hydrogen 5.78wt%, nitrogen 3.53wt%, chlorine 9.21wt%, and the elemental analysis values of the compound () are carbon 59.95wt%,
Hydrogen was 5.71wt%, nitrogen was 3.45wt%, and chlorine was 9.50wt%. Both coincided with the theoretical values of C 19 H 22 NO 8 ClS of 60.07 wt% carbon, 5.84 wt% hydrogen, 3.69 wt% nitrogen, and 9.33 wt% chlorine within the analytical error range. In the mass spectra, the molecular ion peak for both was 379, which matched the theoretical molecular weight of C 19 H 22 NO 8 ClS. The 1H-NMR spectrum of compound () is 7.5
At ~6.6 ppm, the proton of the aromatic ring appears as a multiplet of 5 protons, at 4.85 ppm the methylene proton that connects the nitrogen atom and the thiophene ring appears as a singlet of 2 protons, and at 3.67 ppm the methylene proton of the chloroacetyl group appears. appears as a singlet for two protons, the methylene proton of the acetate group appears as a singlet for two protons at 3.52 ppm, and the methylene proton of the ethyl group appears as a quartet at 2.31 ppm (spin coupling constant 7).
Hz), and 4 protons appeared at 1.06 ppm, and a methyl proton of the ethyl group appeared as a triplet (spin coupling constant 8 Hz), corresponding to 6 protons. In the proton-NMR spectrum of compound (),
At 7.5 to 6.6 ppm, the protons of the aromatic ring appear as a multiple of 5 protons, at 4.95 ppm the methylene proton that connects nitrogen and the thiophene ring appears as a singlet of 2 protons, and at 3.67 ppm the methylene proton of the chloroacetyl group appears. appears as a singlet for two protons, the methylene proton of the acetate group appears as a singlet for two protons at 3.29 ppm, and the methylene proton of the ethyl group appears as a quartet at 2.31 ppm (spin coupling constant 7).
Hz), and 4 protons appeared at 1.06 ppm, and a methyl proton of the ethyl group appeared as a triplet (spin coupling constant 8 Hz), and 6 protons. Compounds () and () both have their respective 1H
-The chemical shift, splitting pattern, spin coupling constant, and relative intensity ratio of each peak in the NMR spectrum support the above structural formula. Example 12 Various amidomethylated aromatic ring compounds represented by the general formula () were synthesized by carrying out reactions in the same manner as described in Example 1. The structure of the product is shown in Table 1. The structures of R 1 , R 2 , R 3 , R 4 and Ar shown in Table 1 refer to those shown below. That is, R 1 ;

【式】 Ar;【formula】 Ar;

【式】(但し、R9は−B− COOR6で、表1中分類()のときはBが
[Formula] (However, R 9 is -B- COOR 6 , and in the case of classification () in Table 1, B is

【式】で、表1中分類()のとき はBが[Formula], when Table 1 middle classification () is B

【式】を示す) R4[Formula]) R 4 ;

【式】 また表1中、Arの結合位置の欄の数値は【formula】 In addition, in Table 1, the values in the column for bonding position of Ar are

【式】で示される官能基がArへの置換 している位置を示した。Substitution of the functional group represented by [Formula] with Ar It shows the location where it is located.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 実施例 13 実施例12に記載した方法と同様に反応を行い、
表2に示す種々のアミドメチル化された芳香環化
合物を合成した。但し表2に示す芳香環化合物は
実施例12に於けるArに代つて下記に表示する炭
化水素系芳香環化合物である以外は実施例12と同
じである。 Ar;
[Table] Example 13 A reaction was carried out in the same manner as described in Example 12,
Various amidomethylated aromatic ring compounds shown in Table 2 were synthesized. However, the aromatic ring compounds shown in Table 2 are the same as in Example 12, except that Ar in Example 12 is replaced by a hydrocarbon aromatic ring compound shown below. Ar;

【式】【formula】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

添付図面の第1図は、実施例1で得られた生成
物のIRチヤートであり、第2図は 1H−NMRチ
ヤートである。
Figure 1 of the accompanying drawings is an IR chart of the product obtained in Example 1, and Figure 2 is a 1H-NMR chart.

Claims (1)

【特許請求の範囲】 1 (イ) 一般式、 【式】 (但し、R1は置換又は非置換の炭化水素基、
R2及びR3は同種又は異種の水素原子又はアル
キル基、R4は水素原子又は置換もしくは非置
換のアルキル基、Xはハロゲン原子である。) で示されるN−ハロメチルアミドと (ロ) 一般式、Ar−H(但し、Arは置換又は非置
換のアリール基或いは置換又は非置換のヘテロ
アリール基である。) で示される芳香環化合物、 とを反応させて、 一般式、 【式】 (但し、R1、R2、R3、R4及びArは上記と同じ
である。) で示されるN−置換アミドを製造する方法に於
いて、該反応系に酸触媒と塩基性化合物との共
存させて反応させることを特徴とするN−置換
アミドの製造方法。
[Claims] 1 (a) General formula, [Formula] (wherein R 1 is a substituted or unsubstituted hydrocarbon group,
R 2 and R 3 are the same or different hydrogen atoms or alkyl groups, R 4 is a hydrogen atom or a substituted or unsubstituted alkyl group, and X is a halogen atom. ) N-halomethylamide represented by (b) and an aromatic ring compound represented by the general formula Ar-H (wherein Ar is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group) , in a method for producing an N-substituted amide represented by the general formula, [Formula] (wherein R 1 , R 2 , R 3 , R 4 and Ar are the same as above). A method for producing an N-substituted amide, characterized in that the reaction is carried out in the presence of an acid catalyst and a basic compound in the reaction system.
JP27066784A 1984-12-24 1984-12-24 Production of n-substituted amide Granted JPS61148148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27066784A JPS61148148A (en) 1984-12-24 1984-12-24 Production of n-substituted amide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27066784A JPS61148148A (en) 1984-12-24 1984-12-24 Production of n-substituted amide

Publications (2)

Publication Number Publication Date
JPS61148148A JPS61148148A (en) 1986-07-05
JPH0350746B2 true JPH0350746B2 (en) 1991-08-02

Family

ID=17489266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27066784A Granted JPS61148148A (en) 1984-12-24 1984-12-24 Production of n-substituted amide

Country Status (1)

Country Link
JP (1) JPS61148148A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101451007B1 (en) * 2012-03-06 2014-10-17 스미도모쥬기가이고교 가부시키가이샤 Laser processing apparatus and laser processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101451007B1 (en) * 2012-03-06 2014-10-17 스미도모쥬기가이고교 가부시키가이샤 Laser processing apparatus and laser processing method

Also Published As

Publication number Publication date
JPS61148148A (en) 1986-07-05

Similar Documents

Publication Publication Date Title
US4555370A (en) Process for the preparation of acyl cyanides
US4143068A (en) Process for the preparation of acyl cyanide compounds
US4069252A (en) Process for the preparation of certain acyl cyanide compounds
US4044060A (en) Process for preparing geminal dihalides
US4284584A (en) Process for the preparation of acyl cyanides
US4238412A (en) Process for the preparation of acyl cyanides
US6127583A (en) Process for preparing acetylene derivative from a ketone compound
US4686291A (en) Preparation of methyl ketones
JPH0350746B2 (en)
Sato et al. X-ray Crystallographic Analysis of the Oxytellurium Compounds [10-Te-4 (C30)] and Solvent Effect on the Hypervalency
US5672765A (en) Process for the preparation of aromatic fluorinated compounds and novel diamides
US5817837A (en) Tetrathiafulvalene derivative precursors, tetrathiafulvalene derivatives, and processes for producing them
US4137412A (en) Process for the preparation of substituted chloropyrimidines
US4500471A (en) Preparation of trifluoromethyl-benzoyl halides
US4419296A (en) Preparation of tertiary alkyl cyanides
US4419514A (en) Method for converting carboxylic acid groups to trichloromethyl groups
JPS5835515B2 (en) Production method of isocyanuric acid ester
US4970319A (en) Process for the preparation of acyl isocyanates
US4191711A (en) Process for the preparation of certain nuclear chlorinated benzotrichlorides
JP4853911B2 (en) Method for producing isothiazolopyridin-3-one compound
US4581179A (en) Process for the preparation of trifluoromethylbenzoyl chlorides and bromides from trifluoromethylbenzoyl fluorides
US4620022A (en) Preparation of substituted trialkylsilyloxymalonic acid dinitriles
JP3038380B1 (en) Method for producing ketene imine compound
JP4635251B2 (en) Organic bismuth compound and process for producing the same
JPH0372232B2 (en)