JPH0350735B2 - - Google Patents

Info

Publication number
JPH0350735B2
JPH0350735B2 JP17751482A JP17751482A JPH0350735B2 JP H0350735 B2 JPH0350735 B2 JP H0350735B2 JP 17751482 A JP17751482 A JP 17751482A JP 17751482 A JP17751482 A JP 17751482A JP H0350735 B2 JPH0350735 B2 JP H0350735B2
Authority
JP
Japan
Prior art keywords
glutaraldehyde
crude
solution
glutaraldehyde solution
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17751482A
Other languages
Japanese (ja)
Other versions
JPS5967238A (en
Inventor
Yoshinori Saito
Shigeo Sugita
Etsuya Takanobu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON JORYU KOGYO KK
Original Assignee
NIPPON JORYU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON JORYU KOGYO KK filed Critical NIPPON JORYU KOGYO KK
Priority to JP17751482A priority Critical patent/JPS5967238A/en
Publication of JPS5967238A publication Critical patent/JPS5967238A/en
Publication of JPH0350735B2 publication Critical patent/JPH0350735B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はグルタルアルデヒドの精製方法に関す
るものである。 従来グルタルアルデヒドは、アクロレインとア
ルキルビニルエーテルとより得られる2−アルコ
キシ−3,4−ジヒドロ−2H−ピラン類の加水
分解法、シクロペンテンまたは1,2−エポキシ
シクロペンタンの過酸化水素酸化法、シクロペン
テンの過酢酸酸化で得られた1,2−シクロペン
タンジオールのコバルト化合物を触媒とする酸素
または空気酸化法等により製造される。 このような方法で製造されるグルタルアルデヒ
ドは、皮革、消毒殺菌剤用等のホルムアルデヒド
の代替品として使用され、いずれの方法によるも
のも通常グルタルアルデヒド含量50重量%以下の
濃度の水溶液として市販されている。 ところで最近グルタルアルデヒドは、高級皮革
剤、カプセル架橋剤、医農薬用消毒殺菌剤等の需
要が増大するにつれて高品位のグルタルアルデヒ
ドの需要が高まつている。しかしながらグルタル
アルデヒド製造に関する前述の製造法を含めて、
如何なる方法においても得られるグルタルアルデ
ヒド溶液は、程度の差こそあれ着色の原因となる
不純物の存在は避けられなかつた。しかるに、無
色透明で高品位のグルタルアルデヒド溶液を製造
する、いわゆる粗製グルタルアルデヒド溶液の精
製に関する知見が現在まで報告されていない。 ところで多くの化合物の精製に適用されている
蒸溜法を着色した粗製グルタルアルデヒド溶液の
精製方法として採用した場合、不揮発成分である
微量の着色物質を分離するのはもちろんである
が、当然のことながら水とグルタルアルデヒドの
蒸気圧の差異により両者は分離されて溜出してく
る。しかしながら、グルタルアルデヒド溶液は通
常グルタルアルデヒド含量50%以下の濃度(その
他の大部分は水)の水溶液として市販かつ使用さ
れるので、グルタルアルデヒドと水を分離する方
法は非効率的であり無意味である。さらに蒸溜過
程において低沸点成分である水が先に溜出するた
めに、グルタルアルデヒド濃度が高まり、含水率
が下がると共に、長時間温度の高い状態が持続す
るのでグルタルアルデヒド自体の変質が生じる。
したがつて、蒸溜による精製方法に関しては、粗
製グルタルアルデヒド溶液中のグルタルアルデヒ
ドの相当部分が失なわれ、結果としてグルタルア
ルデヒド収率の大幅な低下が避けられず、蒸溜方
法はグルタルアルデヒドの精製に関する限り非経
済的方法といわざるを得ない。 本発明は、粗製グルタルアルデヒド溶液を水の
存在下に減圧下で連続的に蒸発させることにより
着色物質を分離し、無色透明な高品位グルタルア
ルデヒド溶液を安定的に得ることを特徴とするグ
ルタルアルデヒドの精製方法である。 本発明方法により精製される粗製グルタルアル
デヒド溶液は、前記のごとき2−アルコキシ−
3,4−ジヒドロ−2H−ピラン類の加水分解法、
シクロペンテンまたは1,2−エポキシシクロペ
ンタンの過酸化水素法、シクロペンテンの過酢酸
酸化で得られた1,2−シクロペンタンジオール
の酸素または空気酸化法をはじめとして、如何な
る方法で製造されたものでもよい。一例をあげれ
ば、Longley,R.I.;Emerson,W.S.;J.Am,
Chem.Soc.,72(7).3079〜3081(1950)に記載さ
れているようにグルタルアルデヒドは、アクロレ
インとアルキルビニルエーテルとにより得られる
2−アルコキシ−3,4−ジヒドロ−2H−ピラ
ン類の加水分解反応により製造され、その水溶液
は黄褐色を呈している。さらに加水分解反応の際
に副生するアルコール類を常法に基づき蒸溜によ
り除去し、その溶液を粗製グルタルアルデヒド溶
液として蒸発装置への供給液とすることができ
る。 前記のように本発明によれば、粗製グルタルア
ルデヒド溶液を水の存在下に減圧下で連続的に蒸
発させることにより不揮発成分である着色物質を
分離して、無色透明で高品位のグルタルアルデヒ
ド溶液を得ることができるが、蒸発法としてはグ
ルタルアルデヒドの安定性という点からいえば、
粗製グルタルアルデヒド溶液の蒸発および凝縮に
際して、粗製グルタルアルデヒド溶液は長時間高
温の状態を維持することなく、かつ得られる精製
グルタルアルデヒド溶液は水との一定割合におけ
る共存状態において無色透明で高品位のグルタル
アルデヒド溶液を製造することが望ましい。また
グルタルアルデヒド溶液は通常グルタルアルデヒ
ド含量50重量%以下の濃度の水溶液として市販か
つ使用されるので、粗製グルタルアルデヒド溶液
の精製に際しては蒸発したグルタルアルデヒドお
よび水を凝縮・混合して精製グルタルアルデヒド
溶液を製造することが望ましい。 したがつて、粗製グルタルアルデヒド溶液の蒸
発操作は、5〜500Torr、好ましくは10〜
100Torrの減圧下、100〜200℃、好ましくは130
〜180℃の加熱温度で、供給される粗製グルタル
アルデヒド溶液を1分以内、好ましくは30秒以内
で90〜99重量%、好ましくは95〜97重量%蒸発さ
せ、得られるグルタルアルデヒド溶液中のグルタ
ルアルデヒド含量が70重量%以下、好ましくは60
重量%以下であり、グルタルアルデヒドの収率が
95%以上でおこなわれる。このような蒸発操作に
使用される操作としては、粗製グルタルアルデヒ
ド溶液の蒸発に要する時間、すなわち供給される
粗製グルタルアルデヒド溶液の蒸発器中に滞留す
る時間がより短かく、かつ総括伝熱係数が大き
く、上記の操作条件のもとで粗製グルタルアルデ
ヒド溶液の連続供給ならびに蒸発物および残渣の
連続的あるいは間歇的抜き出しが可能な付属機器
を備えた蒸発器が好ましい。このような蒸発装置
の形式のうちでは、攪拌膜形の一種である薄膜蒸
発器が最適であるが、本発明の無色透明で高品位
のグルタルアルデヒド溶液を製造するという目的
を満たせば対象となる蒸発装置はいかなる形式に
限定されるものではない。 つぎに図面を参照しながら本発明方法を詳細に
説明する。図面に示すように真空ポンプ14およ
び圧力調整弁13により系内圧力を一定の減圧下
に維持しながら、飽和水蒸気供給口4およびドレ
ーン排出口5を通じて飽和水蒸気を供給して所定
の温度に加熱した攪拌膜形薄膜蒸発器3に、粗製
グルタルアルデヒド溶液を供給口1より定量ポン
プ2を経て連続的に供給する。攪拌膜形薄膜蒸発
器3で蒸発したガスは導管6を通り30℃の冷却水
を通じた第1凝縮器7で凝縮して第1受器8で回
収される。さらに凝縮しなかつたガスは導管9を
通り10℃の冷却を通じた第2凝縮器10で凝縮し
て第2受器11で回収される。攪拌膜形薄膜蒸発
器3で蒸発しなかつた着色物質を含む液は残渣と
して下部より残渣受器12に抜き出される。なお
実際の装置としては第1および第2受器8,11
を区別することなく、単一の受器で凝縮した液を
連続的あるいは間歇的に系外へ抜き出すのが望ま
しい。 つぎに実施例をあげて本発明方法をさら詳細に
説明する。 実施例 1 J.Am.Chem Soc.,72(7),3079〜3081(1950)
に記載されている方法にしたがつて、アクロレイ
ンとアルキルビニルエーテルとより得られる2−
アルコキシ−3,4−ジヒドロ−2H−ピラン類
の酸触媒による加水分解反応により、副生したア
ルコール類を含む黄褐色のグルタルアルデヒド溶
液を製造した。この溶液中の副生アルコール類を
除去するために蒸溜によりアルコール類を回収し
た。得られた粗製グルタルアルデヒド溶液の外観
は茶褐色であり、その色数はAPHA基準で500〜
600を示し、グルタルアルデヒド含量は58.7%で
その他の大部分は水であつた。 図面に示す装置を用いて4Kg/cm2Gの飽和水蒸
気で151℃に加熱した伝熱面積0.13m2を有する攪
拌膜形薄膜蒸発器3に30Torrの圧力下で前記粗
製グルタルアルデヒド溶液5.25Kgを30分かかつて
定量ポンプ2により一定の流量で連続的に供給し
て蒸発させ、蒸発したガスは二つの凝縮器7,1
0により冷却・凝縮させて蒸発物として下部の二
つの受器8,11に回収した。小量のグルタルア
ルデヒドを含有する不揮発性物質および着色物質
は、攪拌膜形薄膜蒸発器3の下部より残渣とし残
渣受器12に回収された。このとき粗製グルタル
アルデヒド溶液は攪拌膜形薄膜蒸発器の伝熱部分
の壁面に沿つて極めて薄い膜を形成しながら次第
に蒸発・下降する。最終的に下部の抜き出し口に
達成する時間、すなわち平均滞留時間は極めて短
く、僅かに30秒程度であつた。 実験終了後直ちに二つの受器8,11に回収さ
れた蒸発物である凝縮液および残渣受器12に回
収された残渣を取り出して、各液の重量、グルタ
ルアルデヒド含量、外観そして多量の水で希釈し
て水に対する溶解性等の性状を調べたところ第1
表の結果が得られた。
The present invention relates to a method for purifying glutaraldehyde. Conventionally, glutaraldehyde has been produced by the hydrolysis method of 2-alkoxy-3,4-dihydro-2H-pyrans obtained from acrolein and alkyl vinyl ether, the hydrogen peroxide oxidation method of cyclopentene or 1,2-epoxycyclopentane, and the hydrogen peroxide oxidation method of cyclopentene or 1,2-epoxycyclopentane. It is produced by an oxygen or air oxidation method using a cobalt compound as a catalyst of 1,2-cyclopentanediol obtained by oxidizing peracetic acid. Glutaraldehyde produced by this method is used as a substitute for formaldehyde in leather and disinfectant disinfectants, etc. Glutaraldehyde produced by either method is usually commercially available as an aqueous solution with a glutaraldehyde content of 50% by weight or less. There is. Recently, the demand for high-grade glutaraldehyde has been increasing as the demand for high-grade leather agents, capsule cross-linking agents, disinfectants and disinfectants for medical and agricultural chemicals, etc. has increased. However, including the aforementioned manufacturing method for glutaraldehyde production,
Regardless of the method used, the glutaraldehyde solution obtained inevitably contains impurities that cause coloration to varying degrees. However, no knowledge has been reported to date regarding the purification of a so-called crude glutaraldehyde solution to produce a colorless, transparent, and high-quality glutaraldehyde solution. By the way, when the distillation method, which is applied to the purification of many compounds, is adopted as a method for purifying a colored crude glutaraldehyde solution, it goes without saying that trace amounts of colored substances, which are non-volatile components, are separated; Due to the difference in vapor pressure between water and glutaraldehyde, the two are separated and distilled out. However, since glutaraldehyde solutions are usually commercially available and used as aqueous solutions containing less than 50% glutaraldehyde (mostly water), the method of separating glutaraldehyde and water is inefficient and pointless. be. Furthermore, in the distillation process, water, which is a low boiling point component, is distilled out first, so the glutaraldehyde concentration increases, the water content decreases, and the high temperature continues for a long time, causing deterioration of the glutaraldehyde itself.
Therefore, for the purification method by distillation, a considerable part of the glutaraldehyde in the crude glutaraldehyde solution is lost, resulting in a significant decrease in the glutaraldehyde yield, which is inevitable, and the distillation method is not suitable for the purification of glutaraldehyde. I have to say that this is an uneconomical method. The present invention is characterized in that a colored substance is separated by continuously evaporating a crude glutaraldehyde solution under reduced pressure in the presence of water to stably obtain a colorless and transparent high-grade glutaraldehyde solution. This is a purification method. The crude glutaraldehyde solution purified by the method of the present invention is a 2-alkoxy-
Hydrolysis method of 3,4-dihydro-2H-pyrans,
It may be produced by any method, including the hydrogen peroxide method of cyclopentene or 1,2-epoxycyclopentane, and the oxygen or air oxidation method of 1,2-cyclopentanediol obtained by oxidizing cyclopentene with peracetic acid. . For example, Longley, R.I.; Emerson, W.S.; J.Am.
Chem.Soc., 72 (7). 3079-3081 (1950), glutaraldehyde is produced by the hydrolysis reaction of 2-alkoxy-3,4-dihydro-2H-pyrans obtained from acrolein and alkyl vinyl ether, and its aqueous solution is It has a yellowish brown color. Furthermore, alcohols produced as by-products during the hydrolysis reaction can be removed by distillation according to a conventional method, and the resulting solution can be used as a crude glutaraldehyde solution to be supplied to the evaporator. As described above, according to the present invention, the crude glutaraldehyde solution is continuously evaporated under reduced pressure in the presence of water to separate the colored substance, which is a non-volatile component, to produce a colorless and transparent high-grade glutaraldehyde solution. However, in terms of the stability of glutaraldehyde, as an evaporation method,
During evaporation and condensation of the crude glutaraldehyde solution, the crude glutaraldehyde solution does not maintain a high temperature state for a long time, and the purified glutaraldehyde solution obtained is a colorless and transparent high-grade glutarium in coexistence with water at a certain ratio. It is desirable to produce aldehyde solutions. Furthermore, since glutaraldehyde solutions are usually commercially available and used as aqueous solutions with a glutaraldehyde content of 50% by weight or less, when purifying a crude glutaraldehyde solution, evaporated glutaraldehyde and water are condensed and mixed to form a purified glutaraldehyde solution. It is desirable to manufacture. Therefore, the evaporation operation of the crude glutaraldehyde solution is performed at a temperature of 5 to 500 Torr, preferably 10 to 500 Torr.
Under vacuum of 100Torr, 100~200℃, preferably 130℃
At a heating temperature of ~180°C, the supplied crude glutaraldehyde solution is evaporated by 90-99% by weight, preferably 95-97% by weight within 1 minute, preferably within 30 seconds, and the glutaric acid in the obtained glutaraldehyde solution is Aldehyde content not more than 70% by weight, preferably 60%
% by weight or less, and the yield of glutaraldehyde is
This is done in over 95% of cases. The operation used for such an evaporation operation is such that the time required to evaporate the crude glutaraldehyde solution, that is, the residence time of the supplied crude glutaraldehyde solution in the evaporator is shorter, and the overall heat transfer coefficient is Preference is given to evaporators which are large and equipped with ancillary equipment that allows continuous supply of crude glutaraldehyde solution and continuous or intermittent withdrawal of evaporates and residues under the operating conditions mentioned above. Among these types of evaporation equipment, a thin film evaporator, which is a type of stirred film type, is most suitable, but it is applicable if it satisfies the purpose of producing the colorless, transparent, high-quality glutaraldehyde solution of the present invention. The evaporator is not limited to any type. Next, the method of the present invention will be explained in detail with reference to the drawings. As shown in the drawing, saturated steam was supplied through the saturated steam supply port 4 and the drain discharge port 5 and heated to a predetermined temperature while the system pressure was maintained at a constant reduced pressure using the vacuum pump 14 and the pressure regulating valve 13. A crude glutaraldehyde solution is continuously supplied to the stirred membrane type thin film evaporator 3 from the supply port 1 via the metering pump 2. The gas evaporated in the stirred film type thin film evaporator 3 passes through a conduit 6, is condensed in a first condenser 7 through which cooling water at 30° C. is passed, and is recovered in a first receiver 8. Further, the uncondensed gas passes through the conduit 9 and is cooled to 10° C., is condensed in the second condenser 10, and is recovered in the second receiver 11. The liquid containing the colored substance that has not been evaporated in the stirred film type thin film evaporator 3 is extracted as a residue from the lower part into a residue receiver 12. Note that the actual device is the first and second receivers 8, 11.
It is desirable to extract the condensed liquid from the system continuously or intermittently in a single receiver without distinguishing between the two. Next, the method of the present invention will be explained in more detail with reference to Examples. Example 1 J.Am.Chem Soc., 72 (7), 3079-3081 (1950)
2- obtained from acrolein and an alkyl vinyl ether according to the method described in
A yellow-brown glutaraldehyde solution containing by-produced alcohols was produced by an acid-catalyzed hydrolysis reaction of alkoxy-3,4-dihydro-2H-pyrans. In order to remove by-product alcohols from this solution, the alcohols were recovered by distillation. The appearance of the obtained crude glutaraldehyde solution is brownish-brown, and its color number is 500 to 500 according to APHA standards.
600, the glutaraldehyde content was 58.7%, and most of the rest was water. Using the apparatus shown in the drawing, 5.25 kg of the crude glutaraldehyde solution was placed under a pressure of 30 Torr in a stirred membrane type thin film evaporator 3 having a heat transfer area of 0.13 m 2 heated to 151° C. with saturated steam of 4 kg/cm 2 G. For 30 minutes, the metering pump 2 continuously supplies the gas at a constant flow rate to evaporate it, and the evaporated gas is sent to two condensers 7 and 1.
It was cooled and condensed by 0 and collected as evaporated matter into the two lower receivers 8 and 11. The non-volatile substance and the colored substance containing a small amount of glutaraldehyde were collected as a residue from the lower part of the stirred membrane type thin film evaporator 3 into a residue receiver 12 . At this time, the crude glutaraldehyde solution gradually evaporates and descends while forming an extremely thin film along the wall surface of the heat transfer portion of the stirred membrane type thin film evaporator. The time it took to finally reach the outlet at the bottom, ie, the average residence time, was extremely short, only about 30 seconds. Immediately after the end of the experiment, the condensate, which is the evaporated material collected in the two receivers 8 and 11, and the residue collected in the residue receiver 12 were taken out, and the weight, glutaraldehyde content, appearance, and large amount of water were taken out. When diluted and examined for properties such as solubility in water, the first
The results in the table were obtained.

【表】 実施例 2 実施例1の蒸発実験で得られた二つの受器8,
11の蒸発物の一部を直ちに取り出し、両者の得
られた重量に応じた割合で混合した液、各受器単
独の液、第1受器8の蒸発物を蒸留水で適当に希
釈した液をガラス製ビーカーに移し、密閉してグ
ルタルアルデヒドの安定性を確認する試料液とし
た。各試料液は室温で暗所に保存して一定時間毎
に取り出し、その外観や試料液を10倍量の水で希
釈した際の濁りの発生、水に不溶な化合物の生成
等の性状の変化を観察した。なおグルタルアルデ
ヒドは水に無制限に溶解するので、水に不溶な化
合物の発生はグルタルアルデヒドの変質を示し、
その安定性を判断する目安となる。その結果を第
2表に示す。
[Table] Example 2 Two receivers 8 obtained in the evaporation experiment of Example 1,
A liquid obtained by immediately taking out a portion of the evaporated material from No. 11 and mixing the two in a proportion according to the obtained weight, a liquid from each receiver alone, and a solution obtained by appropriately diluting the evaporated material from the first receiver 8 with distilled water. was transferred to a glass beaker and sealed to prepare a sample solution for checking the stability of glutaraldehyde. Each sample solution is stored in a dark place at room temperature and taken out at regular intervals, and changes in appearance and properties such as turbidity when diluted with 10 times the amount of water and the formation of water-insoluble compounds are observed. observed. Since glutaraldehyde is soluble in water without limit, the generation of water-insoluble compounds indicates deterioration of glutaraldehyde.
It serves as a guideline for determining its stability. The results are shown in Table 2.

【表】 実施例 3 実施例2と同一の各試料液について温度を50℃
とした以外は同一の条件下で同様な試験を行なつ
たところ第3表の結果が得られた。
[Table] Example 3 The temperature was set at 50℃ for each sample solution that was the same as in Example 2.
A similar test was conducted under the same conditions except that the results shown in Table 3 were obtained.

【表】 実施例 4 実施例1で使用した同一の粗製グルタルアルデ
ヒド溶液4.70Kgを100Torrの圧力下、90分かかつ
て同様な蒸発実験を実施して二つの受器8,11
より無色透明なグルタルアルデヒド溶液をそれぞ
れ得た。その結果を第4表に示す。
[Table] Example 4 A similar evaporation experiment was conducted in which 4.70 kg of the same crude glutaraldehyde solution used in Example 1 was evaporated under a pressure of 100 Torr for 90 minutes into two receivers 8 and 11.
A more colorless and transparent glutaraldehyde solution was obtained. The results are shown in Table 4.

【表】 実施例 5 実施例4で得られた二つの受器8,11の蒸発
物について、グルタルアルデヒドの安定性を確認
するために実施例2および3と同様にいくつかの
試料液を調整して同一条件下で試験を実施した。
その結果を第5表に示す。
[Table] Example 5 Regarding the evaporates from the two receivers 8 and 11 obtained in Example 4, several sample solutions were prepared in the same manner as in Examples 2 and 3 in order to confirm the stability of glutaraldehyde. The test was conducted under the same conditions.
The results are shown in Table 5.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明にするグルタルアルデヒドの精製
方法の一例を示すフローシートである。 1……粗製グルタルアルデヒド溶液供給口、2
……定量ポンプ、3……攪拌膜形薄膜蒸発器、4
……飽和水蒸気供給口、5……ドレーン排出口、
6……導管、7……第1凝縮器、8……第1受
器、9……導管、10……第2凝縮器、11……
第2受器、12……残渣受器、13……圧力調整
弁、14……真空ポンプ。
The drawing is a flow sheet showing an example of the method for purifying glutaraldehyde according to the present invention. 1...crude glutaraldehyde solution supply port, 2
... Metering pump, 3 ... Stirring membrane type thin film evaporator, 4
... Saturated steam supply port, 5 ... Drain discharge port,
6... Conduit, 7... First condenser, 8... First receiver, 9... Conduit, 10... Second condenser, 11...
Second receiver, 12... Residue receiver, 13... Pressure regulating valve, 14... Vacuum pump.

Claims (1)

【特許請求の範囲】 1 粗製グルタルアルデヒド溶液を水の存在下に
減圧下で連続的に蒸発させることにより着色物質
を分離し、無色透明な高品位グルタルアルデヒド
溶液を安定的に得ることを特徴とするグルタルア
ルデヒドの精製方法。 2 蒸発は100〜200℃の加熱温度および5〜
500Torrの圧力下で行なわれる特許請求の範囲第
1項に記載の方法。 3 蒸発は130〜180℃の加熱温度および10〜
100Torrの圧力下で行なわれる特許請求の範囲第
1項に記載の方法。 4 粗製グルタルアルデヒド溶液は水溶液である
特許請求の範囲第1項ないし第3項のいずれか一
つに記載の方法。 5 粗製グルタルアルデヒド溶液の蒸発率は90〜
99重量%である特許請求の範囲第1項ないし第4
項のいずれか一つに記載の方法。 6 精製グルタルアルデヒド溶液中のグルタルア
ルデヒド含量は70重量%以下である特許請求の範
囲第1項ないし第5項のいずれか一つに記載の方
法。
[Claims] 1. Colored substances are separated by continuously evaporating a crude glutaraldehyde solution under reduced pressure in the presence of water, and a colorless and transparent high-grade glutaraldehyde solution is stably obtained. A method for purifying glutaraldehyde. 2 Evaporation is carried out at a heating temperature of 100 to 200℃ and
A method according to claim 1, which is carried out under a pressure of 500 Torr. 3 Evaporation is performed at a heating temperature of 130 to 180℃ and a temperature of 10 to 100℃.
A method according to claim 1, which is carried out under a pressure of 100 Torr. 4. The method according to any one of claims 1 to 3, wherein the crude glutaraldehyde solution is an aqueous solution. 5 The evaporation rate of crude glutaraldehyde solution is 90~
Claims 1 to 4 which are 99% by weight
The method described in any one of the paragraphs. 6. The method according to any one of claims 1 to 5, wherein the glutaraldehyde content in the purified glutaraldehyde solution is 70% by weight or less.
JP17751482A 1982-10-12 1982-10-12 Method for purifying glutaraldehyde Granted JPS5967238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17751482A JPS5967238A (en) 1982-10-12 1982-10-12 Method for purifying glutaraldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17751482A JPS5967238A (en) 1982-10-12 1982-10-12 Method for purifying glutaraldehyde

Publications (2)

Publication Number Publication Date
JPS5967238A JPS5967238A (en) 1984-04-16
JPH0350735B2 true JPH0350735B2 (en) 1991-08-02

Family

ID=16032234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17751482A Granted JPS5967238A (en) 1982-10-12 1982-10-12 Method for purifying glutaraldehyde

Country Status (1)

Country Link
JP (1) JPS5967238A (en)

Also Published As

Publication number Publication date
JPS5967238A (en) 1984-04-16

Similar Documents

Publication Publication Date Title
JP5485501B2 (en) Dehydration method
KR101583331B1 (en) Process for preparing cyclohexanol and cyclohexanone by cyclohexane oxidation, and device for same
US5371304A (en) Process for the production of bisphenol A
JP5328678B2 (en) Process for producing hydroxypivalin aldehyde and neopentyl glycol
CN110312700B (en) Method for purifying natural vanillin
WO2017215928A1 (en) Process for the epoxidation of a tetrasubstituted alkene
TWI362377B (en) Acetic anhydride and acetate ester co-production
KR20010102420A (en) High-purity 1,3-butylene glycol, process for producing 1,3-butylene glycol, and process for producing by-product butanol and butyl acetate
BRPI0508693B1 (en) PROCESS FOR PRODUCTION OF PURIFIED ALCOHOLS
TW201008918A (en) Process for producing epoxides
JPH0350735B2 (en)
JPH07116081B2 (en) Method for purifying 1,3-butylene glycol
SU1436867A3 (en) Method of producing aldehydes c sub three - c sub five
US7153397B2 (en) Process for the purification of fluoromethyl hexafluoroisopropyl ether
JP2001213825A (en) High-purity 1,3-butylene glycol
US2667516A (en) Process for making chloromethyl
JPH03501976A (en) Method for producing anhydrous oxime from aqueous solution
JP2001213824A (en) Method of producing purified 1,3-butylene glycol
JP7366295B2 (en) Production method of high purity 1,3-butylene glycol
US5959148A (en) Purification process of N-vinylformamide
KR100760776B1 (en) Method for Removing Acetals Containing Formaldehyde from Polyvalent Alcohols by Means of Tempering
JPH05339256A (en) Production of reaction crude liquid containing aldoxane and paraldol as main ingredients
US924494A (en) Process of preparing pure lactic acid.
JP3870509B2 (en) Method for producing dimerized aldehyde
JPH08325183A (en) Production of bisphenol a