JPH0350576B2 - - Google Patents

Info

Publication number
JPH0350576B2
JPH0350576B2 JP3118384A JP3118384A JPH0350576B2 JP H0350576 B2 JPH0350576 B2 JP H0350576B2 JP 3118384 A JP3118384 A JP 3118384A JP 3118384 A JP3118384 A JP 3118384A JP H0350576 B2 JPH0350576 B2 JP H0350576B2
Authority
JP
Japan
Prior art keywords
catalyst
unit
honeycomb
holes
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3118384A
Other languages
Japanese (ja)
Other versions
JPS60175542A (en
Inventor
Fumio Abe
Yasushi Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3118384A priority Critical patent/JPS60175542A/en
Publication of JPS60175542A publication Critical patent/JPS60175542A/en
Publication of JPH0350576B2 publication Critical patent/JPH0350576B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • B01J15/005Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/30Loose or shaped packing elements, e.g. Raschig rings or Berl saddles, for pouring into the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30207Sphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は窒素酸化物の接触還元、内燃機関の排
ガス浄化の外、化学工業の各種触媒反応を効率的
に行うことのできる触媒装置に関するものであ
る。 (従来技術) 各種の触媒反応装置には流体管路中にビーズ
状、ペレツト状、円筒状、板状その他小型の触媒
構造体の多数個を不規則に充填した触媒装置や流
体管路中に格子状またはハニカム状の触媒構造体
を規則的に設置した触媒装置が使用されている
が、前者の触媒装置は流体管路を通過する反応流
体が触媒構造体に衝突して複雑に乱れ、反応流体
相互間ならびに反応流体と触媒構造体間の接触効
率は向上するものの流体流路の一部が反応流体の
流れ方向とほぼ直角になるために遮断されて圧力
損失が大きくなり、反応流体には触媒構造体を排
除しようとする力が働いて時には触媒構造体相互
間の摩耗により触媒構造体が粉化し、さらに大き
な圧力損失の原因となつたり、触媒構造体の充填
層内に大きなチヤンネルが発生して反応流体がこ
のチヤンネルを通つて吹きぬける現象が起こり、
反応流体と触媒表面との接触効率が低下する欠点
があり、また、後者の触媒装置は反応流体の流れ
方向と平行する貫通孔が肉薄の隔壁を介して多数
形成されることとなるために圧力損失が小さいう
えに接触表面を大きくできる利点を有している
が、反応流体が貫通孔の中で整流されるために反
応流体相互間の混合が不十分になつたり、反応流
体と触媒表面との衝突頻度が少なく、例えば反応
流体が気−液二成分の場合には気体の吹きぬけ現
象が一部発生して反応流体と触媒表面との接触効
率が低下し、大きな触媒表面を有効に利用するに
至らなかつた。また、触媒反応の多くは反応に伴
つて熱を発生したり、吸収したりするので触媒充
填層内の伝熱が良いことが必要であるが、後者の
触媒装置では触媒充填層が隔壁により遮断されて
いるために半径方向の反応流体の混合がなくて不
均一な温度分布を発生し易く、反応温度は触媒反
応の活性、選択性に大きな影響を与えるために、
結果的に目的とする生成物の収率が低下する欠点
があつた。さらに、格子状またはハニカム状の触
媒構造体を流体管路中に規則的に充填するために
は多くの手間を必要とするうえ流体管路の管径に
合わせて触媒構造体を成形加工する必要があり、
しかも、格子状またはハニカム状の触媒構造体の
複数個を流体管路中に相互間に所定長の空洞部に
おいて規則的に配設しようとすると触媒反応装置
全体が大型となり、多大の建設費を必要とする欠
点もあつた。 (発明の目的) 本発明は前記のような欠点を除き、圧力損失が
小さいうえに反応流体との接触効率が良く、しか
も、反応流体の吹き抜けも少ない各種用途に適応
できる触媒装置を目的として完成されたものであ
る。 (発明の構成) 本発明は隔壁により区画された多数の平行な貫
通孔を蜂巣状に設けるとともに該貫通孔が開口す
る面を非平面状に形成したハニカム構造の単位触
媒体の多数個を流体管路中に網状構造の流路を形
成するよう不規則に充填したことを特徴とするも
のである。 次に、本発明を図示の実施例について詳細に説
明すれば、1はハニカム構造の単位触媒体であつ
て、該単位触媒体1は隔壁2により区画された多
数の平行な貫通孔3を蜂巣状に設けたブロツク体
の該貫通孔3が開口する面4を球面状等の彎曲面
とするか貫通孔3の軸線方向に直交しない面を多
数有する屈曲面すなわち多面とするなどした非平
面状としたものである。なお、この単位触媒体1
は前記したようなハニカム構造の触媒担体に触媒
物質をコーテイング法等により担持させたものと
しても或いは単位触媒体1をセラミツク物質と触
媒物質との混合物質をもつて成形したものとして
もよい。5は流体管路であつて、該流体管路5に
は前記単位触媒体1の多数個を不規則に積重され
た状態に充填し、該流体管路5中に前記貫通孔3
と各単位触媒体1,1間の細隙とをもつて網状構
造の流路が形成されている。なお、前記単位触媒
体1を構成する材質としては所定の形状を保持で
きる必要があるので、ハニカム構造のブロツク体
自身が触媒作用を有するものとする場合にはアル
ミナ、シリカ、ゼオライト、酸化バナジウム等の
金属酸化物や銅−ニツケル、銀−パラジウム等の
金属触媒、イオン交換樹脂に代表される高分子材
料等が一般的であるが、ハニカム構造のブロツク
体を触媒担体としてこれに触媒物質を担持させた
ものとする場合には触媒担体を任意の材料で成形
しておき、これに金属、金属塩、金属酸化物、錯
体触媒、酸素等の触媒物質を担持または固定させ
ればよい。また、単位触媒体の成形手段もプレス
成形、押出成形等の通常の成形法により成形し、
必要に応じこれに切削加工や研磨加工を施せばよ
いし、触媒物質を触媒担体に担持させるのも触媒
物質をスラリー状としてコーテイングする外、含
浸法等任意の手段で行えばよい。さらに、単位触
媒体1の形状や大きさ、隔壁2の肉厚、貫通孔3
の孔径等も前記した構造のものであれば特に限定
されることはない。 このように構成されたものは、従来のこの種触
媒装置と同様触媒反応装置等に組み込んで使用し
た場合流体管路5中には多数の単位触媒体1が不
規則に充填されており、しかも、この単位触媒体
1は隔壁2により区画された多数の平行な貫通孔
3を蜂巣状に設けるとともに該貫通孔3が開口す
る面4を非平面状に形成したハニカム構造のもの
であるので、該流体管路5中には多数の単位触媒
体1の各貫通孔3と、貫通孔3が開口する非平面
状の面4によつて密接されることがないように不
規則に積重されている各単位触媒体1,1間や単
位触媒体1と流体管路5の内壁間の細隙とをもつ
て三次元的に連続される網状構造の流路が形成さ
れ、その結果流体管路5中を通過する反応流体の
流れは複雑に入り乱れて反応流体相互間ならびに
反応流体と単位触媒体1の表面との接触効率は極
めてよく、しかも、連続した網状構造の流路が反
応流体の流れを遮断することがないので圧力損失
は極めて小さく、さらに、単位触媒体1の充填層
内に大きなチヤンネルが生ずることもないので吹
き抜け現象の生ずることもない。 次に、本発明に係る触媒装置と従来のこの種触
媒装置の性能を比較するために行つた実験結果を
記す。 実験例 断面を100mm×100mmの正方形とした高さ1200mm
の流体管路を用い、その内部に設ける触媒充填層
はアナターゼ型チタニアをもつて所要の形状に成
形された成形物にVOSO4水溶液を用いてTiO2
分100に対しV2O5成分が5.5となるように含浸さ
せて500℃で焼成した触媒体により形成した。ま
た、この触媒体として本発明の実施例は試料1と
して縦、横、高さが各10mmで厚さ0.4mmの隔壁2
により区画される9個の平行な貫通孔3が蜂巣状
に設けられ、且つ該貫通孔3が開口する面4を球
面状に形成した第2図、第3図に示すような外形
を略球形としたハニカム状の単位触媒体1の多数
個を用い、試料2としては縦、横、高さが各10mm
で厚さ0.4mmの隔壁2により区画された9個の平
行な貫通孔3が蜂巣状に設けられ、且つ該貫通孔
3が開口する面4を多面とした第4図、第5図に
示すような多面体のハニカム状の単位触媒体1の
多数個を用いた。他方、比較例の試料3としては
直径1mmの球状触媒体の多数個を用い、比較例の
試料4としては直径10mmの球状触媒体を用い、比
較例の試料5としては厚さ0.4mmの隔壁により区
画された多数の平行な貫通孔を蜂巣状に設けた高
さ1200mmの柱状触媒体を1個用い、比較例の試料
6としては厚さ0.4mmの隔壁により区画された多
数の平行な貫通孔を蜂巣状に設けた高さ120mmの
短柱状触媒体を相互間に120mmの間隔をおいて配
置できるように5個用いた。また、触媒反応実験
は流体管路の一端の入口からNO=100ppm、
NH3=100ppm、O2=7vol%、H2O=10vol%、
残部N2よりなるガスを送り込み、SV=80001
HR、UG=3Nm/s、300℃の温度で反応させて
出口のNO濃度を計測して下式によりNO除去率
を計算した。 NO除去率(%)=入口NO濃度−出口NO濃度/入口NO濃度 ×100 以上の実験結果は下表のとおりである。
(Industrial Application Field) The present invention relates to a catalyst device capable of efficiently carrying out various catalytic reactions in the chemical industry, in addition to catalytic reduction of nitrogen oxides and purification of exhaust gas from internal combustion engines. (Prior art) Various catalytic reaction devices include catalyst devices in which a large number of bead-shaped, pellet-shaped, cylindrical, plate-shaped, and other small catalyst structures are filled irregularly in a fluid pipe. Catalyst devices in which lattice-like or honeycomb-like catalyst structures are regularly arranged are used; however, in the former catalyst device, the reaction fluid passing through the fluid pipes collides with the catalyst structure, causing complex turbulence and causing a reaction. Although the contact efficiency between the fluids and between the reaction fluid and the catalyst structure is improved, a part of the fluid flow path is blocked because it is almost perpendicular to the flow direction of the reaction fluid, resulting in a large pressure loss. The force that tries to remove the catalyst structure works, and sometimes the catalyst structure becomes powder due to wear between the catalyst structures, causing even greater pressure loss, or creating a large channel within the packed bed of the catalyst structure. A phenomenon occurs in which the reaction fluid blows through this channel,
The disadvantage is that the contact efficiency between the reaction fluid and the catalyst surface is reduced, and the latter catalyst device has a large number of through holes parallel to the flow direction of the reaction fluid, which are formed through thin partition walls. Although it has the advantage of reducing loss and increasing the contact surface, the reaction fluids are rectified in the through-holes, which may result in insufficient mixing between the reaction fluids or the contact between the reaction fluid and the catalyst surface. For example, when the reaction fluid is a two-component gas-liquid component, a gas blow-through phenomenon occurs and the contact efficiency between the reaction fluid and the catalyst surface is reduced, making effective use of the large catalyst surface. It didn't reach that point. In addition, in many catalytic reactions, heat is generated or absorbed during the reaction, so it is necessary for the heat transfer within the catalyst packed bed to be good, but in the latter catalyst device, the catalyst packed bed is blocked by a partition wall Because of this, there is no mixing of the reaction fluid in the radial direction, which tends to cause uneven temperature distribution, and the reaction temperature has a large effect on the activity and selectivity of the catalytic reaction.
As a result, the yield of the desired product was reduced. Furthermore, it takes a lot of effort to regularly fill a lattice-like or honeycomb-shaped catalyst structure into a fluid pipe, and it is also necessary to mold the catalyst structure to match the diameter of the fluid pipe. There is,
Moreover, if a plurality of lattice-shaped or honeycomb-shaped catalyst structures are arranged regularly in cavities of a predetermined length between each other in a fluid pipe, the entire catalytic reaction apparatus becomes large and requires a large amount of construction cost. There were some drawbacks that made it necessary. (Purpose of the Invention) The present invention has been completed with the aim of eliminating the above-mentioned drawbacks and providing a catalyst device that has low pressure loss, high contact efficiency with reaction fluid, and can be applied to various uses with little blow-through of reaction fluid. It is what was done. (Structure of the Invention) The present invention provides a honeycomb structure in which a large number of parallel through holes partitioned by partition walls are provided in a honeycomb shape, and the surfaces where the through holes open are formed into a non-planar shape. It is characterized in that the pipes are filled irregularly so as to form flow channels with a network structure. Next, the present invention will be described in detail with reference to the illustrated embodiment. Reference numeral 1 denotes a unit catalyst body having a honeycomb structure, and the unit catalyst body 1 has a large number of parallel through holes 3 partitioned by partition walls 2 in a honeycomb structure. The surface 4 of the block body provided in the shape of the through hole 3 is a curved surface such as a spherical surface, or a non-planar surface having many surfaces that are not perpendicular to the axial direction of the through hole 3, that is, a multifaceted surface. That is. Note that this unit catalyst body 1
Alternatively, the catalyst material may be supported on a honeycomb-structured catalyst carrier as described above by a coating method, or the unit catalyst body 1 may be formed from a mixture of a ceramic material and a catalyst material. Reference numeral 5 denotes a fluid pipe, in which a large number of the unit catalyst bodies 1 are filled in an irregularly stacked state, and the through hole 3 is inserted into the fluid pipe 5.
A channel having a network structure is formed by the pores and the slits between the unit catalyst bodies 1, 1. The material constituting the unit catalyst body 1 must be able to maintain a predetermined shape, so if the honeycomb structure block body itself has a catalytic action, alumina, silica, zeolite, vanadium oxide, etc. Metal catalysts such as metal oxides, copper-nickel, silver-palladium, etc., and polymeric materials represented by ion exchange resins are commonly used. In the case of a catalyst carrier, the catalyst carrier may be formed of any material, and a catalyst substance such as a metal, a metal salt, a metal oxide, a complex catalyst, or oxygen may be supported or fixed thereon. In addition, the means for forming the unit catalyst body is formed by a normal forming method such as press molding or extrusion molding.
If necessary, this may be subjected to cutting or polishing, and the catalyst material may be supported on the catalyst carrier by any means such as coating with the catalyst material in the form of a slurry or by an impregnation method. Furthermore, the shape and size of the unit catalyst body 1, the wall thickness of the partition wall 2, the through hole 3, etc.
The pore diameter and the like are not particularly limited as long as they have the structure described above. When the device configured in this way is used by being incorporated into a catalytic reaction device, etc., like the conventional catalyst device of this kind, the fluid pipe 5 is filled with a large number of unit catalyst bodies 1 irregularly, and This unit catalyst body 1 has a honeycomb structure in which a large number of parallel through holes 3 partitioned by partition walls 2 are provided in a honeycomb shape, and the surface 4 where the through holes 3 open is formed in a non-planar shape. In the fluid conduit 5, a large number of unit catalyst bodies 1 are stacked irregularly so that they are not brought into close contact by each through hole 3 and the non-planar surface 4 in which the through hole 3 opens. A three-dimensionally continuous network structure flow path is formed with gaps between each unit catalyst body 1, 1 and between the unit catalyst body 1 and the inner wall of the fluid pipe 5, and as a result, the fluid pipe The flow of the reaction fluid passing through the channel 5 is complicated and turbulent, and the contact efficiency between the reaction fluids and the surface of the unit catalyst body 1 is extremely high. Since the flow is not blocked, the pressure loss is extremely small.Furthermore, since no large channel is formed in the packed bed of the unit catalyst body 1, no blow-by phenomenon occurs. Next, the results of an experiment conducted to compare the performance of the catalyst device according to the present invention and a conventional catalyst device of this kind will be described. Experimental example: Height 1200mm with a square cross section of 100mm x 100mm
The catalyst-packed layer is made of anatase-type titania, which is formed into a desired shape, and a VOSO 4 aqueous solution is used to form a catalyst-packed layer that contains 5.5 V 2 O 5 components per 100 TiO 2 components. It was formed from a catalyst body impregnated with the following properties and calcined at 500°C. In addition, as this catalyst body, the example of the present invention is a partition wall 2 whose length, width, and height are 10 mm each and a thickness of 0.4 mm as sample 1.
Nine parallel through-holes 3 are provided in a honeycomb shape, and the surface 4 through which the through-holes 3 open is formed into a spherical shape, as shown in FIGS. 2 and 3. A large number of honeycomb-shaped unit catalyst bodies 1 were used, and the length, width, and height of sample 2 were 10 mm each.
Nine parallel through holes 3 partitioned by partition walls 2 with a thickness of 0.4 mm are provided in a honeycomb shape, and the surface 4 where the through holes 3 open is multifaceted as shown in FIGS. 4 and 5. A large number of polyhedral honeycomb-shaped unit catalyst bodies 1 were used. On the other hand, Sample 3 of the comparative example uses a large number of spherical catalyst bodies with a diameter of 1 mm, Sample 4 of the comparative example uses a spherical catalyst body of 10 mm in diameter, and Sample 5 of the comparative example uses a partition wall with a thickness of 0.4 mm. One columnar catalyst body with a height of 1200 mm was used, which had a honeycomb of many parallel through-holes partitioned by , and Sample 6 of the comparative example had a large number of parallel through-holes partitioned by partition walls of 0.4 mm in thickness. Five short columnar catalyst bodies each having a height of 120 mm and having holes arranged in a honeycomb pattern were used so that they could be arranged at intervals of 120 mm between each other. In addition, in the catalytic reaction experiment, NO = 100 ppm was applied from the inlet of one end of the fluid pipe.
NH3 =100ppm, O2 =7vol%, H2O =10vol%,
Inject a gas consisting of the remainder N2 , SV = 8000 1 /
The reaction was performed at a temperature of 300° C. with HR, UG=3 Nm 2 /s, and the NO concentration at the outlet was measured, and the NO removal rate was calculated using the following formula. NO removal rate (%) = Inlet NO concentration - Outlet NO concentration / Inlet NO concentration × 100 The above experimental results are shown in the table below.

【表】 上表によつて明らかなように、本発明によれば
2実施例ともNO除去率が99%と高く、しかも、
圧力損失は100mmAq/mと極めて低く実用性に富
んでいることが確認されたのに対し、比較例のも
のはNO除去率と圧力損失のいずれかに問題があ
り実用上問題のあるものであつたことが確認され
た。なお、前記表はNOのNH3による接触還元反
応についてのみを実験例としたものであるが、
C3H8の完全酸化反応についても同様有効である
ことが確認されており、酸化反応、還元反応の外
にも水素化反応、脱水反応、分解反応、アルキル
化反応等にも応用できる。 (発明の効果) 本発明は前記説明から明らかなように、圧力損
失が小さいうえに反応流体との接触効率が高く、
しかも、反応流体の吹き抜けも少ないもので、任
意の成形法により単位触媒体を量産後流体管路中
に不規則に充填すればよいので製作容易で安価に
提供できる利点と相まち従来のこの種触媒装置の
欠点を除いたものとして業界の発展に寄与すると
ころ極めて大なるものである。
[Table] As is clear from the above table, according to the present invention, the NO removal rate was as high as 99% in both examples, and moreover,
The pressure loss was extremely low at 100 mmAq/m, and it was confirmed that it was highly practical, whereas the comparative example had problems with either the NO removal rate or pressure loss, and was problematic in practice. It was confirmed that Note that the above table is an experimental example only for the catalytic reduction reaction of NO with NH3 ,
It has been confirmed that it is similarly effective for the complete oxidation reaction of C 3 H 8 , and can be applied to hydrogenation reactions, dehydration reactions, decomposition reactions, alkylation reactions, etc. in addition to oxidation reactions and reduction reactions. (Effects of the Invention) As is clear from the above description, the present invention has low pressure loss and high contact efficiency with the reaction fluid.
In addition, there is little blow-through of the reaction fluid, and the unit catalysts can be filled irregularly into the fluid pipes after mass production using any molding method, so it is easy to manufacture and can be provided at low cost. It will greatly contribute to the development of the industry by eliminating the drawbacks of catalyst devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す要部の一部切欠
正面図、第2図は本発明における単位触媒体の第
1の実施例を示す一部切欠正面図、第3図は同じ
く一部切欠平面図、第4図は本発明における単位
触媒体の第2の実施例を示す一部切欠正面図、第
5図は同じく一部切欠平面図である。 1:ハニカム構造の単位触媒体、2:隔壁、
3:貫通孔、4:貫通孔が開口する面、5:流体
管路。
FIG. 1 is a partially cutaway front view of essential parts showing an embodiment of the present invention, FIG. 2 is a partially cutaway front view showing a first embodiment of a unit catalyst body in the present invention, and FIG. FIG. 4 is a partially cutaway front view showing a second embodiment of the unit catalyst body in the present invention, and FIG. 5 is a partially cutaway plan view. 1: Unit catalyst body with honeycomb structure, 2: Partition wall,
3: Through hole, 4: Surface where the through hole opens, 5: Fluid conduit.

Claims (1)

【特許請求の範囲】 1 隔壁により区画された多数の平行な貫通孔を
蜂巣状に設けるとともに該貫通孔が開口する面を
非平面状に形成したハニカム構造の単位触媒体の
多数個を流体管路中に網状構造の流路を形成する
よう不規則に充填したことを特徴とする触媒装
置。 2 単位触媒体の貫通孔が開口する面を球面状と
した特許請求の範囲第1項記載の触媒装置。 3 単位触媒体の貫通孔が開口する面を多面とし
た特許請求の範囲第1項記載の触媒装置。 4 単位触媒体をハニカム構造の触媒担体に触媒
物質を担持させたものとした特許請求の範囲第1
項または第2項または第3項記載の触媒装置。 5 単位触媒体をセラミツク物質と触媒物質との
混合物質よりなるものとした特許請求の範囲第1
項または第2項または第3項記載の触媒装置。
[Scope of Claims] 1. A fluid pipe in which a large number of unit catalyst bodies having a honeycomb structure are provided with a large number of parallel through holes partitioned by partition walls in a honeycomb shape, and the surfaces where the through holes open are formed into a non-planar shape. A catalyst device characterized in that the passages are filled irregularly to form a network-like structure of passages. 2. The catalyst device according to claim 1, wherein the surface through which the through-holes of the unit catalyst bodies open is spherical. 3. The catalyst device according to claim 1, wherein the surface where the through-hole of the unit catalyst body opens is multifaceted. 4. Claim 1 in which the unit catalyst body is a honeycomb-structured catalyst carrier supporting a catalyst substance.
The catalyst device according to item 1 or 2 or 3. 5 Claim 1 in which the unit catalyst body is made of a mixed material of a ceramic material and a catalyst material
The catalyst device according to item 1 or 2 or 3.
JP3118384A 1984-02-21 1984-02-21 Catalyst apparatus Granted JPS60175542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3118384A JPS60175542A (en) 1984-02-21 1984-02-21 Catalyst apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3118384A JPS60175542A (en) 1984-02-21 1984-02-21 Catalyst apparatus

Publications (2)

Publication Number Publication Date
JPS60175542A JPS60175542A (en) 1985-09-09
JPH0350576B2 true JPH0350576B2 (en) 1991-08-02

Family

ID=12324326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3118384A Granted JPS60175542A (en) 1984-02-21 1984-02-21 Catalyst apparatus

Country Status (1)

Country Link
JP (1) JPS60175542A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04193781A (en) * 1990-11-26 1992-07-13 Inax Corp Ceramic body having through-hole and its production
JP2005206770A (en) * 2004-01-19 2005-08-04 Ics Kk Manufacturing process of fatty acid ester and fuel containing the fatty acid ester

Also Published As

Publication number Publication date
JPS60175542A (en) 1985-09-09

Similar Documents

Publication Publication Date Title
US4388277A (en) Catalyst device and method
CA2387561C (en) Conversion of nitrogen oxides in the presence of a catalyst supported of a mesh-like structure
US4912776A (en) Process for removal of NOx from fluid streams
WO2009141895A1 (en) Exhaust gas purification apparatus
WO1991018832A1 (en) Monolithic catalysts for conversion of sulfur dioxide to sulfur trioxide
WO2009141894A1 (en) Honeycomb structure
US11911728B2 (en) Reactor for reducing nitrogen oxides
EP2948246B1 (en) Use of a honeycomb monolith structure with cells having elongated cross-section in selective catalytic reduction of nitrogen oxides
US8182753B2 (en) Carrier body for exhaust-gas aftertreatment with dispersed catalyst configuration, process for producing a carrier body and exhaust gas treatment unit and vehicle having a carrier body
KR20140004624A (en) Catalyst compositions and applications thereof
JPH0350576B2 (en)
JP7220676B2 (en) Coating device and method
WO2018064363A1 (en) Surface textured structural catalyst and applications thereof
US20030052043A1 (en) Structured catalysts and processes for gas/liquid reactors
JPH08299809A (en) Production of honeycomb catalyst
Moulijn et al. Structured catalysts and reactors: A contribution to process intensification
US10737258B2 (en) Honeycomb catalyst for removal of nitrogen oxides in flue and exhaust gasses and method of preparation thereof
US20030086846A1 (en) Monolith stacking configuration for improved flooding
EP3424596A1 (en) Method for coating a monolith carrier
Scheffler et al. Heterogeneously catalyzed processes with porous cellular ceramic monoliths
Moulijn et al. and Andrzej Stankiewicz
KR20010000951A (en) A method for manufacturing three direction-honeycomb module for solid catalyst support or dispersant and three direction-honeycomb module manufactured from this method
Moulijn et al. and Andrzej Stankiewicz Delft University of Technology, Delft, The Netherlands
RU2020133780A (en) CATALYTIC PRODUCT FOR EXHAUST GAS TREATMENT APPLICATIONS
Alcorn et al. Process for removal of NOx from fluid streams.