JPH0350523A - Electrooptical device - Google Patents

Electrooptical device

Info

Publication number
JPH0350523A
JPH0350523A JP18459589A JP18459589A JPH0350523A JP H0350523 A JPH0350523 A JP H0350523A JP 18459589 A JP18459589 A JP 18459589A JP 18459589 A JP18459589 A JP 18459589A JP H0350523 A JPH0350523 A JP H0350523A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal layer
contrast
angle
electrode substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18459589A
Other languages
Japanese (ja)
Inventor
Masahiro Kuroiwa
雅宏 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP18459589A priority Critical patent/JPH0350523A/en
Publication of JPH0350523A publication Critical patent/JPH0350523A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133371Cells with varying thickness of the liquid crystal layer

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain a high-contrast, uncolored device with good visibility by setting the twist angle of liquid crystal molecules to >=100 deg. and forming a finely uneven surface as a surface which contacts the liquid crystal layer of at least one of a couple of electrode substrates. CONSTITUTION:The twist angle of the liquid crystal molecules of a liquid crystal cell 10 is set to >=100 deg. and the surface of at least one of both the electrode substrates 11 and 12, i.e. 12 on the side of the liquid crystal layer 13 is formed finely uneven by etching, etc. The unevenness extends to the border part of the liquid crystal layer 13 through an extremely thin transparent electrode 12a and an oriented film 12b, and consequently the thickness (d) of the liquid crystal layer 13 varies finely and continuously. Consequently, the high-contrast, uncolored device with the good visibility is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液晶表示装置や液晶シャッタ等の電気光学装置
、特に対向する一対の電極基板間に液晶分子をねじれ配
向させた液晶層を扶持してなる液晶セルと、その液晶セ
ルの外側に偏光板を備えた電気光学装置に関する. 〔従来の技術〕 例えば平坦な電極基板を用いた液晶表示装置にあっては
、液晶層の厚さdが不均一であると、いわゆるリタデー
シタンΔn−d (Δnは屈折率異方性)が変化して着
色が生じる.また液晶分子の分子軸と偏光板の偏光軸と
のずれが大きくなると複屈折効果のため着色するという
問題がある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an electro-optical device such as a liquid crystal display device or a liquid crystal shutter, and particularly to an electro-optical device that supports a liquid crystal layer in which liquid crystal molecules are twisted and oriented between a pair of opposing electrode substrates. This invention relates to a liquid crystal cell consisting of a liquid crystal cell and an electro-optical device equipped with a polarizing plate on the outside of the liquid crystal cell. [Prior art] For example, in a liquid crystal display device using a flat electrode substrate, if the thickness d of the liquid crystal layer is non-uniform, the so-called retardation tan Δn-d (Δn is refractive index anisotropy) changes. coloring occurs. Further, if the deviation between the molecular axis of the liquid crystal molecules and the polarization axis of the polarizing plate becomes large, there is a problem that coloration occurs due to the birefringence effect.

これに対して前記一対の電極基板のうち少なくとも一方
の電極基板の液晶層側の面に微細な凹凸を設けて上記の
りタデーシ4ンを表示面全面にわたって微細に連続的に
変化させることによって、着色を防ぐようにしたもの(
例えば特開昭61137132号公報参照)が知られて
いるが、従来のものは液晶分子のねじれ角を約90゜に
したいわゆるツイステッドネマチック型(以下、TN型
という)であるため、コントラスト(象峻性)がよくな
い等の問題があった. 一方、コントラストを向上させる方法としてl&品分子
のねじれ角を906以上にしたいわゆるスーパーツイス
テンド不マチック型(以下、STN型という)のl夜品
表示装置が知られているが、このSTN型の場合その基
本的な表示原理として複屈折効果を利用しているため、
着色は避けられなかった. そこで本出願人は先に特開昭64−519号公報におい
て表示用の液晶セルとは別に上記の着色を補正するため
の液晶セル等の光学的異方体を設けることを提案したが
、多層構造になるため全体の厚さが増大する等の不具合
がある.また液晶層の厚さを極めて均一に制御しなけれ
ばならず、技術的に困難であった。
On the other hand, by providing fine irregularities on the liquid crystal layer side surface of at least one electrode substrate of the pair of electrode substrates and continuously changing the data density 4 minutely over the entire display surface, coloring can be achieved. (
For example, Japanese Patent Laid-Open No. 61137132) is known, but the conventional one is of the so-called twisted nematic type (hereinafter referred to as TN type) in which the twist angle of the liquid crystal molecules is about 90 degrees, so it has a contrast (quadrant). There were problems such as poor sex (sexuality). On the other hand, as a method for improving contrast, a so-called super twisted non-matic type (hereinafter referred to as STN type) type display device in which the torsion angle of the l&item molecule is set to 906 or more is known. Since the birefringence effect is used as the basic display principle,
Coloring was inevitable. Therefore, the present applicant previously proposed in JP-A No. 64-519 to provide an optically anisotropic body such as a liquid crystal cell for correcting the above-mentioned coloring in addition to the display liquid crystal cell. Because of the structure, there are problems such as an increase in the overall thickness. Furthermore, the thickness of the liquid crystal layer must be controlled to be extremely uniform, which is technically difficult.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記の問題点に鑑みて提案されたもので、上記
のような色補正用の液晶セル等を用いることなくコント
ラストの高い、しかも無着色の電気光学装置を提供する
ことを目的とする.〔課題を解決するための手段〕 上記の目的を達成するために本発明は以下の構戒とした
ものである. 即ち、対向する一対の電極基板間に液晶分子をねじれ配
向させた液晶層を扶持してなる液晶セルと、その液晶セ
ルの外側に偏光板を備えた電気光学装置において、上記
液晶分子のねじれ角を100゜以上に設定すると共に、
上記一対の電極基板のうち少なくとも一方の電極基板の
液晶層と接する側の面に微細な凹凸を設けたことを特徴
とする。
The present invention was proposed in view of the above-mentioned problems, and an object of the present invention is to provide an electro-optical device that has high contrast without using a liquid crystal cell for color correction as described above, and is not colored. .. [Means for Solving the Problems] In order to achieve the above object, the present invention has the following precepts. That is, in an electro-optical device comprising a liquid crystal cell that supports a liquid crystal layer in which liquid crystal molecules are twisted and oriented between a pair of opposing electrode substrates, and a polarizing plate on the outside of the liquid crystal cell, the twist angle of the liquid crystal molecules is is set to 100° or more, and
The present invention is characterized in that fine irregularities are provided on the surface of at least one of the pair of electrode substrates that is in contact with the liquid crystal layer.

〔作 用〕[For production]

上記のように液晶セルの液晶分子のねじれ角を100@
以上に設定することにより、コントラストを高めること
が可能となると共に、少なくとも一方の電極基板の液晶
層側の面に微細な凹凸を設けたことにより、着色のない
電気光学装置を提供することが可能となる. 〔実施例〕 第1図は本発明の一実施例を示す電気光学装置としての
液晶表示装置の縦断面図である。
As shown above, the twist angle of the liquid crystal molecules in the liquid crystal cell is 100@
By setting the above, it is possible to increase the contrast, and by providing minute irregularities on the surface of at least one electrode substrate on the liquid crystal layer side, it is possible to provide an electro-optical device without coloration. becomes. [Embodiment] FIG. 1 is a longitudinal sectional view of a liquid crystal display device as an electro-optical device showing an embodiment of the present invention.

図においてl・2は上下一対の偏光板、IOはその両偏
光板l・2間に設けた液晶セルで、上下一対のガラス板
等よりなる電極基板l1・l2間に液晶113を扶持さ
せた構戒である.その各電極基板11・12の液晶層1
3側には、それぞれITO等の透明電極1 1a−12
aおよび配向膜1lb−12bが設けられている.14
は間隔保持用のスペーサを兼ねるシール部材である.そ
して図示例は上記両電極基板l1・12のうちの一方の
電極基板l2の液晶層13例の面にエノチング等によっ
て微細な凹凸を形成したものである.その凹凸は極薄い
透明電極12aおよび配向膜12bを介して液晶N13
との境界部まで波及し、それによって液晶7I13の厚
さdが微細に連続的に変化する. 上記の凹凸は、他方の電極基板11または両方の電極基
仮11−12に設けてもよい.さらに上記凹凸は少なく
とも液晶層厚を変化させることができればよく、また凹
凸の形成手段は適宜であり、例えば電極基板の液晶層側
の面に薄い膜等を設けてその表面に凹凸を形威すること
も可能である.また上記の凹凸の高さhは少なくとも上
下の電極基板が接触しないような高さに設定する.また
凹凸の山と山または谷と谷の間隔lは10〜500μm
,好ましくは60〜150μm程度にするとよい. また液晶層の厚さdの最小{fidminは5μm5最
大値d taaxは10am程度が好ましい.第2図は
前記第1図の液晶表示装置における各軸の関係を示す説
明図であり、図においてPI・P2はそれぞれ偏光板l
・2の偏光軸(吸収軸)の方向、Qはその両偏光板1・
2の偏光軸(吸収軸)のなす角度、Rll−R12は各
電極基板11−12に近接する液晶分子の分子軸の方向
(ラビング方向)、Tは液晶分子の第1図で上から下に
向かってのねじれ方向と角度を表す。
In the figure, l.2 is a pair of upper and lower polarizing plates, IO is a liquid crystal cell provided between both polarizing plates l.2, and a liquid crystal 113 is supported between electrode substrates l1 and l2 made of a pair of upper and lower glass plates. It is a precept. Liquid crystal layer 1 of each electrode substrate 11 and 12
On the 3 sides, transparent electrodes 1 1a-12 made of ITO, etc.
a and alignment films 1lb-12b are provided. 14
is a sealing member that also serves as a spacer for maintaining distance. In the illustrated example, fine irregularities are formed by etching or the like on the surface of the liquid crystal layer 13 of one of the electrode substrates l1 and 12, l2. The unevenness is formed on the liquid crystal N13 through an extremely thin transparent electrode 12a and an alignment film 12b.
This spreads to the boundary between the liquid crystal 7I13 and the thickness d of the liquid crystal 7I13 changes minutely and continuously. The above-mentioned irregularities may be provided on the other electrode substrate 11 or both temporary electrode bases 11-12. Furthermore, the above-mentioned unevenness only needs to be able to change at least the thickness of the liquid crystal layer, and the unevenness can be formed by any suitable means. For example, a thin film or the like is provided on the surface of the electrode substrate on the liquid crystal layer side to form unevenness on the surface. It is also possible. Furthermore, the height h of the above-mentioned irregularities is set to at least a height such that the upper and lower electrode substrates do not come into contact with each other. In addition, the distance l between the peaks and valleys of the unevenness is 10 to 500 μm.
, preferably about 60 to 150 μm. Further, the minimum thickness d of the liquid crystal layer {fidmin is preferably 5 μm5 and the maximum value dtaax is preferably about 10 am. FIG. 2 is an explanatory diagram showing the relationship between each axis in the liquid crystal display device shown in FIG.
・The direction of the polarization axis (absorption axis) of 2, Q is the direction of both polarizing plates 1・
2, Rll-R12 is the direction of the molecular axis (rubbing direction) of the liquid crystal molecules adjacent to each electrode substrate 11-12, and T is the angle formed by the polarization axis (absorption axis) of the liquid crystal molecules in Figure 1, from top to bottom. Represents the direction and angle of twist.

上記の角度Qはボジ表示にあってはほぼ90゜ネガ表示
にあってはほぼ0@に設定する.また上記角度Tすなわ
ち液晶分子のねじれ角は100゜以上とし、好ましくは
110°〜160mに設定する.またねじれ方向は左右
いずれでもよい.実験例l 上記第1図・第2図において角度Qを90゜角度Tを1
50゜とし、凹凸の山と山または谷と谷の間隔lを60
〜150μm,凹凸の高さhを0〜5μmとして液晶層
の厚さdの最小値d Ilinが5μm,l大値d I
IIaxが9μmとなるようにすると共に、液晶層l3
に屈折率異方性Δnが0.083のネマチ・7ク液晶を
用いてΔn−dが0.415〜0.747μmの液晶表
示装置を作成したところ以下の特性が得られた。
The above angle Q is set to approximately 90° for positive display and approximately 0@ for negative display. Further, the above-mentioned angle T, that is, the twist angle of the liquid crystal molecules is set to 100° or more, preferably 110° to 160 m. Also, the twist direction can be either left or right. Experimental example l In the above figures 1 and 2, the angle Q is 90° and the angle T is 1
50°, and the distance l between the peaks and valleys of the unevenness is 60°.
~150 μm, the height h of the unevenness is 0 to 5 μm, the minimum value d Ilin of the thickness d of the liquid crystal layer is 5 μm, and the maximum value d I
IIax is set to 9 μm, and the liquid crystal layer l3
When a liquid crystal display device having a Δn-d of 0.415 to 0.747 μm was prepared using a nematic liquid crystal having a refractive index anisotropy Δn of 0.083, the following characteristics were obtained.

即ち、電圧無印加状態における外観色はCIE色度図に
おいてx =0.31, ! =0.31であり、また
エ,#度Tは1.15であった.また時分割駆動時のコ
ントラスト比を下記表lに示す. 表  1 なお上記表中、比較例1は角度Tを90゜とし他の構成
は実験例1と同様に横戒した凹凸を有するTN型の液晶
表示装置のコントラスト比、比較例2は角度Tを90゜
とし電極基板に凹凸を設けることなく平坦に形威した液
晶層厚5μm、Δn=0.11のTN型の液晶表示装置
のコントラスト比を表す. 上記の表からも明らかなように本発明によればコントラ
ストの高い表示が得られる. また、上記実験例lおよび比較例l・2の視角特性を第
3図に示す.図中、A−B−Cはそれぞれ前記実験例l
・比較例1・比較例2においてデューティ比1716・
バイアス比1/4で駆動したときの視角lO゛でのコン
トラスト比を表すもので、本発明に基づく上記実験例1
の視角特性が優れていることがわかる. 実験例2〜7 さらに前記実験例1とねじれ角のみが異なる液晶表示装
置を作威して特性を調べた.その結果を前記比較例l・
2のものと対比してまとめて下記の表2に示す. 表 2 なお上記表中のα値は、視角が10”で50%の透過率
が得られる電圧値Vαlと、視角が30゜で50%の透
過率が得られる電圧値Vα2との比■α1/Vα2であ
り、視角を変えた場合の電圧の変動を表す。またγ値は
視角がlO゜で90%の透過率が得られる電圧値VTI
と10%の透過率が得られる電圧値Vy2との比Vrl
/Vγ2であり、急峻度を表す.さらにコントラストは
デューティ比1/16・バイアス比1/4で駆動したと
きのコントラスト比である。
That is, the appearance color when no voltage is applied is x = 0.31, ! in the CIE chromaticity diagram. = 0.31, and degree T was 1.15. The contrast ratio during time-division driving is shown in Table 1 below. Table 1 In the above table, Comparative Example 1 has an angle T of 90°, and the other configurations are the same as Experimental Example 1, with the contrast ratio of a TN type liquid crystal display device having horizontal unevenness. Comparative Example 2 has an angle T of 90°. This represents the contrast ratio of a TN type liquid crystal display device with a liquid crystal layer thickness of 5 μm and Δn=0.11, which is formed flat with no unevenness on the electrode substrate at 90°. As is clear from the table above, according to the present invention, a display with high contrast can be obtained. Furthermore, the viewing angle characteristics of Experimental Example 1 and Comparative Examples 1 and 2 are shown in Fig. 3. In the figure, A-B-C are the experimental examples l, respectively.
・Duty ratio 1716 in Comparative Example 1 and Comparative Example 2.
It represents the contrast ratio at a viewing angle of 10゛ when driven at a bias ratio of 1/4, and is based on the above experimental example 1 based on the present invention.
It can be seen that the viewing angle characteristics are excellent. Experimental Examples 2 to 7 Furthermore, a liquid crystal display device that differed only in the twist angle from Experimental Example 1 was created and its characteristics were investigated. The results are shown in Comparative Example I.
A comparison with 2 is summarized in Table 2 below. Table 2 The α value in the above table is the ratio of the voltage value Vαl that gives 50% transmittance at a viewing angle of 10” and the voltage value Vα2 that gives 50% transmittance at a viewing angle of 30°■ α1 /Vα2, which represents the voltage fluctuation when the viewing angle is changed.The γ value is the voltage value VTI at which 90% transmittance is obtained when the viewing angle is 10°.
and the voltage value Vy2 at which a transmittance of 10% is obtained Vrl
/Vγ2, which represents the steepness. Further, the contrast is the contrast ratio when driving at a duty ratio of 1/16 and a bias ratio of 1/4.

上記の表2からもわかるように本発明によれば視角特性
およびコントラスl・比を向上させることができる. 〔発明の効果〕 以上説明したように本発明によれば、前述のように表示
用の液晶セルとは別に色補正用の液晶セルを設けること
なく、コントラストが高く、しかも無着色の視認性のよ
い電気光学装置が得られる。
As can be seen from Table 2 above, according to the present invention, viewing angle characteristics and contrast ratio can be improved. [Effects of the Invention] As explained above, according to the present invention, it is possible to achieve high contrast and uncolored visibility without providing a liquid crystal cell for color correction separately from the liquid crystal cell for display as described above. A good electro-optical device is obtained.

また従来のTN型のものに比べ視角が広くなり、低視角
でも着色が起きない等の効果がある.
Additionally, the viewing angle is wider than the conventional TN type, and coloring does not occur even at low viewing angles.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明の一実施例を示す電気光学装置の縦断面
図、第2図は各軸の関係を示す説明図、第3図は本発明
に基づく実験例による視角特性を示すグラフ.
Fig. 1 is a vertical cross-sectional view of an electro-optical device showing an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the relationship between each axis, and Fig. 3 is a graph showing viewing angle characteristics according to an experimental example based on the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)対向する一対の電極基板間に液晶分子をねじれ配
向させた液晶層を挟持してなる液晶セルと、その液晶セ
ルの外側に偏光板を備えた電気光学装置において、上記
液晶分子のねじれ角を100゜以上に設定すると共に、
上記一対の電極基板のうち少なくとも一方の電極基板の
液晶層と接する側の面に微細な凹凸を設けたことを特徴
とする電気光学装置。
(1) In an electro-optical device comprising a liquid crystal cell in which a liquid crystal layer in which liquid crystal molecules are twisted and oriented is sandwiched between a pair of opposing electrode substrates, and a polarizing plate on the outside of the liquid crystal cell, the twisting of the liquid crystal molecules is In addition to setting the angle to 100° or more,
An electro-optical device characterized in that a surface of at least one of the pair of electrode substrates on the side in contact with a liquid crystal layer is provided with fine irregularities.
JP18459589A 1989-07-19 1989-07-19 Electrooptical device Pending JPH0350523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18459589A JPH0350523A (en) 1989-07-19 1989-07-19 Electrooptical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18459589A JPH0350523A (en) 1989-07-19 1989-07-19 Electrooptical device

Publications (1)

Publication Number Publication Date
JPH0350523A true JPH0350523A (en) 1991-03-05

Family

ID=16155960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18459589A Pending JPH0350523A (en) 1989-07-19 1989-07-19 Electrooptical device

Country Status (1)

Country Link
JP (1) JPH0350523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017214489A1 (en) 2016-09-14 2018-03-15 Suzuki Motor Corporation Cooling device for a vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017214489A1 (en) 2016-09-14 2018-03-15 Suzuki Motor Corporation Cooling device for a vehicle

Similar Documents

Publication Publication Date Title
KR100233187B1 (en) Liquid crystal display with an improved optical compensation layer
JP3544348B2 (en) Liquid crystal display
JP2921813B2 (en) Electrode structure of liquid crystal display
JPH09160042A (en) Liquid crystal display element
KR20000009518A (en) Vertical aligned lcd having optical visual angle
WO2000039630A1 (en) Liquid crystal display
JP4100941B2 (en) Manufacturing method of liquid crystal display device
JP2856466B2 (en) Liquid crystal display device
JPH1048652A (en) Liquid crystal display device
JP3681775B2 (en) Liquid crystal display element
JPH06130394A (en) Liquid crystal display element
JP3207374B2 (en) Liquid crystal display device
JPH01219720A (en) Liquid crystal electrooptic element
JPH0350523A (en) Electrooptical device
JPH08271919A (en) Active matrix type liquid crystal display device
JPH09146098A (en) Thin-film transistor type liquid crystal display device
US6573966B1 (en) Parallel field device with compensating domains held by a boundary surface and stabilized by auxiliary electrodes
KR100247305B1 (en) 4 domain parallel alignment lcd device
JP2000199901A (en) Liquid crystal display device
JPH05289097A (en) Liquid crystal display element
JP2858142B2 (en) LCD color display
JPS6329726A (en) Liquid-crystal display element
JP2860806B2 (en) LCD color display
JP2825903B2 (en) Liquid crystal display device
JP2825902B2 (en) Liquid crystal display device