JPH035051B2 - - Google Patents

Info

Publication number
JPH035051B2
JPH035051B2 JP7497685A JP7497685A JPH035051B2 JP H035051 B2 JPH035051 B2 JP H035051B2 JP 7497685 A JP7497685 A JP 7497685A JP 7497685 A JP7497685 A JP 7497685A JP H035051 B2 JPH035051 B2 JP H035051B2
Authority
JP
Japan
Prior art keywords
substrate
growth
gaas substrate
chamber
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7497685A
Other languages
Japanese (ja)
Other versions
JPS61232608A (en
Inventor
Toshiro Hayakawa
Naohiro Suyama
Kosei Takahashi
Saburo Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP7497685A priority Critical patent/JPS61232608A/en
Priority to US06/843,146 priority patent/US4824518A/en
Priority to FR868604353A priority patent/FR2579824B1/en
Priority to GB08607458A priority patent/GB2174542B/en
Publication of JPS61232608A publication Critical patent/JPS61232608A/en
Publication of JPH035051B2 publication Critical patent/JPH035051B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • H01L21/02661In-situ cleaning

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain semiconductor light emitting element which have luminous wavelength at less than 700nm, by obtaining a good surface of GaAs substrate and thereafter forming molecular beam-epitaxial growth on it of a P compound semiconductor, which is of high quality without being contaminated with As. CONSTITUTION:As a crystal growth substrate for growth-forming a P compound semiconductor layer, a GaAs substrate, on whose surface a spontaneously- oxidized film is formed in pure water after etching process with sulfuric acid etchant, is used. The GaAs substrate, in which initial degassing is finished, is transferred from a substrate-heating chamber 2 to a pretreatment chamber 3, through a gate valve 6, and being gradually heated with As4 molecular beams radiated from an As cell, and then the temperature of the GaAs substrate is lowered with the radiation of molecular beams maintained. The GaAs substrate, carried from the pretreatment chamber 3 through a gate valve 7 to a growth chamber 4, is heated to the growable temperature (e.g., 500 deg.C) by radiating P molecular beams on it, and then necessary III group molecular beams, that is, In, Al, and Ga are radiated to start an epitaxial growth of (AlxGa1-x)yIn1-yP layer on the GaAs substrate.

Description

【発明の詳細な説明】 <技術分野> 本発明は、700nm未満に発光波長を有するP
(リン)化合物半導体をGaAs基板上に成長させ
て発光半導体素子を高精細度に製作する上で極め
て有効な分子線エピタキシヤル成長方法を用いた
半導体素子の製造方法に関するものである。
Detailed Description of the Invention <Technical Field> The present invention provides P
The present invention relates to a method of manufacturing a semiconductor device using a molecular beam epitaxial growth method, which is extremely effective in growing a (phosphorus) compound semiconductor on a GaAs substrate and manufacturing a light emitting semiconductor device with high definition.

<従来技術とその問題点> 近年の情報化社会の進展には著しいものがあ
り、その中にあつて半導体レーザや発光ダイオー
ド等の発光デバイスを基礎とした光通信、光デイ
スク等の光情報処理技術は目ざましい発展を遂げ
ている。このような情況下において可視域に発光
波長を有する発光デバイスへのニーズが急速に高
まつており、特に可視半導体レーザへの期待は大
きい。現在、780nmに発振波長を有するGaAlAs
系半導体レーザがコンパクトデイスクおよびビデ
オデイスク用光源として実用化されているが、よ
り多くの情報量を扱うためには集光後のスポツト
径をより小さくする必要があり、そのためにより
短波長に発振波長を有する半導体レーザが必要と
なつている。
<Prior art and its problems> There has been remarkable progress in the information society in recent years, and among these are optical communications based on light-emitting devices such as semiconductor lasers and light-emitting diodes, and optical information processing such as optical disks. Technology is making remarkable progress. Under these circumstances, the need for light-emitting devices having emission wavelengths in the visible range is rapidly increasing, and expectations are particularly high for visible semiconductor lasers. Currently, GaAlAs has an oscillation wavelength of 780 nm.
Semiconductor lasers have been put into practical use as light sources for compact discs and video discs, but in order to handle a larger amount of information, it is necessary to make the spot diameter after condensing the light smaller. There is a growing need for semiconductor lasers with

このような短波長域に相当するエネルギーギヤ
ツプを有する半導体材料としてGaAs基板に格子
整合する(AlxGa1-XyIn11-YPが注目されてい
る。
As a semiconductor material having an energy gap corresponding to such a short wavelength region, (Al x Ga 1-X ) y In 11-Y P, which is lattice-matched to a GaAs substrate, is attracting attention.

この材料は従来の液相エピタキシヤル成長法
(LPE法)では成長が困難であるため、最近、分
子線エピタキシヤル成長法(MBE法)あるいは
有機金属を用いた気相成長法(MO−CVD法)
を導入した成長法の研究開発が活発になつてい
る。特に、MBE法は急峻なヘテロ接合界面を得
ることができるため、通常のダブルヘテロ接合半
導体レーザばかりでなく量子井戸半導体レーザ
(Quantum Well Laser:略してQWレーザ)へ
の発展も考えられる非常に有望な成長法である。
Since this material is difficult to grow using the conventional liquid phase epitaxial growth method (LPE method), it has recently been developed using molecular beam epitaxial growth method (MBE method) or metal-organic vapor phase epitaxy method (MO-CVD method). )
Research and development of growth methods that introduce In particular, since the MBE method can obtain a steep heterojunction interface, it is very promising and can be used not only for ordinary double heterojunction semiconductor lasers but also for quantum well semiconductor lasers (QW lasers). This is a great way to grow.

しかしながら、従来の分子線エピタキシヤル装
置(MBE装置)でGaAs基板上にP(リン)化合
物半導体を成長させる場合、予め大気中で基板の
保護用に形成したGaAsの自然酸化膜を除去する
ために、成長室中でAs分子線を照射しながら基
板を加熱する方法が採られていた(H.Ashahi、
Y.Kawamura,and H.Nagai、J.Appl、Phys.
vol.53(1982)、p4928)。この方法はGaAs基板上
にAlGaAsのようなAs化合物半導体を成長させる
場合に一般的に行なわれている方法である。
However, when growing P (phosphorus) compound semiconductors on GaAs substrates using conventional molecular beam epitaxial equipment (MBE equipment), it is necessary to remove the natural oxide film of GaAs that has been formed in advance to protect the substrate in the atmosphere. , a method was adopted in which the substrate was heated while irradiating As molecular beams in the growth chamber (H.Ashahi,
Y. Kawamura, and H. Nagai, J. Appl, Phys.
vol.53 (1982), p4928). This method is commonly used when growing As compound semiconductors such as AlGaAs on GaAs substrates.

しかしながら、この方法でP化合物半導体を成
長させる場合に、本来成長に不必要なAsを成長
室に持ち込むことを余儀なくされ、好ましくな
い。もしAsがP化合物中に1%程度でも取り込
まれると大きな格子定数変化を生じて良質の半導
体結晶を得ることはできないが、上記GaAs酸化
膜除去工程中10-4〜10-5torrと極めて高い圧力を
もつAs分子線強度を短時間に下げることは不可
能であり、工程に長時間を要するだけでなく一度
Asを用いた成長室中でP系化合物半導体を成長
するため本質的にAsによる汚染を避けることが
できない。一方、P(リン)分子線を照射しなが
らGaAs基板を加熱してGaAs基板上の酸化膜を
除去する方法も考えられるが、Asに比べてPの
蒸気圧は極めて高いため、10-5torr以下のP圧で
はGaAs酸化膜の通常の蒸気温度である約580℃
ではほとんど効果がなく、また強いP分子線を照
射した場合でもAsの蒸発を生じて基板表面が
GaAsPに交換されることが考えられ好ましくな
い。
However, when growing a P compound semiconductor using this method, it is unavoidable to introduce As, which is essentially unnecessary for growth, into the growth chamber, which is not preferable. If even 1% of As is incorporated into the P compound, a large change in lattice constant will occur, making it impossible to obtain a high-quality semiconductor crystal.However, during the GaAs oxide film removal process mentioned above, the concentration is extremely high at 10 -4 to 10 -5 torr. It is impossible to reduce the As molecular beam intensity under pressure in a short time, and not only does the process take a long time, but also
Since P-based compound semiconductors are grown in a growth chamber using As, contamination by As is essentially unavoidable. On the other hand, it is possible to remove the oxide film on the GaAs substrate by heating the GaAs substrate while irradiating it with a P (phosphorous) molecular beam, but since the vapor pressure of P is extremely high compared to As, the vapor pressure is 10 -5 torr. At P pressure below, the normal vapor temperature of GaAs oxide film is about 580℃.
This has almost no effect, and even if a strong P molecular beam is irradiated, As will evaporate and the substrate surface will be damaged.
This is not desirable as it may be replaced with GaAsP.

第2図は従来の分子線エピタキシヤル成長装置
を示すブロツク構成図である。結晶成長用基板を
試料導入室1へ挿入し、真空にした後基板加熱室
2へ基板を搬送する。この基板加熱室2で基板を
適当な温度に加熱し、基板表面の吸着物等をガス
出しする。ガス出しの完了した基板を成長室4へ
搬送し、ここで基板上にエピタキシヤル層を成長
させる。各室1,2,4間はゲートバルブ5,
7,8により仕切られている。
FIG. 2 is a block diagram showing a conventional molecular beam epitaxial growth apparatus. A substrate for crystal growth is inserted into the sample introduction chamber 1, and after evacuating it, the substrate is transferred to the substrate heating chamber 2. The substrate is heated to an appropriate temperature in the substrate heating chamber 2, and adsorbed substances on the surface of the substrate are gassed out. After the gas release is completed, the substrate is transferred to the growth chamber 4, where an epitaxial layer is grown on the substrate. Gate valve 5 between each chamber 1, 2, and 4,
It is divided by 7 and 8.

MBE法は、成長用原料を蒸気とし、ノズルか
ら分子流として高真空状態の成長室4内へ流出さ
せることによつて基板上へエピタキシヤル層を成
長させる方法である。成長室4にはクヌードセ
ン・セルと称される分子流生成管が適当数配設さ
れており、このセルの一部に設けた小孔から蒸気
物質が分子流として流出される。この流出レート
を各セル間で制御することによつて2成分あるい
は多成分系の化合物薄膜を成長させることができ
る。正確にエピタキシヤル成長を行なうためには
成長室4内を超高真空に保持しかつ数nm/分程
度のゆつくりした成長速度となるように成分物質
の流出レートを制御し、各成分の基板への付着確
率を成分物質の特性な合わせて設定することが必
要となる。このようなMBE法を用いてGaAs系
成長用基板上にP化合物を成長させる場合、上述
した問題点があり、実際には良質の結晶層を具備
する化合物半導体発光素子を得ることは困難であ
つた。
The MBE method is a method of growing an epitaxial layer on a substrate by using a vapor as a growth material and flowing it as a molecular stream from a nozzle into a growth chamber 4 in a high vacuum state. A suitable number of molecular flow generating tubes called Knudsen cells are disposed in the growth chamber 4, and a vapor substance flows out as a molecular flow from a small hole provided in a part of the cell. By controlling this outflow rate between cells, a two-component or multi-component compound thin film can be grown. In order to accurately perform epitaxial growth, the inside of the growth chamber 4 is maintained at an ultra-high vacuum, and the outflow rate of the component substances is controlled to a slow growth rate of several nanometers per minute. It is necessary to set the probability of adhesion to the material taking into account the characteristics of the component substances. When growing a P compound on a GaAs-based growth substrate using such an MBE method, there are the above-mentioned problems, and it is actually difficult to obtain a compound semiconductor light-emitting device with a high-quality crystal layer. Ta.

<発明の目的> 本発明は上述の問題に鑑み、GaAs基板の上に
Asの汚染なく良質のP化合物半導体を分子線エ
ピタキシヤル成長させることにより700nm未満
に発光波長を有する半導体発光素子を作製するこ
とのできる製造技術を提供することを目的として
いる。
<Object of the invention> In view of the above-mentioned problems, the present invention provides a
The object of the present invention is to provide a manufacturing technique that can produce a semiconductor light-emitting device having an emission wavelength of less than 700 nm by molecular beam epitaxial growth of a high-quality P compound semiconductor without As contamination.

<実施例> 第1図は本発明の一実施例の説明に供する分子
線エピタキシヤル装置の要部構成図である。この
装置は従来の分子線エピタキシヤル装置の成長室
4と基板加熱室2の間に新たな前処理室3を設け
た構成となつており各室2,3,4間は搬送系に
より超高真空中で自在にGaAs基板を搬送するこ
とができるように構成されている。また、搬送時
以外は各室間はゲートバルブ5,6,7により隔
離されている。前処理室3には基板加熱用ホルダ
ーとAsセルが設けられている。
<Example> FIG. 1 is a diagram showing the main part of a molecular beam epitaxial apparatus for explaining an example of the present invention. This equipment has a new pre-processing chamber 3 between the growth chamber 4 and substrate heating chamber 2 of the conventional molecular beam epitaxial equipment, and the ultra-high temperature between each chamber 2, 3, and 4 is It is constructed so that GaAs substrates can be freely transported in vacuum. Further, each chamber is isolated by gate valves 5, 6, and 7 except during transportation. The pretreatment chamber 3 is provided with a substrate heating holder and an As cell.

P化合物半導体層を成長形成するための結晶成
長基板として、硫酸系エツチヤントでエツチング
後、純水中で表面に自然酸化膜を形成したGaAs
基板を用い、該GaAs基板をIn(インジウム)の
ロウ材でMo(モリブデン)ブロツクに貼り付け、
バルブ8を開いて試料導入室1へ挿入する。バル
ブ8を閉じて試料導入室1を10-8〜10-9torrに真
空引きした後、バルブ5を開いてGaAs基板を基
板加熱室2へ搬送しバルブ5を閉じる。次に基板
加熱室2で徐々にGaAs基板を400℃まで加熱す
る。加熱初期にはGaAs基板、Inロウ材及びMo
ブロツクからのガス放出により真空度が落ちるが
30〜60分の加熱により約10-10torrの真空度が得
られる。この超高真空下でGaAs基板に吸着して
いた不純物やガス分子等を除去される。このよう
にして初期のガス出しを終了したGaAs基板を基
板加熱室2からゲートバルブ6を介して前処理室
3に移し、約10-6〜10-5torrのAs4分子線をAsセ
ルより照射しながら徐々に約600℃まで加熱し、
約10分経過した後As4分子線の照射を持続しなが
らGaAs基板温度200℃以下まで下げる。この段
階でGaAs基板表面に形成されていた酸化膜は完
全に除去され清浄なGaAs基板表面が得られる。
前処理室3には液体窒素シユラウドを取り付ける
ことにより比較的蒸気圧の高いAsを効率良く排
気することができる。この段階で、AsがGaAs基
板上に堆積することがあつても、後のエピタキシ
ヤル成長開始前の基板加熱時に完全に蒸発するた
め問題はなく、逆に前処理室3から成長室4へ
GaAs基板を搬送する際に考えられる残留ガスの
基板表面への付着に対する保護膜となるため、む
しろ基板温度を下げてもAs分子線を照射して積
極的にAsをGaAs基板に堆積させる方が良い。前
処理室3からゲートバルブ7を介して成長室4に
搬送されたGaAs基板にP分子線を照射しながら
成長可能な温度(例えば500℃)まで加熱して必
要な族分子線即ち本実施例ではIn、Al及びGa
を照射しGaAs基板上に(AlXGa1-XYIn1-YP層の
エピタキシヤル成長を開始する。成長は比較的低
温から開始しGaAs基板表面からのAs脱離等に起
因する劣化をできるだけ防止し、成長が始まつて
から最適の基板温度(例えば600℃)まで徐々に
増加させると良質の結晶が得られる。
As a crystal growth substrate for growing a P compound semiconductor layer, GaAs was etched with a sulfuric acid-based etchant and a natural oxide film was formed on the surface in pure water.
Using a substrate, the GaAs substrate is attached to a Mo (molybdenum) block using In (indium) brazing material,
Open the valve 8 and insert the sample into the sample introduction chamber 1. After closing the valve 8 and evacuating the sample introduction chamber 1 to 10 -8 to 10 -9 torr, the valve 5 is opened to transfer the GaAs substrate to the substrate heating chamber 2, and the valve 5 is closed. Next, the GaAs substrate is gradually heated to 400° C. in the substrate heating chamber 2. At the initial stage of heating, the GaAs substrate, In brazing material and Mo
The degree of vacuum decreases due to gas release from the block.
A vacuum level of approximately 10 -10 torr is obtained by heating for 30 to 60 minutes. Impurities and gas molecules adsorbed on the GaAs substrate are removed under this ultra-high vacuum. The GaAs substrate, which has undergone initial gas release in this way, is transferred from the substrate heating chamber 2 to the pretreatment chamber 3 via the gate valve 6, and an As 4 molecule beam of about 10 -6 to 10 -5 torr is applied from the As cell. Gradually heat to approximately 600℃ while irradiating.
After approximately 10 minutes, the temperature of the GaAs substrate is lowered to below 200°C while continuing irradiation with the As 4 molecular beam. At this stage, the oxide film formed on the GaAs substrate surface is completely removed, resulting in a clean GaAs substrate surface.
By installing a liquid nitrogen shroud in the pretreatment chamber 3, As having a relatively high vapor pressure can be efficiently exhausted. Even if As may be deposited on the GaAs substrate at this stage, there is no problem because it will completely evaporate when the substrate is heated before the start of epitaxial growth.
It is better to actively deposit As on the GaAs substrate by irradiating it with an As molecular beam even if the substrate temperature is lowered, since this will act as a protective film against the adhesion of residual gas to the substrate surface when the GaAs substrate is transported. good. The GaAs substrate transferred from the pretreatment chamber 3 to the growth chamber 4 via the gate valve 7 is irradiated with a P molecular beam and heated to a temperature that allows growth (for example, 500° C.) to generate the necessary group molecular beam, that is, the present example. In, Al and Ga
irradiation to start epitaxial growth of a (Al x Ga 1-x ) Y In 1-Y P layer on the GaAs substrate. Growth starts at a relatively low temperature to prevent deterioration caused by As desorption from the GaAs substrate surface as much as possible, and then gradually increases the substrate temperature to the optimal substrate temperature (e.g. 600°C) after growth begins, resulting in good quality crystals. is obtained.

以上によりGaAs基板上にGaAlInPのエピタキ
シヤル成長層が得られる。GaAlInP層に光電変
換用p−n接合を形成し電極を設けることにより
短波長の発光を出力する半導体発光素子が作製さ
れる。また(AlXGa1-XYIn1-YP層の混晶比x、
yを適当に設定してレーザ発振用活性層とこれに
ヘテロ接合界面を介して接合するクラツド層とを
有する多層結晶構造のダブルヘテロ接合半導体レ
ーザ素子とすることもできる。
Through the above steps, an epitaxially grown layer of GaAlInP is obtained on the GaAs substrate. By forming a p-n junction for photoelectric conversion in the GaAlInP layer and providing electrodes, a semiconductor light emitting device that outputs short wavelength light is manufactured. Also, (Al x Ga 1-X ) Y In 1-Y P layer mixed crystal ratio x,
By appropriately setting y, a double heterojunction semiconductor laser device having a multilayer crystal structure having a laser oscillation active layer and a cladding layer bonded to the active layer via a heterojunction interface can be obtained.

第3図は本発明の他の実施例の説明に供する分
子線エピタキシヤル装置の構成図である。この構
成では試料導入室1と試料取出室12をゲートバ
ルブ21,25を介して両端に連結した試料搬送
室11に基板加熱室2、前処理室3、成長室4が
並列にそれぞれゲートバルブ22,23,24を
介して取り付けられている。従つてそれぞれの真
空室2,3,4間のGaAs基板搬送は試料搬送室
11を通して行うことになる。また、この構成で
は成長後の基板は試料取出室12より大気中へ取
り出せるため、基板の輸送が一方向となり連続的
に多数の基板に成長を行う場合に適している。
FIG. 3 is a block diagram of a molecular beam epitaxial apparatus for explaining another embodiment of the present invention. In this configuration, a substrate heating chamber 2, a pretreatment chamber 3, and a growth chamber 4 are connected in parallel to a sample transfer chamber 11, in which a sample introduction chamber 1 and a sample extraction chamber 12 are connected at both ends via gate valves 21 and 25, respectively. , 23, 24. Therefore, the GaAs substrate is transferred between the respective vacuum chambers 2, 3, and 4 through the sample transfer chamber 11. In addition, in this configuration, the substrate after growth can be taken out into the atmosphere from the sample extraction chamber 12, so the substrate transport is unidirectional and is suitable for the case where a large number of substrates are continuously grown.

上記同様に酸化膜の形成されたGaAs基板をIn
ロウ材でMoブロツクに貼り付け、ゲートバルブ
26を開いて試料導入室1へ挿入し、真空引きし
た後ゲートバルブ21,22を開いて基板加熱室
2へ搬送する。基板加熱室2で加熱ガス出しした
GaAs基板を試料搬送室11へ取り出し、ゲート
バルブ23を開いて隣の前処理室3へ移送する。
前処理室3でAsセルよりAs4分子線を照射しなが
らGaAs基板を600℃迄加熱し10分経過後200℃迄
降温する。この前処理によつてGaAs基板表面よ
り酸化膜を完全に除去する。酸化膜の除去された
GaAs基板は再度試料搬送室11へ取り出され、
ゲートバルブ24より成長室4内へ挿入される。
この成長室4内でセルより分子流がGaAs基板上
に照射され、GaAlInPのエピタキシヤル層が成
長形成される。
In the same way as above, a GaAs substrate with an oxide film formed is
It is pasted on a Mo block with brazing material, the gate valve 26 is opened, the sample is inserted into the sample introduction chamber 1, and after evacuation, the gate valves 21 and 22 are opened and the sample is transferred to the substrate heating chamber 2. Heating gas was released in substrate heating chamber 2.
The GaAs substrate is taken out to the sample transfer chamber 11, the gate valve 23 is opened, and the GaAs substrate is transferred to the adjacent pretreatment chamber 3.
In the pretreatment chamber 3, the GaAs substrate is heated to 600°C while being irradiated with an As 4 molecular beam from an As cell, and after 10 minutes, the temperature is lowered to 200°C. This pretreatment completely removes the oxide film from the surface of the GaAs substrate. oxide film removed
The GaAs substrate is taken out again to the sample transfer chamber 11,
It is inserted into the growth chamber 4 through the gate valve 24.
In this growth chamber 4, a molecular stream is irradiated from the cell onto the GaAs substrate, and an epitaxial layer of GaAlInP is grown.

以上の実施例では前処理室3にAsセルのみを
装備した成長装置を用いていたが、更にGaセル
を取り付けてGaAsの成長を可能とし、酸化膜を
除去した後にGa分子線を照射してGaAsバツフア
層を成長してから成長室へ搬送し上記と同様の工
程で成長を行うようにすることもできる。この方
法を用いればバルク基板より更に結晶性の良いエ
ピタキシヤル層を成長させることができるという
利点がある。
In the above example, a growth apparatus equipped with only an As cell in the pretreatment chamber 3 was used, but a Ga cell was also attached to enable the growth of GaAs, and after the oxide film was removed, Ga molecular beams were irradiated. It is also possible to grow the GaAs buffer layer, then transport it to the growth chamber and grow it in the same steps as above. This method has the advantage that it is possible to grow an epitaxial layer with better crystallinity than that of a bulk substrate.

また、更に別の方法として前処理室3にInセル
を具設し、CaAs基板を自然酸化膜を除去した後
In分子線を照射して薄いInAs層を形成し、これ
を保護膜としてGaAs基板を成長室4へ搬送す
る。成長室4では上記と同様にP分子線を照射し
て基板温度を上げていくと450〜500℃程度で
InAs層が蒸発し清浄なGaAs基板表面が得られ
る。この上に例えばInとGaの分子線を同時に照
射してInGaPの成長を開始させることができる。
InAs保護膜の利点としては、、InAsとGaAsは大
きな格子不整合があるため50〜100Åの薄層の場
合には2次元成長をせず3次元的な島を伴つて表
面が凹凸形状をなして成長する。従つて、
RHEEDにより成長前に基板表面の観測を行いな
がら基板を加熱すると、InAsが残つている間は
スポツト状のRHEEDパターンがみられるが、
InAsが完全除去されるとGaAs表面の平坦性を反
映してストリーク状のRHEEDパターンとなるた
め成長開始の時期を決めるのに極めて都合が良
い。
In addition, as yet another method, an In cell is installed in the pretreatment chamber 3, and after removing the natural oxide film from the CaAs substrate,
A thin InAs layer is formed by irradiation with an In molecular beam, and the GaAs substrate is transported to the growth chamber 4 using this as a protective film. In growth chamber 4, the substrate temperature was raised to about 450-500℃ by irradiating the P molecular beam in the same manner as above.
The InAs layer evaporates and a clean GaAs substrate surface is obtained. For example, the growth of InGaP can be started by simultaneously irradiating In and Ga molecular beams onto this.
The advantage of the InAs protective film is that since InAs and GaAs have a large lattice mismatch, a thin layer of 50 to 100 Å will not grow two-dimensionally and will have an uneven surface with three-dimensional islands. grow up. Therefore,
When the substrate is heated while observing the substrate surface before growth using RHEED, a spot-like RHEED pattern can be seen while InAs remains.
When InAs is completely removed, a streak-like RHEED pattern reflects the flatness of the GaAs surface, which is extremely convenient for determining the timing of growth initiation.

<発明の効果> 以上詳説したように本発明を用いれば成長前に
GaAs基板表面を劣化させることなくその上に
InGaPあるいはInGaAlPのような700nm以下に
発光波長を有する半導体を分子線エピタキシヤル
成長することが可能となり、He−Neガスレーザ
より短波長の発振が可能なInGaAlP系半導体発
光素子あるいは半導体レーザの実用化への道が開
かれる。
<Effects of the invention> As explained in detail above, if the present invention is used, the
onto the GaAs substrate surface without deteriorating it.
It has become possible to grow semiconductors with emission wavelengths below 700 nm, such as InGaP or InGaAlP, by molecular beam epitaxial growth, leading to the practical use of InGaAlP-based semiconductor light-emitting devices or semiconductor lasers that can oscillate at shorter wavelengths than He-Ne gas lasers. The way will be opened.

また、本発明の製造方法はP系半導体の成長室
にAsを持ち込まない装置構成をとつているため、
長期の製造を行なつてもPとAsの相互汚染を起
こすことがなく、製造装置として、長期間安定し
た再現性を保持することが可能である。
Furthermore, since the manufacturing method of the present invention has an equipment configuration that does not introduce As into the P-based semiconductor growth chamber,
Even during long-term production, there is no mutual contamination between P and As, and the production equipment can maintain stable reproducibility over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の説明に供する分子
線エピタキシヤル装置の構成図である。第2図は
従来の分子線エピタキシヤル装置の構成図であ
る。第3図は本発明の他の実施例の説明に供する
分子線エピタキシヤル装置の構成図である。 1……試料導入室、2……基板加熱室、3……
前処理室、4……成長室、5,6,7,8……ゲ
ートバルブ、11……試料搬送室、12……試料
取出室。
FIG. 1 is a block diagram of a molecular beam epitaxial apparatus used to explain one embodiment of the present invention. FIG. 2 is a block diagram of a conventional molecular beam epitaxial apparatus. FIG. 3 is a block diagram of a molecular beam epitaxial apparatus for explaining another embodiment of the present invention. 1...Sample introduction chamber, 2...Substrate heating chamber, 3...
Pretreatment chamber, 4...Growth chamber, 5, 6, 7, 8...Gate valve, 11...Sample transport chamber, 12...Sample extraction chamber.

Claims (1)

【特許請求の範囲】 1 GaAs系成長用基板上に前処理室でGaAsバ
ツフア層を分子線エピタキシヤル成長させる工程
と、 上記前処理室に連結された成長室で上記GaAs
バツフア層上にP化合物半導体層を分子線エピタ
キシヤル成長させる工程と、 を含んでなることを特徴とする半導体素子の製造
方法。
[Claims] 1. A step of molecular beam epitaxial growth of a GaAs buffer layer on a GaAs-based growth substrate in a pretreatment chamber;
A method for manufacturing a semiconductor device, comprising the steps of: growing a P compound semiconductor layer on a buffer layer by molecular beam epitaxial growth.
JP7497685A 1985-03-29 1985-04-08 Manufacture of semiconductor element Granted JPS61232608A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7497685A JPS61232608A (en) 1985-04-08 1985-04-08 Manufacture of semiconductor element
US06/843,146 US4824518A (en) 1985-03-29 1986-03-24 Method for the production of semiconductor devices
FR868604353A FR2579824B1 (en) 1985-03-29 1986-03-26 METHOD AND APPARATUS FOR MANUFACTURING SEMICONDUCTOR DEVICES USING EPITAXIAL MOLECULAR BEAM TREATMENT
GB08607458A GB2174542B (en) 1985-03-29 1986-03-26 A method and apparatus for the production of semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7497685A JPS61232608A (en) 1985-04-08 1985-04-08 Manufacture of semiconductor element

Publications (2)

Publication Number Publication Date
JPS61232608A JPS61232608A (en) 1986-10-16
JPH035051B2 true JPH035051B2 (en) 1991-01-24

Family

ID=13562825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7497685A Granted JPS61232608A (en) 1985-03-29 1985-04-08 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPS61232608A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289621A (en) * 1985-06-18 1986-12-19 Kokusai Denshin Denwa Co Ltd <Kdd> Molecular beam epitaxial growth
JPS6273705A (en) * 1985-09-27 1987-04-04 Anelva Corp Method and apparatus for forming protective film of clean substrate in forming molecular beam epitaxially grown layer
JP5107076B2 (en) * 2008-02-01 2012-12-26 Jx日鉱日石金属株式会社 Method for surface treatment of semiconductor substrate

Also Published As

Publication number Publication date
JPS61232608A (en) 1986-10-16

Similar Documents

Publication Publication Date Title
JP3409958B2 (en) Semiconductor light emitting device
US6806109B2 (en) Method of fabricating nitride based semiconductor substrate and method of fabricating nitride based semiconductor device
JP4231189B2 (en) Method for producing group III nitride compound semiconductor substrate
JPH1131864A (en) Crystal growth of low-migration gallium nitride
JPH11261160A (en) Nitride-based compound semiconductor laser element and manufacturing method therefor
GB2332563A (en) Growth of group III nitride or group III-V nitride layers
JP3247437B2 (en) Nitride-based semiconductor device and method of manufacturing the same
US4824518A (en) Method for the production of semiconductor devices
JP2607239B2 (en) Molecular beam epitaxy equipment
JPH035051B2 (en)
JP2004307253A (en) Method for manufacturing semiconductor substrate
EP0488632B1 (en) A method for growing a compound semiconductor and a method for producing a semiconductor laser
JPH10335702A (en) Growing method for nitride gallium system compound semiconductor and its light emitting element
JP2804714B2 (en) Method for manufacturing visible light semiconductor laser device
JP2001053391A (en) Manufacture of semiconductor device and semiconductor laser, and quantum wire structure
JP2804736B2 (en) Visible light semiconductor laser device
JP2006120785A (en) Manufacturing method of semiconductor layer and substrate
JPH09148342A (en) Ii-vi compd. semiconductor growing method
JPH10200211A (en) Method for growing compound semiconductor layer, and gas-phase growing device
JPH05267793A (en) Growth method of compound semiconductor crystal
JPS6134987A (en) Manufacture of semiconductor laser
JPH0262033A (en) Growth of compound semiconductor thin-film crystal
JPH10242131A (en) Method of treating surface of ii-vi compd. semiconductor and treating liq. therefor
JP2002134840A (en) Semiconductor light emitting element and fabricating method thereof
JPH0555630A (en) Light emitting element material and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees