JPH03505108A - Soil test method - Google Patents
Soil test methodInfo
- Publication number
- JPH03505108A JPH03505108A JP50519189A JP50519189A JPH03505108A JP H03505108 A JPH03505108 A JP H03505108A JP 50519189 A JP50519189 A JP 50519189A JP 50519189 A JP50519189 A JP 50519189A JP H03505108 A JPH03505108 A JP H03505108A
- Authority
- JP
- Japan
- Prior art keywords
- soil
- cutting blade
- layer
- pressure
- main shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D1/00—Investigation of foundation soil in situ
- E02D1/02—Investigation of foundation soil in situ before construction work
- E02D1/022—Investigation of foundation soil in situ before construction work by investigating mechanical properties of the soil
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Soil Sciences (AREA)
- Analytical Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 土質試験方法 技術分野 本発明は建設事業に伴って遂行される工学的地質調査に関し、特に土質試験方法 に関する。[Detailed description of the invention] Soil test method Technical field The present invention relates to engineering geological surveys carried out in conjunction with construction projects, and particularly to soil testing methods. Regarding.
背景技術 土木工学や産業工学においては、高層ビル、原子力発電所の原子炉、水力発電所 、巨大な産業施設などの重要な構造物を建設する土地の土質試験を行うことが常 に必要とされる。支持地盤が2mm以上の粒径を有する(例えば砕岩質や木質の )非セメント質の砕屑性岩石を50%以上含有する可能性は排除できない。礫、 粗砂、細砂、砂質ローム、粘土質上、粘土等もまたしばしば見受けられる。固化 圧力、土壌の体積弾性率、構造物の沈下率等を確定するためにこの試験が必要と なる。これらの測定はその僅かな誤差も構造上の欠陥やプロジェクトの不当な出 費につながるので高精度が要求される。Background technology In civil and industrial engineering, high-rise buildings, nuclear power plant reactors, hydroelectric power plants It is common practice to conduct soil tests on land where important structures such as large industrial facilities are constructed. required. The supporting ground has a grain size of 2 mm or more (for example, crushed rock or wood ) The possibility of containing more than 50% non-cementous clastic rock cannot be excluded. gravel, Coarse sand, fine sand, sandy loam, argillaceous clay, etc. are also frequently encountered. solidification This test is necessary to determine the pressure, bulk modulus of the soil, settlement rate of the structure, etc. Become. Even the slightest error in these measurements can lead to structural defects or unreasonable project output. High precision is required as it leads to costs.
従来の土質試験方法(土壌:現場での応力−ひずみ特性の決定方法、USSR標 準GO3T20276−85゜p20)は、調査される土壌層に立坑を掘ること により試験現場を準備する工程と、その現場に約5000cdの表面積を有する スラブを設置する工程と、そのスラブに対して段階的に増加する静的負荷を加え る工程と、その負荷に対応するスラブの沈下量を測定する工程とからなる。固化 圧力、土壌の体積弾性率、及び沈下率はこの試験データから計算される。Conventional soil testing methods (soil: method for determining stress-strain properties in the field, USSR standard) Semi-GO3T20276-85゜p20) is to dig a vertical shaft into the soil layer to be investigated. The process of preparing the test site by and having a surface area of approximately 5000 cd at the site. The process of installing a slab and applying incremental static loads to the slab The method consists of a step of measuring the amount of subsidence of the slab corresponding to the load. solidification Pressure, soil bulk modulus, and settlement rate are calculated from this test data.
しかしながら、上記従来の方法は高含水率の土壌の深い層に対しては、試験現場 が水浸しになり接近が困難になる恐れがあるため適用できない。浸水が土壌の含 水率を増大させ、静的負荷を加える前にその物理的、機械的特性に影響を及ぼす という事実は好ましくない。土壌の高含水率によりスラブはその全表面に亘って 均一に被試験土壌層と接触することができなくなり、得られる結果も不正確なも のとなる。これらの条件の下でスラブを設置してそれに静的負荷をかけ、その沈 下量を測定することには困難が伴う。However, the above conventional method cannot be used at the test site for deep layers of soil with high moisture content. This cannot be applied because it may become flooded and difficult to access. Water inundation may cause soil content. Increase the water rate and affect its physical and mechanical properties before applying static loads I don't like that fact. Due to the high moisture content of the soil, the slab is It will not be possible to contact the soil layer uniformly and the results obtained will be inaccurate. becomes. Installing a slab under these conditions and subjecting it to a static load will prevent its settling. Measuring decline is difficult.
従来の方法は、ピットの掘削後、現場上方の土壌塊の横方向圧力に起因する変形 によってその強度が損なわれるので、軟土の深層の試験には事実上利用できない 。全体的に見て、土質試験の別の方法(土壌:現場での応力−ひすみ特性の決定 方法、USSR標準GO3T20276−85、pp5−6.2O−21)が開 発されている。それによれば、被試験層の上方の土壌層は、主軸の下端部に取り 付けられ所定の深さまで土壌中にねじ込まれる螺旋状の切削刃によって変形させ られる。ねじ込みが終了すると一連の静的負荷が主軸に対して軸方向下向きに加 えられ、それにより連続する各負荷は先行の負荷を同量ずつ上回り、各負荷に応 じた主軸の変位が測定される。The traditional method is to reduce the deformation caused by the lateral pressure of the soil mass above the site after excavating the pit. Since its strength is impaired by . Overall, another method of soil testing (Soil: Determination of stress-strain properties in situ) Method, USSR Standard GO3T20276-85, pp5-6.2O-21) was opened. It is being emitted. According to this, the soil layer above the tested layer is attached to the lower end of the main shaft. Deformed by a spiral cutting blade that is attached and screwed into the soil to a predetermined depth. It will be done. After screwing is completed, a series of static loads are applied axially downward to the spindle. , so that each successive load exceeds the preceding load by the same amount, and each load The displacement of the main axis is measured.
被試験土壌層内に特別の設備を設けるまでもなく、この方法によると被試験層の 浸水や弱体化が起こらないので、高含水率の深層や軟土の深層を試験することが できる。With this method, there is no need to install special equipment within the soil layer to be tested. No flooding or weakening occurs, making it possible to test deep layers with high moisture content or deep layers of soft soil. can.
しかしながら、切削刃がその前方にある土壌層を掻き分けながら下降するので、 被試験層は静的負荷を受ける前に変形してしまう。その結果、試験データの正確 さと信頼性を損なうことになる。更に、切削刃の下端部表面の一部が被試験層か ら離れることがあるので、切削刃がそのピッチより小さい距離を主軸の回転に伴 って下降する場合には、試験データの正確さと信頼性に不可欠な切削刃−土壌間 の均一な接触が得られない。こうした状態は、主軸と切削刃の土壌内への貫入に 対抗する力の合計がこの貫入を行うために加えられる力の合計よりも僅かに大き い時に発生する。上記貫入に対抗する力としては、下降する主軸の先端に土壌が 及ぼす抵抗力、土壌と下降する主軸との間の遊びにかかる摩擦力、及び切削刃の 切削縁部に土壌が及ぼす抵抗力の垂直方向上向きの成分が挙げられる。上記主軸 に対して加えられる力としては、軸方向下向きの力、主軸及び切削刃の重量、螺 旋状切削刃の牽引力がある。However, as the cutting blade descends while scraping the soil layer in front of it, The layer under test deforms before being subjected to static loads. As a result, the accuracy of test data This will lead to loss of reliability. Furthermore, if part of the surface of the lower end of the cutting blade is the layer to be tested. Since the cutting blade may move away from the When descending with Uniform contact cannot be obtained. This condition may cause the spindle and cutting blade to penetrate into the soil. The sum of the opposing forces is slightly greater than the sum of the forces applied to make this penetration. Occurs at different times. As a force against the above penetration, the soil is at the tip of the descending main shaft. the resistance force exerted, the frictional force exerted by the play between the soil and the descending spindle, and the cutting blade This includes the vertically upward component of the resistance force exerted by the soil on the cutting edge. Above spindle The forces applied to the There is a traction force from the spiral cutting blade.
発明の開示 本発明の主たる目的は、高い精度と信頼性とを兼ね備えた試験データが得られる 土質試験方法を提供することであり、これは切削刃の下部表面と被試験土壌層と の間の均一な接触状態の下で、被試験層の変形を防ぐことにより達成できる。Disclosure of invention The main purpose of the present invention is to obtain test data with high accuracy and reliability. The purpose of the present invention is to provide a soil test method, which involves the lower surface of the cutting blade and the soil layer being tested. This can be achieved by preventing deformation of the layer under test under uniform contact conditions between the layers.
この目的を実現するために、 螺旋状の切削刃を下端部に取り付けた主軸を、被試験層の上位の土壌の層を変形 させるように、土壌内にねじ込む土質試験方法であって、 切削刃が被試験層の現出する深さに達した時ねじ込み作業を中止する工程と、 前記主軸に対して軸方向下向きに一連の静的な負荷を加え、それにより各後続の 負荷が同量ずつ先行する負荷を上回って行く工程と、 前記負荷に対応する前記主軸の変位を測定する工程ど、を備え、 前記切削刃の下部表面上に土壌が与える圧力が、切削刃のピッチを超える量だけ 被試験層の位置より浅い土壌の位置で測定された時、切削刃の上位の土壌の原状 土柱の圧力と異なる場合には、各負荷を共通の水準にするための軸方向の負荷が 主軸を介して切削刃に対して加えられる、 ことを特徴とする土質試験方法を開示している。To achieve this purpose, A spindle with a spiral cutting blade attached to the lower end deforms the soil layer above the layer being tested. A soil test method that involves screwing into the soil so as to stopping the screwing operation when the cutting blade reaches a depth at which the layer to be tested appears; A series of static loads are applied axially downwards to the main shaft, thereby causing each subsequent A process in which a load exceeds a preceding load by the same amount; a step of measuring the displacement of the main shaft corresponding to the load, the amount by which the pressure exerted by the soil on the lower surface of said cutting blade exceeds the pitch of the cutting blade; The original state of the soil above the cutting blade when measured at a soil location shallower than the location of the tested layer. If the pressure is different from the soil column pressure, the axial load is applied to bring each load to a common level. Applied to the cutting blade via the main shaft, Discloses a soil testing method characterized by the following.
切削刃の下部表面にかかる土壌圧力を切削刃の上方の原状土柱の圧力と等しくす ることにより、下降する切削刃による土壌の変形は切削刃の前方の層からその上 方の層へと「移送」される。静的負荷が加えられる前の被試験層の変形を防げる ので、この「移送」は試験データの精度と信頼性を向上させる。The soil pressure on the lower surface of the cutting blade should be equal to the pressure of the original soil column above the cutting blade. As a result, the deformation of the soil due to the descending cutting blade is transferred from the layer in front of the cutting blade to the layer above it. It is "transferred" to the other layer. Prevents deformation of the layer under test before static loads are applied Therefore, this "transfer" improves the accuracy and reliability of the test data.
切削刃の下部表面により支持される圧力はこの表面と土壌との間の接触を意味し 、切削刃の下部表面を螺旋形とすることによりその接触の均一性を確保し、試験 の精度と信頼性を更に保証している。The pressure supported by the lower surface of the cutting blade means contact between this surface and the soil. , the lower surface of the cutting blade is spiral-shaped to ensure uniformity of contact, and the test further guarantees the accuracy and reliability of
図面の簡単な説明 第1図は粘土の土質試験を行う前の位置にある螺旋状切削刃付き主軸を示す図、 第2図は第1図の螺旋状切削刃付き主軸の主要部を示す図、 第3図は切削刃の位置が被試験層の位置より切削刃のピッチを超える分だけ浅い 位置にある時の切削刃付き主軸を示す図、 第4図は切削刃が被試験層の位置にある時の切削刃付き主軸を示す図、 第5図は密な細砂の土質試験を行う前の位置にある螺旋状切削刃付き主軸を示す 図、 第6図は螺旋状切削刃付き主軸の主要部を示す図、第7図は切削刃の位置が被試 験層の位置より切削刃のピッチを超える分だけ浅い位置にある時の切削刃付き主 軸を示す図、 第8図は切削刃が被試験層の位置にある時の切削刃付き主軸を示す図である。Brief description of the drawing Figure 1 shows the main shaft with a spiral cutting blade in the position before conducting a clay soil test; Figure 2 is a diagram showing the main parts of the main shaft with a spiral cutting blade in Figure 1; Figure 3 shows that the position of the cutting blade is shallower than the position of the tested layer by the amount that exceeds the pitch of the cutting blade. Diagram showing the spindle with cutting blade in position, Figure 4 is a diagram showing the main shaft with the cutting blade when the cutting blade is at the position of the layer to be tested; Figure 5 shows the spindle with a helical cutting blade in its position before conducting a soil test on dense fine sand. figure, Figure 6 shows the main parts of the spindle with a spiral cutting blade, and Figure 7 shows the position of the cutting blade under test. When the main body with a cutting blade is located at a shallower position than the position of the cutting layer by an amount exceeding the pitch of the cutting blade. Diagram showing the axes, FIG. 8 is a view showing the main shaft with a cutting blade when the cutting blade is located at the layer to be tested.
発明を実施するだめの最良の形態 本発明に係る土質試験方法においては、下端部に螺旋状の切削刃の付いた主軸が 試験中の土壌層の上位の層を変形させるように土壌内にねじ込むこまれる。被試 験土壌層の深さより切削刃のピッチを超過する分だけ浅い深さに到達すると、切 削刃の下部表面に加わる土壌の圧力が計測される。もしこの圧力が切削刃の上方 の原状土柱の圧力と異なるならば、二つの圧力を等しくする主軸方向の負荷が主 軸を介して切削刃に加えられる。切削刃が被試験土壌層の深さに達するとねじ込 み作業は中止さ札それぞれ同量ずつ先行する負荷を上回る一連の軸方向下向きの 静的負荷が主軸に対して加えられ負荷に応じた主軸の変位を計測する。開示され た発明は例えば粘土などの土質試験に適用される。第1図を参照すると、ある建 物が広さ20mの基礎をもって建築される場合、一般に基礎の幅に等しい深さL l、即ちL1=20mで現出する土壌2の層1に対して試験が行われる。この層 1は図式的に第1図の破線で画定されている。試験用に使われる主軸3は長さL 2=23m、直径dl’=11.4cm(第2図)であり、直径DI=27.7 cm、ピッチtl =8anの螺旋状の切削刃4を備えている。Best mode for carrying out the invention In the soil testing method according to the present invention, the main shaft has a spiral cutting blade at the lower end. It is screwed into the soil in such a way as to deform the layer above the soil layer under test. tested When the depth is shallower than the depth of the test soil layer by the pitch of the cutting blade, the cutting The pressure of the soil on the lower surface of the cutting blade is measured. If this pressure is above the cutting edge is different from the pressure of the original soil column, the load in the main axis direction that equalizes the two pressures is the main one. Applied to the cutting blade via the shaft. Screws in when the cutting blade reaches the depth of the soil layer to be tested The grinding operation is stopped and a series of downward axial loads are applied, each exceeding the preceding load by the same amount. A static load is applied to the spindle and the displacement of the spindle in response to the load is measured. disclosed The invention is applied, for example, to testing soil properties such as clay. Referring to Figure 1, a certain building If a building is built with a foundation that is 20 m wide, the depth L is generally equal to the width of the foundation. The test is carried out on layer 1 of soil 2 which appears at l, ie L1=20 m. this layer 1 is schematically defined by the dashed line in FIG. The main shaft 3 used for testing has a length L 2 = 23 m, diameter dl' = 11.4 cm (Figure 2), and diameter DI = 27.7 cm, and a spiral cutting blade 4 with a pitch tl = 8 an.
切削刃4の上方の土壌2の原状土柱の圧力PI (第1図)は深さり、で0. 4MPaである。The pressure PI of the original soil column of the soil 2 above the cutting blade 4 (Fig. 1) is 0 at depth. It is 4MPa.
主軸3は土壌2の表面5に垂直に設置され、切削刃2を下向きにしてM+ = 0.5 t mのトルクとP2=1tの軸方向下向きの力を加えることにより被 試験層1の上方の土壌層6内にねじ込まれ、土壌層6を変形させる。The main shaft 3 is installed perpendicularly to the surface 5 of the soil 2, with the cutting blade 2 facing downward. by applying a torque of 0.5 tm and a downward axial force of P2=1t. It is screwed into the soil layer 6 above the test layer 1 and deforms the soil layer 6.
切削刃4のピッチt1より大きいL4の分だけ、被試験層lが現出する土壌層2 の深さLlより浅い土壌2の深さL3 (第3図)の位置で、切削刃の下部表 面7に加わる土壌2の圧力が測定される。この圧力が切削刃4の上方の土壌2の 原状土柱の圧力P1と異なる時、圧力PlとP2が等しくなるように主軸を介し て切削刃4に軸方向圧力P4が加えられる。Ll =20m、 tl =8a nとして、圧力P3の測定が例えばL3=18.5mから始められ、P3 =0 .48MPaが得られたとする。この場合、切削刃下部表面7にかかる圧力は切 削刃4上方の土壌2の原状土柱の圧力P1を上回る。圧力P3を0.4 MPa まで下げるために、上向きの軸方向の力P4が主軸3を介して切削刃4に加えら れる。PlとP3を共通の水準に維持しつつ、主軸3は深さL + まで切削刃 4と一体的に下降させられる。ねじ込み作業は中断され、それぞれ同量ずつ先行 する負荷を上回る軸方向下向きの連続した静的負荷P5、P6、P7及びP8 (第4図)が主軸3に対して加えられる。各負荷に対応した主軸3の変位L5 、L6、Ll、L8 (図示せず)が以下のように測定された。The soil layer 2 in which the tested layer l appears by an amount L4 larger than the pitch t1 of the cutting blade 4 At the position of depth L3 (Figure 3) of soil 2, which is shallower than depth Ll of The pressure of the soil 2 on the surface 7 is measured. This pressure is applied to the soil 2 above the cutting blade 4. When the pressure P1 of the original soil column is different, the pressure is adjusted through the main axis so that the pressure P1 and P2 are equal. As a result, an axial pressure P4 is applied to the cutting blade 4. Ll = 20m, tl = 8a n, the measurement of pressure P3 is started from, for example, L3 = 18.5 m, and P3 = 0 .. Assume that 48 MPa is obtained. In this case, the pressure applied to the lower surface 7 of the cutting blade is The pressure exceeds the pressure P1 of the original soil column of the soil 2 above the cutting blade 4. Pressure P3 is 0.4 MPa An upward axial force P4 is applied to the cutting blade 4 via the main shaft 3 in order to It will be done. While maintaining Pl and P3 at a common level, the main shaft 3 has a cutting edge up to a depth of L + It is lowered together with 4. The screwing work is interrupted and each is preceded by the same amount. Continuous axial downward static loads P5, P6, P7 and P8 exceeding the load (Fig. 4) is applied to the main shaft 3. Displacement L5 of main shaft 3 corresponding to each load , L6, Ll, and L8 (not shown) were measured as follows.
P5=0.1MPaのときL5=1.8mmP6=0.2MPaのときL6 = 11mmP7=0.3MPaのときL?=2.0mmP8=0.4MPaのとき L8=Z4mm土壌の体積弾性率や応力−ひすみ特性等の他の特性はこれらのデ ータから計算される。When P5=0.1MPa, L5=1.8mm When P6=0.2MPa, L6= L when 11mmP7=0.3MPa? =2.0mmP8=0.4MPa L8=Z4mm Other properties such as bulk modulus and stress-strain properties of soil are based on these data. Calculated from data.
本発明の別の実施例は′2.1g/cm3の密度を備えた密な細砂を試験するた めに適用できる。この場合、建物を建築するために幅10mの基礎が必要とされ る。従って試験される土壌層の深さL9 (第5図)は約10mである。土壌 9のこの層8は破線により図式的に画定されている。Another embodiment of the invention is for testing dense fine sand with a density of '2.1 g/cm3. It can be applied to In this case, a 10m wide foundation is required to construct the building. Ru. The depth L9 (Fig. 5) of the soil layer to be tested is therefore approximately 10 m. soil This layer 8 of 9 is defined schematically by a dashed line.
試験は以下の寸法を有する螺旋状切削刃ll付き主軸10を用いて行われる。The test is conducted using a spindle 10 with a helical cutting edge 11 having the following dimensions.
主軸長さL10=13m 主軸直径ci2=11.4an(第6図)切削刃直径D 2 = 27.7 a n切削刃ピッチt2=50 切削刃11の上方の土壌9の原状土柱の圧力P9は深さL9で0.21MPaで ある。Main shaft length L10=13m Main shaft diameter ci2 = 11.4an (Fig. 6) Cutting blade diameter D2 = 27.7a n Cutting blade pitch t2 = 50 The pressure P9 of the original soil column of the soil 9 above the cutting blade 11 is 0.21 MPa at the depth L9. be.
主軸10は土壌9の表面12に垂直に設置され、切削刃】1を下向きにしてM2 =0.3tmのトルクとPiO=0.75tの軸方向下向きの力を加えることに より被試験層8の上方の土壌9の層13内にねじ込まれ、土壌層13を変形させ る。1mの深さく図示せず)で力PIQは除去される。The main shaft 10 is installed perpendicularly to the surface 12 of the soil 9, with the cutting blade ]1 facing downward and M2 By applying a torque of =0.3 tm and a downward axial force of PiO = 0.75 t. screwed into the layer 13 of the soil 9 above the layer 8 to be tested, deforming the soil layer 13. Ru. At a depth of 1 m (not shown) the force PIQ is removed.
深さL11=8m(第7図)で、切削刃IIの下部表面14にかかる土壌9の圧 力pHが測定されて0.05MPaを得る。深さLllは深さLIOよりL 1 2= 2 mだけ浅いことに留意されたい。切削刃11の下部表面14にかかる 圧力pHは、切削刃11の上方の土壌の原状土柱の圧力P9より小さいので、軸 方向下向きの力P12が主軸10を介して切削刃11に加えられ、それにより圧 力pHは0.05MPaから0.21MPaに増加する。圧力P9とpHを同じ 水準に維持しつつ、主軸10は切削刃11と一体をなって被試験層9が現出する 深さL9までねじ下げられる。この深さく第8図)でトルクM9は除去されるの でねじ込み動作は中止され、それぞれ同量ずつ先行する負荷を上回っている連続 した4個の下向きの負荷P13、PI3、PI3、PI3が主軸10に加えられ る。各負荷に応じた主軸10の変位L13、Li2、L15、Li2(図示せず )が以下のように測定された。At a depth L11 = 8 m (Fig. 7), the pressure of the soil 9 on the lower surface 14 of the cutting blade II The power pH is measured to obtain 0.05 MPa. Depth Lll is L1 from depth LIO Note that it is shallow by 2 = 2 m. applied to the lower surface 14 of the cutting blade 11 Since the pressure pH is smaller than the pressure P9 of the original soil column above the cutting blade 11, the shaft A force P12 in the downward direction is applied to the cutting blade 11 via the main shaft 10, thereby causing pressure The force pH increases from 0.05 MPa to 0.21 MPa. Same pressure P9 and pH While maintaining the same level, the spindle 10 becomes integrated with the cutting blade 11, and the layer 9 to be tested appears. Can be screwed down to depth L9. Torque M9 is removed at this depth (Fig. 8). The screwing movement is stopped at , and each successive load exceeding the preceding load by the same amount Four downward loads P13, PI3, PI3, PI3 are applied to the main shaft 10. Ru. Displacements L13, Li2, L15, Li2 of the main shaft 10 according to each load (not shown) ) was measured as follows.
P13=0.1MPaのときL13=0.9mmP14=0.2MPaのときL 14=0.7mmP15=0.3MPaのときL 15= 0.9 mmP16 =0.4MPaのときL 16= 1.0 mm土壌の体積弾性率及びその応力 −ひすみ特性等の他の特性は上記データから得ることができる。When P13=0.1MPa L13=0.9mm When P14=0.2MPa L 14=0.7mmP15=0.3MPa L15=0.9mmP16 When = 0.4 MPa, L16 = 1.0 mm Soil bulk modulus and its stress - Other properties such as distortion properties can be obtained from the above data.
産業上の利用可能性 本発明は原子力発電所の原子炉、水力発電所、大きな産業施設等の重要な構造物 が建築される地盤の土質試験に効果的である。Industrial applicability The present invention applies to important structures such as nuclear power plant reactors, hydroelectric power plants, large industrial facilities, etc. It is effective for testing the soil quality of the ground on which buildings are built.
(n 国際調査報告(n international search report
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/SU1989/000079 WO1990011411A1 (en) | 1989-03-27 | 1989-03-27 | Method of testing loose ground |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03505108A true JPH03505108A (en) | 1991-11-07 |
Family
ID=21617437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50519189A Pending JPH03505108A (en) | 1989-03-27 | 1989-03-27 | Soil test method |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0416104A4 (en) |
JP (1) | JPH03505108A (en) |
BR (1) | BR8907456A (en) |
FI (1) | FI905819A0 (en) |
WO (1) | WO1990011411A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5480586A (en) * | 1991-04-15 | 1996-01-02 | Colgate-Palmolive Co. | Light duty liquid detergent compostion comprising a sulfosuccinamate-containing surfactant blend |
US5565146A (en) * | 1991-04-15 | 1996-10-15 | Cologate-Palmolive Co. | Light duty liquid detergent compositions |
RU2585317C2 (en) * | 2013-02-27 | 2016-05-27 | Геннадий Григорьевич Болдырев | Method for screw probing of soil in array of during screw drilling and device therefor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1019054A1 (en) * | 1978-12-26 | 1983-05-23 | Bezrukov Boris | Apparatus for shaft testing of soil electronic masse |
SU945276A1 (en) * | 1980-07-07 | 1982-07-23 | За вители / | Method of testing soil under static load |
SU1094897A1 (en) * | 1981-04-08 | 1984-05-30 | Северный Филиал Всесоюзного Научно-Исследовательского Института По Строительству Магистральных Трубопроводов | Method of testing soil under static load |
SU1214839A1 (en) * | 1984-02-01 | 1986-02-28 | Bezrukov Boris | Method of testing soil under static load |
SU1382911A1 (en) * | 1986-06-04 | 1988-03-23 | МГУ им.М.В.Ломоносова | Apparatus for measuring compressibility of particulate soil |
-
1989
- 1989-03-27 JP JP50519189A patent/JPH03505108A/en active Pending
- 1989-03-27 EP EP19890905478 patent/EP0416104A4/en not_active Withdrawn
- 1989-03-27 BR BR898907456A patent/BR8907456A/en unknown
- 1989-03-27 WO PCT/SU1989/000079 patent/WO1990011411A1/en not_active Application Discontinuation
-
1990
- 1990-11-26 FI FI905819A patent/FI905819A0/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
FI905819A0 (en) | 1990-11-26 |
WO1990011411A1 (en) | 1990-10-04 |
EP0416104A4 (en) | 1991-09-11 |
BR8907456A (en) | 1991-04-30 |
EP0416104A1 (en) | 1991-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhu et al. | Scale effect of strip and circular footings resting on dense sand | |
Shibuya et al. | Elastic deformation properties of geomaterials | |
Hicher | Elastic properties of soils | |
US4315429A (en) | Method of determining deformation characteristics of construction materials and soil | |
Soares et al. | Factors affecting steady state locus in triaxial tests | |
Liu et al. | The behaviour of a low-to medium-density chalk under a wide range of pressure conditions | |
Broms | Soil sampling in Europe: state-of-the-art | |
Moses et al. | Degradation in cemented marine clay subjected to cyclic compressive loading | |
Bruzzi et al. | Self-boring pressuremeter in Po River sand | |
Brenner et al. | Shear strength behaviour and the measurement of shear strength in residual soils | |
Chang et al. | Construction effect on load transfer along bored piles | |
Lo et al. | Deformation and strength properties of some rocks in Southern Ontario | |
JPH03505108A (en) | Soil test method | |
Wrzesiński | Anisotropy of soil shear strength parameters caused by the principal stress rotation | |
Benson et al. | Modulus testing of rock at the Churchill Falls underground powerhouse, Labrador | |
Price | The effects of confining pressure on the post-yield deformation characteristics of rocks | |
Barla et al. | Setting up a new direct shear testing apparatus | |
Rocha | New techniques in deformability testing of in situ rock masses | |
Gray | Field vane shear tests of sensitive cohesive soils | |
Mori et al. | The Application of Pressiometre Method to the Design of Deep Foundations | |
Abdullah | Bidimensional swell effect on accuracy of footing heave prediction | |
Chappell | Deformational control in excavating unstable slopes | |
Lo et al. | A field method for the determination of rock-mass modulus | |
Day | Discussion: Desiccation Theory for Soft Cohesive Soils | |
Berisavljević et al. | SDMT–a tool for in situ identification of collapsible soils |