JPH03504723A - Magnetic particle-containing composition - Google Patents

Magnetic particle-containing composition

Info

Publication number
JPH03504723A
JPH03504723A JP50552189A JP50552189A JPH03504723A JP H03504723 A JPH03504723 A JP H03504723A JP 50552189 A JP50552189 A JP 50552189A JP 50552189 A JP50552189 A JP 50552189A JP H03504723 A JPH03504723 A JP H03504723A
Authority
JP
Japan
Prior art keywords
magnetic particles
chelating agent
particles
composition
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50552189A
Other languages
Japanese (ja)
Inventor
クラーヴエネス,ヨー
トーマツセン,テルイエ
Original Assignee
ニユコメド・アクシエセルカペト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニユコメド・アクシエセルカペト filed Critical ニユコメド・アクシエセルカペト
Publication of JPH03504723A publication Critical patent/JPH03504723A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1833Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule
    • A61K49/1836Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule the small organic molecule being a carboxylic acid having less than 8 carbon atoms in the main chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1833Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1863Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being a polysaccharide or derivative thereof, e.g. chitosan, chitin, cellulose, pectin, starch

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 磁性粒子含有組成物 本発明は治療用および診断用組成物に関し、さらに詳しくは、磁性粒子を含有す る非経口的投与が可能な組成物ならびにその治療および診断方法とくに核磁気共 鳴(nmr)技術を用いる診断方法における使用に関する。[Detailed description of the invention] Magnetic particle-containing composition The present invention relates to therapeutic and diagnostic compositions, and more particularly to compositions containing magnetic particles. Parenterally administrable compositions and therapeutic and diagnostic methods thereof, particularly for nuclear magnetic resonance The present invention relates to use in diagnostic methods using radiofrequency (nmr) technology.

磁性粒子すなわち強磁性(もしくはフェリ磁性)または超常磁性の粒子を含有す る組成物は広く診断的検討および治療的処置に使用されてきた。Containing magnetic particles, i.e. ferromagnetic (or ferrimagnetic) or superparamagnetic particles Compositions have been widely used in diagnostic studies and therapeutic treatments.

すなわち、非経口的に投与される磁性粒子は、たとえば、外部適用磁場を用いる 薬剤の標的化(たとえばWidderら: J、 Pharm、 Sci、68  : 79〜82. 1979 ; Advancesin Pharmaco logy and Chemotherapy 16:213.1979;およ びus −A −4247406、ならびにまた口gelstandら:WO3 3/ 03920(Sintef)およびMorris : US −A−43 31654参照)、血管傷害の修復および手術時の動脈の「クランピング」(た とえばPerry: Proceedings Int、 Adv、 Cour se Work−shop、 219−230頁、19778よびRoth :  J、 Appl、 Physics。That is, magnetic particles administered parenterally can be prepared using, for example, an externally applied magnetic field. Drug targeting (e.g. Widder et al.: J, Pharm, Sci, 68 : 79-82. 1979; Advancesin Pharmaco logy and Chemotherapy 16:213.1979; and US-A-4247406, as well as Gelstand et al.: WO3 3/03920 (Sintef) and Morris: US-A-43 31654), repair of vascular injuries and “clamping” of arteries during surgery For example, Perry: Proceedings Int, Adv, Cour se Work-shop, pp. 219-230, 19778 and Roth: J, Appl, Physics.

40:1044〜1045.1969参照)、血流のトレーシング(たとえばN ewbower 二IEEE Transactions on Magnet ics Mag 9(3) : 447〜450.1973参照)、ならびに急 速交番磁界場に置いた粒子が発生する熱のin vivo使用による癌細胞の殺 滅(たとえば、US −A−4106488,Gordon参照)への応用が提 案されてきた。40:1044-1045.1969), blood flow tracing (e.g. N ewbower 2 IEEE Transactions on Magnet ics Mag 9(3): 447-450.1973), and Killing of cancer cells by in vivo use of heat generated by particles placed in a fast alternating magnetic field Applications have been proposed for It has been proposed.

最近、医用nmrの発展に伴い、磁性粒子は磁気共鳴映像法(IJRI)および 磁気共鳴スペクトロスコピー(MR5)の両者に有用なことが明らかにされてき た。たとえば、MR5において癌組織からの選択的シグナルを得るだめの磁性粒 子の使用がWhiteら(Proceedings of the 5anFr anqisco Workshop on Magnetic Re5onan ce 5pectro−scopy in vivo −1987年4月4〜5 日、93頁、1987)により、また強磁性および超常磁性粒子のMRI造影剤 としての使用がNycomed (WO85/ 04330)により記載されて いる。Recently, with the development of medical NMR, magnetic particles have been used in magnetic resonance imaging (IJRI) and It has been shown to be useful for both magnetic resonance spectroscopy (MR5). Ta. For example, in MR5, magnetic particles are used to obtain selective signals from cancer tissues. The use of children is shown in White et al. anqisco Workshop on Magnetic Re5onan ce 5pectro-scopy in vivo - April 4-5, 1987 (Japan, p. 93, 1987) and MRI contrast agents of ferromagnetic and superparamagnetic particles. Its use as described by Nycomed (WO85/04330) There is.

MRIにおいて、画像化すべき領域に導入して、発生する画像のコントラストを 増大させる薬剤は一般に造影剤と呼ばれ、これは画像が発生する共鳴シグナルに 応答する核(「画像部」、一般にはプロトンであり、さらに特定すれば水プロト ンである)のスピン再平衡特性に影響する。造影剤の使用によって得られるコン トラストの増大は、特定の臓器または組織のシグナルレベルをその周囲の臓器ま I;は組織に対して増加または減少させることによって、特定の臓器または組織 をより明瞭に可視化させることができる。標的部位におけるその周囲に対するシ グナルレベルを増大させる造影剤は「陽性」造影剤と呼ばれ、一方、周囲に対す るシグナルレベルを減少させる造影剤は「陰性」造影剤と呼ばれる。In MRI, it is introduced into the area to be imaged to improve the contrast of the resulting image. The agent that enhances the image is commonly called a contrast agent, which enhances the resonance signals generated by the image. The responding nucleus (“image part”, generally a proton, more specifically a water proton) This affects the spin rebalancing properties of Contrast obtained through the use of contrast agents Increased trust increases the signal level of a particular organ or tissue by increasing its surrounding organs or tissue. I; increases or decreases relative to a particular organ or tissue. can be visualized more clearly. The shield at the target site relative to its surroundings. Contrast agents that increase the signal level are called "positive" contrast agents, whereas contrast agents that increase the Contrast agents that reduce the level of signal present are called "negative" contrast agents.

現在、MRI造影剤として提案されている物質の大部分は、常磁性、超常磁性ま たは強磁仕種を含有することにより造影効果を達成する。Most of the substances currently proposed as MRI contrast agents are paramagnetic, superparamagnetic, or A contrast effect is achieved by containing a ferromagnetic material or a ferromagnetic material.

陰性IJRI造影剤である強磁性および超常磁性造影剤では、画像コントラスト の増大は主として、T2またはスピン−スピン緩和時間として知られるスピン再 平衡係数の低下、強磁性または超常磁性粒子によって生じる場の結像核に対する 作用から生じる低下に由来する。For negative IJRI contrast agents, ferromagnetic and superparamagnetic contrast agents, the image contrast The increase of Decreasing the equilibrium coefficient, for the imaging nucleus of the field caused by ferromagnetic or superparamagnetic particles Derived from the decline resulting from action.

一方、常磁性造影剤は陽性まl;は陰性MRI造影剤のいずれかである。磁気共 鳴シグナル強度に対する常磁性物質の影響は多くの因子に依存し、その中で最も 重要なものは画像部位における常磁性物質の濃度、常磁性物質それ自体の性質、 ならびに画像化手順に用いられるパルス配列および磁場強度である。しかしなが ら、一般には、常磁性造影剤はそのT1低下作用が優位を占める慣用濃度では陽 性MRI造影剤であるが、T2低下作用が優性なもっと高い濃度では陰性MRI 造影剤になりうる。いずれの場合も、緩和時間の低下は常磁性中心によって発生 される磁場の結像核に対する作用によって生じる。On the other hand, paramagnetic contrast agents are either positive or negative MRI contrast agents. magnetic co The effect of paramagnetic materials on the ring signal strength depends on many factors, the most important of which is What is important is the concentration of paramagnetic material in the imaged area, the properties of the paramagnetic material itself, and the pulse sequence and magnetic field strength used in the imaging procedure. But long Generally, paramagnetic contrast agents are not positive at conventional concentrations, where their T1-lowering effect is dominant. MRI contrast agent, but at higher concentrations where the T2 lowering effect is dominant, negative MRI Can be used as a contrast agent. In both cases, the decrease in relaxation time is caused by the paramagnetic center. This is caused by the action of the magnetic field on the imaging nucleus.

強磁性および超常磁性物質のMRI造影剤としての使用は広く支持され、広範囲 の適当な物質が文献に示唆されている。たとえば、WO85104330(Ny comed AS) 、WO35102772(Schr5derら)、LIS  −A −4675173(Widder)、WO38100060(Adva nced Magnetics Inc、)、WO86101112(FOX  Chase Cancer Center)、DE −A −3443252( ScheringAG)、WidderらAJR148: 399−404(1 987)、Renshawら:Magnetic Re5onance in  Medicine 3 ; 217〜225 (1986)、5ainiら:  Radiology 162 : 211〜216 (1987) 、Mend oncaDiasら: Magnetic Re5onance in Med icine 3 : 328−330(1986)、HemmiHemm1nら : Acta Radiologica 28 : 703〜705 (198 7)およびBaconら: J、 Lab、 Cl1n、 Med、 110: 164〜171 (1987)を挙げることができる。The use of ferromagnetic and superparamagnetic materials as MRI contrast agents is widely supported and widespread. Suitable materials have been suggested in the literature. For example, WO85104330 (Ny comed AS), WO35102772 (Schr5der et al.), LIS -A -4675173 (Widder), WO38100060 (Adva nced Magnetics Inc.), WO86101112 (FOX Chase Cancer Center), DE-A-3443252 ( Schering AG), Widder et al. AJR148: 399-404 (1 987), Renshaw et al.: Magnetic Re5onance in Medicine 3; 217-225 (1986), 5aini et al. Radiology 162: 211-216 (1987), Mend oncaDias et al.: Magnetic Re5onance in Med icine 3: 328-330 (1986), HemmiHemm1n et al. : Acta Radiologica 28: 703-705 (198 7) and Bacon et al.: J, Lab, Cl1n, Med, 110: 164-171 (1987).

文献には、非経口投与可能な磁性粒子含有組成物の処方についての多くの示唆が 含まれ、とくにそのまま投与される(すなわち、コーティングや他の物質への結 合がなされていない)磁性粒子、コーティングされt;(たとえばデキストラン コーティング、たとえばUS −A −4452773参照)磁性粒子、マトリ ックス粒子に保持または包埋された(たとえば多糖、たとえばwo 85/ 0 2772)磁性粒子、または臓器もしくは組織標的化種たとえば抗体もしくはホ ルモンのような生体分子に結合された磁性粒子(たとえばWo 8810006 0参照)が示唆されている。There are many suggestions in the literature for formulating parenterally administrable compositions containing magnetic particles. included, especially when administered neat (i.e. without coating or binding to other substances). (uncoated) magnetic particles; coated (e.g. dextran); Coatings (see e.g. US-A-4452773) magnetic particles, matrices polysaccharide, such as WO 85/0 2772) Magnetic particles or organ or tissue targeting species such as antibodies or Magnetic particles bound to biomolecules such as lumon (e.g. Wo 8810006 0) is suggested.

非経口的に投与できる磁性粒子は、このような粒子を血流から除去する網内系の 作用により、肝臓および肺臓の画像化にとくに興味がある。しかしながら、非経 口的に投与できる磁性粒子は、たとえば組織または臓器標的化物質に結合した粒 子を用いることによジ他の臓器または組織に位置させることができ、したがって 標的化されI;造影すべき組織または臓器のコントラストのあるMR両画像得る ことができる。Magnetic particles, which can be administered parenterally, can help the reticuloendothelial system, which removes such particles from the bloodstream. Due to its effects, it is of particular interest in imaging the liver and lungs. However, non-menstrual Magnetic particles that can be administered orally include, for example, particles bound to tissue or organ targeting agents. By using the child it can be located in other organs or tissues and therefore Targeted I; obtain contrasting MR images of the tissue or organ to be imaged be able to.

さらに、 wo 88100060には、非経口的に投与できる磁性粒子の血清 寿命を増大させ、このような粒子を血中滞留MRI造影剤として作用させる可能 性が示唆されている。Furthermore, WO 88100060 describes magnetic particle serum that can be administered parenterally. Increased lifetime and potential for such particles to act as blood-retaining MRI contrast agents sex is suggested.

磁性粒子の投与前に、化学的および生理的に類似の非磁性粒子を投与して対象の 網内系を過負荷にしておくものである。Prior to administration of magnetic particles, chemically and physiologically similar non-magnetic particles are administered to target the target. This causes the network internal system to be overloaded.

磁性粒子を用いる治療的処置においてもまた診断的検討においても、もちろん、 磁性粒子がその所望される機能を果たしたのちには排泄されることが望ましい。Of course, both in therapeutic treatments and in diagnostic studies using magnetic particles. It is desirable that the magnetic particles be excreted after they have fulfilled their desired function.

経口的に投与される磁性粒子や、外部への排泄導管を有する臓器、I;とえば膀 胱および子宮内へ投与される粒子の場合、磁性粒子の排泄について問題は考えら れない。しかしながら非経口的に、とくに静脈内に投与された粒子を排泄させる には、まずそれらを破壊しなければならない。Orally administered magnetic particles, organs with excretory conduits to the outside, I; e.g. the bladder. For particles administered into the bladder and uterus, excretion of magnetic particles is not a problem. Not possible. However, particles administered parenterally, especially intravenously, are excreted. To do so, you must first destroy them.

静脈内投与された磁性粒子のin  vivoでの生物学的分解は詳細には研究 されていないようであるが、様々な研究の結果から、その分解は徐々に数日から 数カ月にわI;って起こり、その分解速度は粒子の性質、とくにそれらが開放さ れているかまたはコーティングされているかに依存することが明らかにされてい る(たとえばBaconら:前出、およびWo 88100060参照)。In vivo biological degradation of intravenously administered magnetic particles has been studied in detail. However, the results of various studies indicate that its decomposition gradually occurs over a few days. This occurs over several months, and the rate of decomposition depends on the nature of the particles, especially when they are released. It has been shown that it depends on whether the (see, eg, Bacon et al., supra, and Wo 88100060).

本発明の目的は、非経口的に投与されl;磁性粒子の生物学的分解を容易にする かまたは加速する手段を提供することである。An object of the present invention is to facilitate biological degradation of magnetic particles that can be administered parenterally; or to provide a means for accelerating.

本発明者らは驚くべきことに、非経口的にとくに静脈内に投与された磁性粒子の 分解速度がキレート剤の存在下に増大することを発見した。The present inventors have surprisingly found that magnetic particles administered parenterally, particularly intravenously, It has been discovered that the rate of degradation increases in the presence of chelating agents.

すなわち、本発明はその一態様によれば、ヒトまたはヒト以外の動物の生体の処 置またはその生体の画像を生成させる診断的検討方法において、その生体に複数 個の磁性粒子を非経口的に投与する方法であり、その場合生体にキレート剤まt ;はその生物学的前駆体を投与する改良を提供する。That is, according to one aspect of the present invention, treatment of a living body of a human or a non-human animal is possible. In a diagnostic examination method that generates images of a living body or a living body, multiple This is a method of parenterally administering magnetic particles, in which case a chelating agent or provides an improvement in administering the biological precursor;

キレート剤または生物学的前駆体の語は、磁性粒子の金属種(とくに鉄イオン) をキレート化できる薬剤または非経口投与後に磁性粒子の金属種をキレート化で きるキレート剤を遊離させる薬剤を意味する。しかしながら、以下キレート剤の 語は、キレート剤およびプロキレート剤(すなわち、キレ−1・剤の基盤を形成 し、適当な時期に遊離されるキレート剤生物学的前駆体の残基)の両者を指して 使用される。The term chelating agent or biological precursor refers to the metal species (especially iron ions) in the magnetic particles. Drugs that can chelate or can chelate metal species in magnetic particles after parenteral administration means a drug that liberates a chelating agent that can be However, the following chelating agents The term chelating agents and prochelating agents (i.e., forming the basis of chelating agents) (residues of the chelating agent biological precursor) which are released at the appropriate time. used.

生物学的前駆体についてとくに言及すれば、たとえば生物学的に分解可能な結合 たとえばエステル結合によって他の物質、たとえば生体分子(たとえば抗体およ びホルモン)または生物学的に比較的不活性な巨大分子(たとえば多糖)または 他のマトリックスもしくは担体物質に結合したキレート剤を挙げることができる 。With particular reference to biological precursors, e.g. biologically degradable bonds. For example, ester bonds can bind other substances, such as biomolecules (e.g. antibodies and or biologically relatively inert macromolecules (e.g. polysaccharides) or Mention may be made of chelating agents bound to other matrices or carrier materials. .

キレート剤が他の物質上もしくは物質に結合され、または他の方法で他の物質中 に導入された場合、この他の物質を本明細書においては担体物質と呼ぶ。すなわ ち、典型的な担体物質は、たとえばコーティング、マトリックスおよび巨大分子 であってよく、まt;キレート剤/担体物質の混成物は粒状であっても粒状でな くてもよい。The chelating agent is bound on or to or otherwise in the other material. When incorporated into the carrier material, this other material is referred to herein as a carrier material. Sunawa Typical carrier materials include, for example, coatings, matrices and macromolecules. The chelating agent/carrier material mixture may or may not be granular. You don't have to.

本発明によって用いられるキレート剤のキレート残基が生体への投与時にすでに イオン種をキレート化している場合には、このイオン種は明らかに、とくlこ好 ましくは磁性粒子の金属種、すなわち鉄よりも熱動力学的に不安定なキレートを 形成するイオン種であり、そのキレート形成定数は鉄イオンより低い(生体温度 、血流中で)ものである。これl二関連して、キレート残基がすでにイオン種を キレートしている場合には、そのイオン種はIa、  rb、  I[aまたは nb属金金属イオンたとえばNa、 K。The chelate residue of the chelating agent used in the present invention is already present when administered to a living body. If you are chelating an ionic species, this ionic species will obviously have a particular preference. Preferably, the metal type of the magnetic particles, i.e., the chelate, which is thermodynamically more unstable than iron. It is an ionic species that forms, and its chelate formation constant is lower than that of iron ions (depending on biological temperature). , in the bloodstream). This is related to the fact that the chelating residue already has an ionic species. In the case of chelation, the ionic species is Ia, rb, I[a or nb metal metal ions such as Na, K;

Ca、 MgまたはZnのイオンであることが好ましい。一般に、このようなイ オン種は非常磁性、非放射性で、電荷は+2以下である。Preferably, the ions are Ca, Mg or Zn ions. In general, such The ON species is highly magnetic, non-radioactive, and has a charge of +2 or less.

すなわち、本発明の方法は、Carvlinらによって5thAnnual M eeting of the 5ociety for Magnetic R e5o−1987に、またWeisslederらによってMagnetic  ResonanceImaging 87005/ 01 S、 0O135〜 136に記載された技術、常磁性MRI造影剤Gd −DTPAおよびフェライ トからなる超常磁性MRI造影剤の共投与によるMRIのコントラスト増大の改 良を追求した技術と識別される。That is, the method of the present invention is based on the 5th Annual M eating of the 5ociety for Magnetic R e5o-1987, and also by Weissleder et al. Resonance Imaging 87005/01S, 0O135~ 136, paramagnetic MRI contrast agent Gd-DTPA and Ferrite Improvement of MRI contrast enhancement by co-administration of superparamagnetic MRI contrast agent consisting of It is recognized as a technology that pursues excellence.

本発明の方法においては、磁性粒子とキレート剤または生物学的前駆体は別個に 投与するこ七もできるが、−緒に投与する方が好ましい。それらを別個に投与す る場合には、キレート剤は非経口的に投与しても、またそれが吸収性であれば経 腸的に投与してもよい。この場合、吸収性のキレート剤の例としては、1.2− ジメチル−3−ヒドロキシ−ピリド−4−オンを挙げることができる。In the method of the invention, the magnetic particles and the chelating agent or biological precursor are separately Although it is possible to administer both drugs, it is preferable to administer them together. administering them separately chelating agents can be administered parenterally or orally if they are absorbable. May also be administered enterally. In this case, examples of absorbable chelating agents include 1.2- Mention may be made of dimethyl-3-hydroxy-pyrid-4-one.

さらに、キレート剤は、磁性粒子の投与前、投与時または投与後に投与すること ができる。すなわち、たとえば、磁性粒子がその診断的まI;治療的機能を果I ;シたのちに、生体内に残っている磁性粒子の急速な分解を保証するために、キ レート剤の投与または何時間もしくは何日間か(たとえば48時間まで)連続投 与するのが望ましい。Additionally, the chelating agent may be administered before, during, or after administration of the magnetic particles. Can be done. That is, for example, if a magnetic particle performs its diagnostic or therapeutic function, ; After the injection, a key is added to ensure rapid degradation of the magnetic particles remaining in the body. Administration of rate agents or continuous administration for hours or days (e.g. up to 48 hours) It is desirable to give

しかしながら、磁性粒子とキレート剤を共投与することも好ましく、また本発明 の他の態様においては、たとえば治療または診断に用いられる、磁性粒子とキレ ート剤またはその生物学的前駆体を生理的に耐容性のある分散中に含有する非経 口投与可能な組成物が提供される。However, it is also preferred to co-administer the magnetic particles and the chelating agent, and according to the invention In other embodiments, magnetic particles and crystals used, for example, in therapy or diagnosis. parenteral drugs containing the anti-inflammatory agent or its biological precursor in a physiologically tolerable dispersion. Orally administrable compositions are provided.

好ましい態様においては、本発明の組成物はキレート剤と担体物質もしくは磁性 粒子、またとくに好ましくは、磁性粒子、キレート剤および担体物質からなる混 成粒子である。In a preferred embodiment, the composition of the invention comprises a chelating agent and a carrier material or magnetic material. particles, and particularly preferably mixtures consisting of magnetic particles, chelating agent and carrier material. It is a particulate matter.

磁性粒子とキレート剤の両者を含有する混成粒子の使用は、この方法では磁性粒 子の生物学的分解時に磁性粒子の近傍への遊離キレート剤の送達がとくに容易に なることから、とくに好ましい。The use of hybrid particles containing both magnetic particles and a chelating agent is advantageous in this method. Delivery of free chelating agents into the vicinity of magnetic particles is particularly easy during biological degradation of particles. This is particularly preferable.

キレート剤および/または磁性粒子を担体物質に結合または導入して投与する場 合!こは、担体は臓器または組織標的化生体分子たとえばホルモンもしくは抗体 、生体耐容性で一般に生物学的に比較的不活性な物質たとえば多糖(たとえばデ キストランもしくはデンプン)、蛋白質(たとえばアルブミン)または!二とえ ば5chr5derらによってwo 85102772もしくはNycorne d ASによってEP−A−184899およびEP−A−186947に記載 されているようなその他の天然もしくは合成巨大分子とすることがとくに便利で ある。When administering chelating agents and/or magnetic particles bound to or incorporated into carrier materials, Go! In this case, the carrier is an organ or tissue targeting biomolecule such as a hormone or an antibody. , biologically tolerated and generally relatively biologically inert substances such as polysaccharides (e.g. Kytran or starch), protein (e.g. albumin) or! Nitoe wo 85102772 or Nycorne by Chr5der et al. d described in EP-A-184899 and EP-A-186947 by AS It is particularly convenient to use other natural or synthetic macromolecules, such as be.

磁性粒子をそれが特定の細胞内に入るように投与する場合には、キレート剤が標 的細胞内に入りやすくするため、キレート剤を生物学的分解が可能な結合によっ て、粒子、親油性残基まI;は生体分子に付着させることが望ましい。If magnetic particles are to be administered so that they enter specific cells, chelating agents can be used as targets. To facilitate entry into target cells, the chelating agent is bound by a biologically degradable bond. Therefore, it is desirable that the particles, lipophilic residues or I; be attached to biomolecules.

キレート剤を担体物質に導入する場合には、これはたとえば単純に生物学的に分 解可能なマトリックスまたはコーティング材料内に捕捉または封入することがで きる。If the chelating agent is introduced into the carrier material, this can be done, for example, simply by biological analysis. can be entrapped or encapsulated within a resolvable matrix or coating material. Wear.

この場合、キレート剤は、担体物質の分解に従い、好ましくは持続放出的に遊離 される。別法として、キレート剤は、EP−A−184899の記載にほぼ従い 、マトリックス粒子内の空隙に保持させ、粒子の分解に応じてまたはマトリック スへの体液の浸透により溶解して粒子から放出させる。さらに他の別法とし又は 、混成粒子をキレート剤の不溶性誘導体の粒子から作成し、そのin viv。In this case, the chelating agent is released, preferably in sustained release, as the carrier material decomposes. be done. Alternatively, the chelating agent may be used substantially as described in EP-A-184899. , matrix particles are retained in the voids and upon particle decomposition or matrix Penetration of body fluids into the solution dissolves and releases the particles. Furthermore, another alternative method or , hybrid particles were prepared from particles of an insoluble derivative of the chelating agent and the inviv.

での分解によってキレート剤を放出させることもできる。The chelating agent can also be released by decomposition at .

キレート剤自体は、磁性粒子の金属種(とくに鉄イオン)をキレートできる任意 の生体耐性キレート剤であればよい。この点に関しては、とくにアミノポリ酢酸 および常磁性MRI造影剤の非経口投与用に文献に示唆されている、多くの生体 耐容性キレート剤を挙げることができる。を二とえばEP −A−184899 (Nycomed AS) 、EP −A −186947(Nycomed  AS)、EP −71564(Schering AG)、EP−A −130 934(Schering AG) 、GB −A −2137612(Sch eringAG)、US −A −4647447(Schering AG) 、us −A −4639365(Sherry) 、WO85105554( Amersham InternationalPLC)、WO8710289 3(University of Texas) 、WO87101594(A mersham International PLC) 、EP−A−136 812(Technicare Corp)およびEP −A −160552 (VestarResearch Inc)ならびにNycomed ASによ るWO89100557が参考l;なる。とくに好ましいキレート剤には、トラ ンスフェリン、N、N、N’、N“、N“−ジエチレントリアミノ五酢酸(DT PA)、DTPAのN、N“−ビスメチルアミド(DTPA −BMA)、■− オキサー4.7.10−トリアザ−シクロドデカン−三酢酸(OTTA)、1. 4.7.10−テトラアザシクロドデカン−三酢酸(DO3A)、1.4.7. 10−テトラアザシクロドデカン−四酢酸(DOTA)、デスフェリオキサミン 、エチレン−ビス(2−ヒドロキシフェニルグリシン)(EHPG)8よびその 誘導体、たとえば生理的に耐容性のある対イオン、とくに上述の金属イオンまた は非毒性アミン〔たとえば、トリ(ヒドロキシメチルシンアミノメタン、エタノ ールアミン、ジェタノールアミンおよびN−メチルグルカミン〕、またはハロゲ ンまたは非毒性有機もしくは無機酸との塩が包含される。The chelating agent itself is any agent that can chelate the metal species (especially iron ions) in the magnetic particles. Any biologically resistant chelating agent may be used. In this regard, especially aminopolyacetic acid and many biological systems suggested in the literature for parenteral administration of paramagnetic MRI contrast agents. Mention may be made of well-tolerated chelating agents. For example, EP-A-184899 (Nycomed AS), EP-A-186947 (Nycomed AS), EP-71564 (Schering AG), EP-A-130 934 (Schering AG), GB-A-2137612 (Sch Schering AG), US-A-4647447 (Schering AG) , us-A-4639365 (Sherry), WO85105554 ( Amersham International PLC), WO8710289 3 (University of Texas), WO87101594 (A mersham International PLC), EP-A-136 812 (Technicare Corp) and EP-A-160552 (Vestar Research Inc.) and Nycomed AS. Reference is made to WO89100557. Particularly preferred chelating agents include Sferrin, N, N, N', N", N"-diethylenetriaminopentaacetic acid (DT PA), DTPA N, N”-bismethylamide (DTPA-BMA), ■- Oxer 4.7.10-triaza-cyclododecane-triacetic acid (OTTA), 1. 4.7.10-Tetraazacyclododecane-triacetic acid (DO3A), 1.4.7. 10-tetraazacyclododecane-tetraacetic acid (DOTA), desferrioxamine , ethylene-bis(2-hydroxyphenylglycine) (EHPG) 8 and its derivatives, such as physiologically tolerable counterions, in particular the metal ions mentioned above, or is a non-toxic amine [e.g., tri(hydroxymethylcinaminomethane, ethanol amine, jetanolamine and N-methylglucamine], or halogen or salts with non-toxic organic or inorganic acids.

上述のように、一般的に、非経口投与可能な常磁性MRI造影剤において常磁性 イオンのキレート化に用いられるキレート剤が本発明の方法におけるキレート剤 として使用できる。しかしながら、とくに興味のあるものは、Amersham によりwo 85105554に、さらに詳細にNycomedASにより欧州 特許出願第89200168.6号に開示されている巨大分子−リンカ−残基− キレート剤化合物である。As mentioned above, in general, paramagnetic MRI contrast agents that can be administered parenterally are The chelating agent used for chelating ions is the chelating agent in the method of the present invention. Can be used as However, of particular interest are Amersham by wo 85105554 and further details by NycomedAS Macromolecular linker residue disclosed in patent application No. 89200168.6 It is a chelating agent compound.

キレート剤を水溶性担体物質たとえばデキストランに生物学的に分解可能な結合 で結合させる場合は、キレート剤が心脈管系からあまり速やかに除去されないよ うに、担体物質/キレート剤組成物は総分子量が腎閾値以上、すなわち、好まし くは少なくとも20,000、とくに好ましくは40,000〜2,000,0 00とくに約50,000〜150,000とすることが好ましい。さらに、キ レート剤を粒子状の形態、たとえばマトリックス/キレ−1・剤組成物粒子とし て投与される場合には、平均粒子サイズは好ましくは0.001〜lOμm1  とくに好ましくは0.旧〜5μmとくに0.05〜2.0μmとすることが好ま しい。A biologically degradable linkage of the chelating agent to a water-soluble carrier material such as dextran If the chelating agent is conjugated with The carrier material/chelating agent composition preferably has a total molecular weight above the renal threshold, i.e. preferably at least 20,000, particularly preferably from 40,000 to 2,000,0 00, particularly preferably about 50,000 to 150,000. In addition, The rate agent may be in particulate form, such as matrix/clean-1 agent composition particles. When administered, the average particle size is preferably between 0.001 and 10 μm. Particularly preferably 0. It is preferable to set it to 0.05 to 2.0 μm, especially 0.05 to 2.0 μm. Yes.

本発明に用いられる磁性粒子は、非放射性であることが好ましいが(粒子がその 放射能崩壊放出による検出を意図されていない限り)、強磁性または超常磁性を 示す任意′の物質であってよい。磁性粒子は磁性金属ま!;は合金、I;とえば 純粋な鉄の粒子とするのが便利であるが、とくに好ましいものはマグネタイトま たはフェライトたとえばガンマフェライトおよびコバルト、ニッケルまたはマン ガンフェライトのような磁性化合物である。The magnetic particles used in the present invention are preferably non-radioactive (although the particles may ferromagnetism or superparamagnetism (unless intended to be detected by radioactive decay release) It may be any substance shown. Magnetic particles are magnetic metals! ; is an alloy, I; e.g. It is convenient to use pure iron particles, but magnetite or or ferrite such as gamma ferrite and cobalt, nickel or manganese It is a magnetic compound like gunferrite.

磁性粒子はそのままでもコーティングされていてもよく、凝集されていても、ま たマトリックスに保持もしくは包埋されていてもよい。しかしながら、担体物質 を含めt;総粒子径は10μm未満、好ましくは5nm〜5μmとすることが好 ましく、磁性粒子自体は1.5μmまたはそれ以下、好ましくは0.1μmまI ;はそれ以下、とくに好ましくは強磁性ディメンションよりむしろ超常磁性ディ メンション(すなわち、サブドメインサイズ)、たとえば5〜50nmとするこ とが好ましい。Magnetic particles may be neat, coated, agglomerated, or It may be held or embedded in a matrix. However, the carrier material The total particle diameter is preferably less than 10 μm, preferably 5 nm to 5 μm. Preferably, the magnetic particles themselves have a diameter of 1.5 μm or less, preferably 0.1 μm or less. ; is less than that, particularly preferably in the superparamagnetic dimension rather than the ferromagnetic dimension. (i.e. subdomain size), e.g. 5-50 nm. is preferable.

超常磁性または強磁性物質の粒子はコーティングしてもよく、また非磁性マトリ ックス物質たとえばデキストランもしくはデンプンのような多糖またはアルブミ ンのような蛋白質の粒子中または粒子上に保持させてもよく、また強磁性または 超常磁性物質を特定の組織に標的化することを所望の場合には、Wo 8810 0060にt;とえば記載されているような組織または臓器特異的生体分子に結 合しt;強磁性まl;は超常磁性物質の使用が望ましい。Particles of superparamagnetic or ferromagnetic material may be coated or coated with a non-magnetic matrix. substances such as polysaccharides or albumins such as dextran or starch It may also be carried in or on particles of proteins such as ferromagnetic or If it is desired to target superparamagnetic materials to specific tissues, Wo 8810 0060; for example, binding to tissue- or organ-specific biomolecules as described; It is desirable to use a superparamagnetic material for the combination t; ferromagnetism or t;

超常磁性まI;は強磁性物質に非磁性のコーティングまたはマトリックスを付与 する場合、コーティングまたはマトリックス物質としては多糖物質たとえばデン プンもしくはデキストラン(5chr5derによりWO83101738に示 唆されているように)またはUgelstadらによりWO83/03920に 示唆されているような生体耐容性ポリマーがとくに好ましい。Superparamagnetic or I; is the application of a non-magnetic coating or matrix to a ferromagnetic material. If so, the coating or matrix material may be a polysaccharide material, e.g. pun or dextran (as shown in WO83101738 by 5chr5der) or as suggested in WO 83/03920 by Ugelstad et al. Particularly preferred are biocompatible polymers as suggested.

強磁性または超常磁性物質にコーティングまたはマトリックスを付与する場合に は、総粒子の鉄含量は、0.1〜80とくに1〜70重量%とすることが好まし い。When applying coatings or matrices to ferromagnetic or superparamagnetic materials The iron content of the total particles is preferably 0.1 to 80% by weight, particularly 1 to 70% by weight. stomach.

しかしながら一般的には、文献に示唆されているような磁性粒子、たとえばSc hering AGおよびMo1day (US −A −4452773)に よって示唆されているようなマグネタイトデキストラン、また5chrader ら、Nycomed ASおよびAdvanced Magnetics In c、によって示唆されているような担体結合または遊離の磁性粒子を使用するこ とができる。However, in general, magnetic particles such as those suggested in the literature, such as Sc to hering AG and Mo1day (US-A-4452773) Therefore, magnetite dextran as suggested, also 5chrader et al., Nycomed AS and Advanced Magnetics In Using carrier-bound or free magnetic particles as suggested by c. I can do it.

磁性粒子を、担体物質、キレート剤および磁性粒子を含有する粒子組成物として 投与する場合には、粒子組成物はたとえば、5chrQderらの方法を用いて 、磁性粒子とキレート剤を担体物質マトリックス中に沈殿させることによって製 造できる。別法として、このような粒子組成物は、磁性粒子含有粒子組成物に、 カップリング剤を用いてキレート剤を結合させても製造できる。Magnetic particles as a particle composition containing a carrier material, a chelating agent and magnetic particles When administered, the particle composition can be prepared, for example, using the method of 5chrQder et al. , produced by precipitating magnetic particles and a chelating agent into a carrier material matrix. Can be built. Alternatively, such particle compositions may include magnetic particle-containing particle compositions containing: It can also be produced by binding a chelating agent using a coupling agent.

本発明の組成物には、キレート剤、担体物質、磁性粒子および分散媒(たとえば 注射用水または生理食塩水)のほかに他の成分を含有させることができる。とく に、この組成物には、粘度調整剤、pH調整剤、浸透圧調節剤、安定剤、抗酸化 剤、緩衝剤、および乳化剤もしくは分散剤、ならびに他の慣用の医薬もしくは獣 医薬補助剤を添加することができる。しかしながら、担体媒体は等優性かまたは わずかに高張性であることが好ましい。Compositions of the invention include a chelating agent, a carrier material, magnetic particles and a dispersion medium (e.g. In addition to water for injection or physiological saline, other ingredients may be included. virtue In addition, this composition contains viscosity modifiers, pH modifiers, osmotic pressure modifiers, stabilizers, and antioxidants. agents, buffering agents, and emulsifying or dispersing agents, as well as other conventional pharmaceutical or veterinary agents. Pharmaceutical auxiliaries can be added. However, the carrier medium is homodominant or Preferably it is slightly hypertonic.

キレート剤を磁性粒子とは別個に投与する場合にも、キレート剤は標準的な非経 口的または経腸的投与剤形、たとえば生理的に耐容性のある媒体たとえば注射用 水等への溶液、懸濁液または分散液のような非経口投与剤形および錠剤、コート 錠、カプセル、溶液、懸濁液、分散液、シロップ等のような経口投与剤形として 投与するのが好ましい。キレート剤を経腸投与用に処方する場合には、組成物に はもちろん希釈剤、香味剤もしくは着色剤、まj;はたとえば上述のような他の 慣用の医薬もしくは獣医薬補助剤を添加することができる。経腸投与剤形はまた 所望により、慣用技術を用いて持続または遅延放出剤形に処方することもできる 。Even when the chelating agent is administered separately from the magnetic particles, the chelating agent can be Oral or enteral dosage forms, e.g. physiologically tolerable vehicles e.g. for injection Parenteral dosage forms such as solutions, suspensions or dispersions in water etc. and tablets, coats As oral dosage forms such as tablets, capsules, solutions, suspensions, dispersions, syrups etc. Preferably, it is administered. When a chelating agent is formulated for enteral administration, the composition includes Of course, diluents, flavorings or colorants, and other additives such as those mentioned above may also be added. Customary pharmaceutical or veterinary auxiliaries can be added. Enteral dosage forms are also If desired, they can be formulated into sustained or delayed release dosage forms using conventional techniques. .

本発明に用いられるキレート剤および磁性粒子の好ましい投与量は広範囲に変動 するものであり、投与量の選択は、投与経路、投与対象の性質、投与される物質 の生体内分布、薬物動力学的性質および化学的性質、投与目的(すなわち、治療 、診断等)、ならびに外部から負荷される磁場の特性たとえば画像化手順におい て用いられるその強度およびパルス配列のような因子に依存する。Preferred dosages of chelating agents and magnetic particles used in the present invention vary widely. The choice of dosage depends on the route of administration, the nature of the subject being administered, and the substance being administered. biodistribution, pharmacokinetic and chemical properties, purpose of administration (i.e. therapeutic , diagnostics, etc.) as well as the characteristics of externally applied magnetic fields, e.g. in imaging procedures. depending on factors such as the intensity and pulse sequence used.

一般的には、MRIの場合、磁性粒子の投与量は慣用の投与量と同じで、したが って強磁性物質または好ましくは超常磁性物質の投与量は0.0001〜5ミリ モル/kg体重、好ましくは0.001〜1 mM Fe/ kg体重とするの が便利であ磁性粒子中のキレート剤のキレート基と磁性金属種(たとえばFe) の間のモル比は好ましくは、少なくとも3でなければならない。この比を大きく することによって磁性粒子の半減期を減少させることができるが、投与されるキ レート剤の用量が毒性投与量レベルを越えてはならないし、まI:好ましくはそ れに接近すべきではない。Generally, for MRI, the dose of magnetic particles is the same as the conventional dose, but The dose of ferromagnetic or preferably superparamagnetic material is between 0.0001 and 5 mm. Mol/kg body weight, preferably 0.001 to 1 mM Fe/kg body weight. It is convenient to combine the chelating group of the chelating agent in the magnetic particles with the magnetic metal species (e.g. Fe). The molar ratio between should preferably be at least 3. Increase this ratio The half-life of magnetic particles can be reduced by The dose of the rate agent should not exceed the toxic dose level, and preferably should not exceed the toxic dose level. You should not approach it.

本発明は他の態様によれば、ヒトまたは動物へのキレート剤またはその生物学的 前駆体の投与および磁性粒子の非経口投与する方法であるその生体の処置まt; は診断方法に用いられる薬剤の製造における磁性粒子および/またはキレート剤 もしくはその生物学的前駆体の使用を提供する。According to another aspect of the present invention, the chelating agent or its biological A method for administering precursors and parenterally administering magnetic particles for treatment of living organisms; magnetic particles and/or chelating agents in the manufacture of drugs used in diagnostic methods or the use of biological precursors thereof.

本発明をさらに以下の実施例によって詳細に例示するが、これは本発明を限定す るものではない。実施例中、とくに指示のない限り、比、百分率および部は重量 に基づくものである。The invention is further illustrated in detail by the following examples, which do not limit the invention. It's not something you can do. In the examples, ratios, percentages and parts are by weight unless otherwise indicated. It is based on

実施例 l 磁性粒子と架橋デンプン粒子に共有結合したDTPAを含有する懸濁液 非コート磁性粒子(wo 88100060の43頁の記載に従・つて製造した 超常磁性粒子)1001119とDTPA含有デンプンゲルビーズ(1,5μm ) (EP −A −184899の実施例9の最初の部分に従って製造) 1 .09を20++2のバイアルに充填する。使用前に粒子を、0.9%NaCl 2含有滅菌水溶液10tnQに加えて2分間激しく振盪して懸濁させる。懸濁液 はl mQあたり、磁性粒子10mgとDTPA−デンプンゲルビーズ100+ ++9を含有する。Example l Suspension containing DTPA covalently bound to magnetic particles and crosslinked starch particles Uncoated magnetic particles (manufactured according to the description on page 43 of WO 88100060) superparamagnetic particles) 1001119 and DTPA-containing starch gel beads (1,5 μm ) (manufactured according to the first part of Example 9 of EP-A-184899) 1 .. Fill 20++2 vials with 09. Particles were soaked in 0.9% NaCl before use. Add to 10 tnQ of a sterile aqueous solution containing 2 and suspend by shaking vigorously for 2 minutes. suspension per 1 mQ, 10 mg of magnetic particles and 100+ DTPA-starch gel beads Contains ++9.

この懸濁液は静脈内に投与するのが好ましい。Preferably, this suspension is administered intravenously.

デキストランマグネタイト(Meito Sangyo、 Japan製超常磁 製粒常磁性粒子0mを、0.9%NaCl2および0.1%Pluronic■ F−18の水溶液10mQ中に超音波処理によって懸濁させる。Dextran magnetite (Meito Sangyo, superparamagnetic made in Japan) Granulated paramagnetic particles 0m were mixed with 0.9% NaCl2 and 0.1% Pluronic ■ Suspend in 10 mQ of an aqueous solution of F-18 by sonication.

懸濁液を10mQのバイアルに充填し、加熱滅菌する。The suspension is filled into a 10 mQ vial and sterilized by heat.

この懸濁液は1m+2中にデキストランマグネタイトIOi。This suspension contains IOi of dextran magnetite in 1 m+2.

を含有する。Contains.

(b)デスフェリオキサミン含有の3個のバイアルデスクエリオキサミンメタン スルホン酸塩3.0gを水30IIII2に溶解する。この溶液を滅菌濾過し、 20raQバイアル3個に(lomoずつ)充填し、バイアルの内容物を凍結乾 燥する。各バイアルはデスフェリオキサミンメタンスルホン酸塩1000mgを 白色粉末として含有する。(b) 3 vials containing desferrioxamine desferrioxamine methane Dissolve 3.0 g of the sulfonate salt in 30III2 of water. This solution was sterile filtered and Fill three 20raQ vials (lomo each) and freeze-dry the contents of the vials. dry Each vial contains 1000mg of desferrioxamine methanesulfonate. Contains as a white powder.

使用前に、各バイアルの内容物を5mffの滅菌水に溶解する。Before use, dissolve the contents of each vial in 5 mff of sterile water.

超常磁性粒子の懸濁液もデスフエリオキサミンメタンスルホン酸塩の溶液も非経 口投与を意図したものである。Both suspensions of superparamagnetic particles and solutions of desferrioxamine methanesulfonate are Intended for oral administration.

懸濁液は静脈内に投与するのが好ましいが、デスフェリオキサミンの溶液は静脈 内に投与しても筋肉内に投与してもよい。溶液を静脈内に投与する場合には、患 者に体重1kgあI;リブスフエリオキサミンメタンスルホン[151Ag未満 の投与量で徐々に投与しなければならない。Suspensions are preferably administered intravenously, whereas solutions of desferrioxamine are administered intravenously. It may be administered intravenously or intramuscularly. If the solution is administered intravenously, Subjects weighing 1 kg or more; ribs ferrioxamine methanesulfone [less than 151 Ag It must be administered gradually at a dosage of .

実施例 3 2成分:磁性粒子を含む1個のバイアルおよびキレート剤の懸濁液を含む1個の バイアルからなるキット(a)磁性粒子含有バイアル ヒト血清アルブミンでコーティングした滅菌超常磁性粒子(0−211−m)  (WO88/ 00060の43頁の記載に従って製造)150mgを20rn Qのバイアルに充填する。Example 3 Two components: one vial containing magnetic particles and one vial containing a suspension of chelating agent. Kit consisting of vials (a) Vial containing magnetic particles Sterile superparamagnetic particles coated with human serum albumin (0-211-m) (Manufactured according to the description on page 43 of WO88/00060) 150mg at 20rn Fill Q vial.

使用前に、粒子を0.9%NaCQの滅菌水溶液lOmQに加え、2分間激しく 振盪して懸濁する。Before use, the particles are added to a sterile aqueous solution of 0.9% NaCQ lOmQ and vigorously shaken for 2 minutes. Shake to suspend.

この懸濁液は1m(2あたり超常磁性粒子15mgを含有する。This suspension contains 15 mg of superparamagnetic particles per 1 m2.

(b)キレート剤の懸濁液 Zn (、n )−1,5−ビス((1,2−ジヒドロ−1−ヒドロキシ−2− オキソ−ピリジン−6−イル)カルボニル〕−1,5−ジアザヘン97 (Z  (ff )−LIHOPO) ハ、Whiteら:J、 Med−Chem、  31 : 11(1988)の方法を用い無菌条件下に製造する。(b) Suspension of chelating agent Zn (,n)-1,5-bis((1,2-dihydro-1-hydroxy-2- Oxo-pyridin-6-yl)carbonyl]-1,5-diazahene 97 (Z) (ff)-LIHOPO) White et al.: J, Med-Chem, 31:11 (1988) under aseptic conditions.

Zn(n ) −LrHOPO(粒子径2um未満) 4.0gを0.9%Na Cl2の滅菌水溶液20mQに懸濁する。この懸濁液を10mQのバイアルに無 菌的に充填する。Zn(n)-LrHOPO (particle size less than 2um) 4.0g with 0.9% Na Suspend in 20 mQ of sterile aqueous solution of Cl2. Pour this suspension into a 10 mQ vial. Fill with fungi.

両懸濁液とも非経口投与を意図しt;ものである。超常磁性粒子の懸濁液は静脈 内に投与するのが好ましい。キレート剤の懸濁液は静脈内または筋肉内に投与す るのが(a)磁性粒子の懸濁液 マグネタイトを含有する熱変性ヒト血清アルブミンマイクロスフェア(Us − A −4675173に従って製造) 200mgを0.9%NaCQおよび0 .2%のポリソルベート80の水溶液10mffに加え、1分間超音波処理して 懸濁する。Both suspensions are intended for parenteral administration. Suspension of superparamagnetic particles is intravenous Preferably, it is administered intravenously. Chelating agent suspensions may be administered intravenously or intramuscularly. (a) Suspension of magnetic particles Heat-denatured human serum albumin microspheres containing magnetite (Us- Manufactured according to A-4675173) 200 mg with 0.9% NaCQ and 0 .. Added to 10 mff of 2% polysorbate 80 aqueous solution and sonicated for 1 minute. suspend

この懸濁液はl+1lI2あたり粒子20+119を含有する。This suspension contains 20+119 particles per l+11I2.

(b)キレート剤のカプセル 1.2−ジメチル−3−ヒドロキシ−ピリド−4−オンは、Kontohior ghesら: Arzneimiiiel  forschung 37(11 )、1099(1987)の方法を用いて製造する。(b) Capsule of chelating agent 1,2-Dimethyl-3-hydroxy-pyrid-4-one is available from Kontohior Ghes et al.: Arzneimiiiel forschung 37 (11 ), 1099 (1987).

粉末混合物は、 トウモロコシデンプン+        適量から調製した。The powder mixture is Prepared from corn starch + appropriate amount.

“カプセルの充填に十分な量を使用する。“Use enough to fill the capsule.

粉末を混合し、硬質ゼラチンカプセル(Capsugel[F]0号)に充填す る。Mix the powder and fill it into hard gelatin capsules (Capsugel [F] No. 0). Ru.

懸濁液は静脈内に投与するのが好ましい。カプセルは経口投与するのが好ましい 。Preferably, the suspension is administered intravenously. Capsules are preferably administered orally .

実施例 5 磁性粒子の懸濁液とエチレンジアミンージ(オルト−ヒドロキシフェニル酢酸” ) (EHPG)の溶液からなるキット(a)磁性粒子の懸濁液 微粒子の形態のヒト血清アルブミン−マグネタイト−プロティンA接合体をDE  −A −3508000に従って製造する。Example 5 Suspension of magnetic particles and ethylene diamine (ortho-hydroxyphenylacetic acid) ) Kit consisting of a solution of (EHPG) (a) Suspension of magnetic particles DE human serum albumin-magnetite-protein A conjugate in the form of microparticles Manufactured according to -A-3508000.

この粒子10+++gをlomffのバイアルに充填する。10+++ g of the particles are filled into a lomff vial.

使用前に、粒子を0.9%NaCQおよび0.1%ポリソルベート80含有滅菌 水溶液IOII1gに懸濁する。Before use, particles were sterilized with 0.9% NaCQ and 0.1% polysorbate 80. Suspend in 1 g of aqueous solution IOII.

(b)エチレンジアミンージ(オルト−ヒドロキシフェニル酢酸)の溶液 溶液を滅菌濾過し、loomffのバイアルに充填し、凍結乾燥する。使用前に 白色粉末を滅菌水100m+2に溶解すると、50+y E)(PG/i12を 含有する溶液が生成する。(b) Solution of ethylene diamine-di(ortho-hydroxyphenylacetic acid) The solution is sterile filtered, filled into loomff vials and lyophilized. before use When the white powder is dissolved in 100m+2 of sterile water, 50+y E)(PG/i12 A containing solution is produced.

+1当量のEHPGあたり酸2当量 8等張性を得るのに十分な量使用 補正音の翻訳文提出書 (特許法第184条の8) 平成2年12月3日+2 equivalents of acid per 1 equivalent of EHPG 8. Use sufficient amount to achieve isotonicity. Corrected sound translation submission form (Article 184-8 of the Patent Law) December 3, 1990

Claims (1)

【特許請求の範囲】 1)ヒトまたはヒト以外の動物の生体に複数個の磁性粒子を非経口的に投与して その生体の画像を生成させる方法において、その生体にキレート剤またはその生 物学的前駆体を投与する改良方法。 2)生体に磁性粒子の金属種をキレートできる薬剤またはその生物学的前駆体を 投与する請求項1記載の方法。 3)生体に、キレート剤が生物学的に分解可能な結合によって生体内分子または 生物学的に不活性な巨大分子マトリックスまたは担体物質に結合してなる生物学 的前駆体を投与する請求項1および2のいずれかに記載の方法。 4)キレート剤またはその生物学的前駆体はナトリウム、カリウム、カルシウム 、マグネシウムおよび亜鉛から選ばれる対イオンとの崖の形で投与する請求項1 〜3のいずれかに記載の方法。 5)磁性粒子は強磁性または超常磁性粒子である請求項1〜4のいずれかに記載 の方法。 6)キレート剤または生物学的前駆体は磁性粒子と共投与される請求項1〜5の いずれかに記載の方法。 7)磁性粒子は超常磁性粒子からなる請求項1〜6のいずれかに記載の方法。 8)磁性粒子、キレート剤またはその生物学的前駆体、および担体物質からなる 粒子組成物である診断用組成物。 9)キレート剤および/または磁性粒子は担体物質に結合しているかまたは担体 物質内に包含されている請求項8記載の組成物。 10)キレート剤はアミノポリカルボン酸またはその誘導体からなる請求項8お よび9のいずれかに記載の組成物。 11)キレート剤は任意の生物学的に分解可能なリンカー残基を介して巨大分子 に付着しているキレート剤残基である請求項8〜10のいずれかに記載の組成物 。 12)キレート剤は腎閾値以上の分子量を有する請求項8〜11のいずれかに記 載の組成物。 13)平均粒子サイズが0.001〜10μmである粒子組成物からなる請求項 8〜11のいずれかに記載の組成物。 14)磁性粒子は非磁性マトリックスまたはコーティングを施されていてもよい 超常磁性粒子からなる請求項8〜13のいずれかに記載の組成物。 15)ヒトまたはヒト以外の動物の生体に複数個の磁性粒子とキレート剤または その生物学的前駆体を非経口的に投与する方法であるその生体の処置または診断 方法に使用する薬剤の製造における磁性粒子の使用。 16)ヒトまたはヒト以外の動物の生体に複数個の磁性粒子を非経口的に投与す るその生体の処置または診断的検討方法において、その生体にキレート剤または その生物学的前駆体を投与する改良方法。[Claims] 1) Parenterally administering multiple magnetic particles to a living body of a human or non-human animal. In the method of generating an image of the living body, the living body is treated with a chelating agent or Improved methods of administering physical precursors. 2) Providing a drug or its biological precursor that can chelate the metal species of magnetic particles to a living body. 2. The method of claim 1, wherein the method of claim 1 is administered. 3) The chelating agent binds to biological molecules or molecules through biologically degradable bonds. Biology bound to a biologically inert macromolecular matrix or carrier material 3. The method according to any one of claims 1 and 2, wherein a chemical precursor is administered. 4) Chelating agents or their biological precursors are sodium, potassium, calcium , magnesium and zinc. 3. The method according to any one of 3 to 3. 5) The magnetic particles are ferromagnetic or superparamagnetic particles, according to any one of claims 1 to 4. the method of. 6) The chelating agent or biological precursor is co-administered with the magnetic particles according to claims 1-5. Any method described. 7) The method according to any one of claims 1 to 6, wherein the magnetic particles are superparamagnetic particles. 8) Consisting of magnetic particles, a chelating agent or its biological precursor, and a carrier material A diagnostic composition that is a particulate composition. 9) The chelating agent and/or magnetic particles are bound to or attached to a carrier material. 9. A composition according to claim 8, wherein the composition is contained within a substance. 10) Claim 8 and above, wherein the chelating agent comprises an aminopolycarboxylic acid or a derivative thereof. and 9. The composition according to any one of 9. 11) Chelating agents connect macromolecules via any biologically degradable linker residue. The composition according to any one of claims 8 to 10, which is a chelating agent residue attached to . 12) The chelating agent according to any one of claims 8 to 11 has a molecular weight equal to or higher than the renal threshold. composition. 13) A claim consisting of a particle composition having an average particle size of 0.001 to 10 μm. The composition according to any one of 8 to 11. 14) Magnetic particles may be provided with a non-magnetic matrix or coating A composition according to any one of claims 8 to 13, comprising superparamagnetic particles. 15) Placing multiple magnetic particles and a chelating agent or treatment or diagnosis of the living organism, which is a method of parenterally administering the biological precursor; Use of magnetic particles in the manufacture of medicaments for use in the method. 16) Parenterally administering multiple magnetic particles to a living human or non-human animal. chelating agents or Improved methods of administering the biological precursors.
JP50552189A 1988-06-03 1989-05-31 Magnetic particle-containing composition Pending JPH03504723A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8813144.6 1988-06-03
GB888813144A GB8813144D0 (en) 1988-06-03 1988-06-03 Compositions

Publications (1)

Publication Number Publication Date
JPH03504723A true JPH03504723A (en) 1991-10-17

Family

ID=10638003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50552189A Pending JPH03504723A (en) 1988-06-03 1989-05-31 Magnetic particle-containing composition

Country Status (5)

Country Link
EP (1) EP0422021A1 (en)
JP (1) JPH03504723A (en)
AU (1) AU623408B2 (en)
GB (1) GB8813144D0 (en)
WO (1) WO1989011873A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510787A (en) * 1995-05-16 1999-09-21 パーデュー・リサーチ・ファウンデーション Tumor imaging methods and compositions
JP2002511312A (en) * 1998-04-09 2002-04-16 ナイコムド イメージング エーエス Use of particulate contrast agents in diagnostic imaging to study physiological parameters

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114703A (en) * 1989-05-30 1992-05-19 Alliance Pharmaceutical Corp. Percutaneous lymphography using particulate fluorocarbon emulsions
GB9120508D0 (en) * 1991-09-26 1991-11-06 Nycomed As Diagnostic agents
GB9200065D0 (en) * 1992-01-03 1992-02-26 Nycomed As Contrast media
ATE132758T1 (en) * 1992-06-01 1996-01-15 Basf Ag APPLICATION OF DISPERSIONS OF MAGNETO-IONIC PARTICLES IN MRI CONTRAST AGENTS
DE4325071C2 (en) * 1993-07-19 1995-08-10 Lancaster Group Ag Preparation for circulation promotion
US6294152B1 (en) * 1999-01-11 2001-09-25 The University Of Toledo Iron(III) complexes as contrast agents for image enhancement in magnetic resonance imaging
US8439978B2 (en) 2007-12-10 2013-05-14 Mako Surgical Corp. Prosthetic device and method for implanting the prosthetic device
WO2009076297A2 (en) 2007-12-10 2009-06-18 Mako Surgical Corp. A prosthetic device and system for preparing a bone to receive a prosthetic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829718A (en) * 1981-07-24 1983-02-22 シエ−リング・アクチエンゲゼルシヤフト Drug for affecting alliviation time on nmr-diagnosis, manufacture and physiologically acceptable complex salt
JPS6016936A (en) * 1983-05-04 1985-01-28 シエ−リング・アクチエンゲゼルシヤフト Contrast agent for photographing intestinal proton nucleus spin tomogram
JPS61155337A (en) * 1984-11-01 1986-07-15 ニユエガ−ド・アンド・コンパニ−・アクシエ/セルカペト Diagnotic agent
JPS61155338A (en) * 1984-11-01 1986-07-15 ニユエガ−ド・アンド・コンパニ−・アクシエ/セルカペト Diagnotic agent
JPS61171434A (en) * 1984-11-23 1986-08-02 シエ−リング・アクチエンゲゼルシヤフト Diagnostic medicine, manufacture, physiologically acceptablemagnetic complex and manufacture
US4675173A (en) * 1985-05-08 1987-06-23 Molecular Biosystems, Inc. Method of magnetic resonance imaging of the liver and spleen
GB2193095A (en) * 1986-07-29 1988-02-03 Univ Ramot Contrast agent for NMR imaging
JPS63119446A (en) * 1986-08-04 1988-05-24 サリュ−タ−・インコ−ポレイティド Paramagnetic polyhydric metal salt of poly-(acid-alkylene-amino)-alkane

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8413849D0 (en) * 1984-05-31 1984-07-04 Amersham Int Plc Nmr contrast agents
US4827945A (en) * 1986-07-03 1989-05-09 Advanced Magnetics, Incorporated Biologically degradable superparamagnetic materials for use in clinical applications

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829718A (en) * 1981-07-24 1983-02-22 シエ−リング・アクチエンゲゼルシヤフト Drug for affecting alliviation time on nmr-diagnosis, manufacture and physiologically acceptable complex salt
JPS6016936A (en) * 1983-05-04 1985-01-28 シエ−リング・アクチエンゲゼルシヤフト Contrast agent for photographing intestinal proton nucleus spin tomogram
JPS61155337A (en) * 1984-11-01 1986-07-15 ニユエガ−ド・アンド・コンパニ−・アクシエ/セルカペト Diagnotic agent
JPS61155338A (en) * 1984-11-01 1986-07-15 ニユエガ−ド・アンド・コンパニ−・アクシエ/セルカペト Diagnotic agent
JPS61171434A (en) * 1984-11-23 1986-08-02 シエ−リング・アクチエンゲゼルシヤフト Diagnostic medicine, manufacture, physiologically acceptablemagnetic complex and manufacture
US4675173A (en) * 1985-05-08 1987-06-23 Molecular Biosystems, Inc. Method of magnetic resonance imaging of the liver and spleen
GB2193095A (en) * 1986-07-29 1988-02-03 Univ Ramot Contrast agent for NMR imaging
JPS63119446A (en) * 1986-08-04 1988-05-24 サリュ−タ−・インコ−ポレイティド Paramagnetic polyhydric metal salt of poly-(acid-alkylene-amino)-alkane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510787A (en) * 1995-05-16 1999-09-21 パーデュー・リサーチ・ファウンデーション Tumor imaging methods and compositions
JP2002511312A (en) * 1998-04-09 2002-04-16 ナイコムド イメージング エーエス Use of particulate contrast agents in diagnostic imaging to study physiological parameters

Also Published As

Publication number Publication date
EP0422021A1 (en) 1991-04-17
AU3682089A (en) 1990-01-05
AU623408B2 (en) 1992-05-14
WO1989011873A1 (en) 1989-12-14
GB8813144D0 (en) 1988-07-06

Similar Documents

Publication Publication Date Title
US5023072A (en) Paramagnetic/superparamagnetic/ferromagnetic sucrose sulfate compositions for magnetic resonance imaging of the gastrointestinal tract
EP0177545B1 (en) Use of ferromagnetic particles in contrast agents for nmr imaging and contrast agents
US5128121A (en) Mixture of a positive and negative contrast agent for magnetic resonance imaging
US4770183A (en) Biologically degradable superparamagnetic particles for use as nuclear magnetic resonance imaging agents
KR100278513B1 (en) Iron-containing nanoparticles with double coatings and their use in diagnostics and treatment
JPH06507371A (en) diagnostic agent
JPS63501798A (en) Polychelates for image and spectral enhancement (and spectral shifts)
US20090317327A1 (en) Aqueous Dispersion of Superparamagnetic Single-Domain Particles, Production and Use Thereof in Diagnosis and Therapy
JPH01500196A (en) Biodegradable superparamagnetic materials used in clinical applications
JPH03502338A (en) paramagnetic compound
JPH06506468A (en) Melanin image enhancer
Antonelli et al. Red blood cells as carriers of iron oxide-based contrast agents for diagnostic applications
EP2043697A2 (en) Delivery of contrasting agents for magnetic resonance imaging
JPH03504723A (en) Magnetic particle-containing composition
JPH07505638A (en) Magnetic resonance imaging methods and compositions
DE69006415T2 (en) Contrast agent composition.
US5855868A (en) Method of T1 -weighted resonance imaging of RES organs
CA2201750A1 (en) Chelate complex with high conspicuity for magnetic resonance imaging
US8632751B2 (en) Scanning suspension comprising a particle with a diameter of at least 1 micrometer
CN1071580C (en) Contrast agent
Fahlvik Magnetic iron oxide for contrast-enhanced MR imaging