JPH03504596A - Calcium sulfate microfiber manufacturing method and device - Google Patents

Calcium sulfate microfiber manufacturing method and device

Info

Publication number
JPH03504596A
JPH03504596A JP2505488A JP50548890A JPH03504596A JP H03504596 A JPH03504596 A JP H03504596A JP 2505488 A JP2505488 A JP 2505488A JP 50548890 A JP50548890 A JP 50548890A JP H03504596 A JPH03504596 A JP H03504596A
Authority
JP
Japan
Prior art keywords
slurry
calcium sulfate
reactor
tank reactor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2505488A
Other languages
Japanese (ja)
Inventor
リン,マイケル アール.
ウイツトボルド,ジエームス アール.
レーダー,トーマス イー.
Original Assignee
ユナイテツド ステイツ ジプサム カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユナイテツド ステイツ ジプサム カンパニー filed Critical ユナイテツド ステイツ ジプサム カンパニー
Publication of JPH03504596A publication Critical patent/JPH03504596A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/243Tubular reactors spirally, concentrically or zigzag wound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • C01F11/466Conversion of one form of calcium sulfate to another
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/62Whiskers or needles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00018Construction aspects
    • B01J2219/0002Plants assembled from modules joined together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00768Baffles attached to the reactor wall vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1943Details relating to the geometry of the reactor round circular or disk-shaped cylindrical
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 硫酸カルシウム・マイクロファイバの製造方法及び装置(技術分野) 本発明は硫酸カルシウムマイクロファイバを連続製造する方法及び装置、特にマ イクロファイバの寸法成長を正確に制御し得る製造方法及び装置に関する。[Detailed description of the invention] Calcium sulfate microfiber manufacturing method and equipment (technical field) The present invention relates to a method and apparatus for continuously producing calcium sulfate microfibers, particularly The present invention relates to a manufacturing method and apparatus that can accurately control the dimensional growth of microfibers.

(背景技術) これまで人工の硫酸カルシウムマイクロファイバはウィスカファイバ(whis ker fibers)とも呼ばれ、各種用途、例えばプラスチック内の充填剤 あるいは強化剤、アスファルト、ミネラルセメント、紙、塗料として使用されて いる。一般に、マイクロファイバは加圧焼成石膏から再結晶化されたアスペクト 比の高いアルファ半水和物または無水硫酸カルシウムの結晶からなる。かかるマ イクロファイバは米国のジブサム社(Gypsum Company)から商標 名“フランクリンフナイバ(FRANl[LIN FIBER)”として市販さ れている。(Background technology) Until now, artificial calcium sulfate microfibers were called whisker fibers (whisker fibers). Ker fibers) are used for various purposes, such as fillers in plastics. Or used as reinforcement, asphalt, mineral cement, paper, paint There is. Generally, microfibers are aspect recrystallized from pressure-calcined gypsum. Consists of high ratio alpha hemihydrate or anhydrous calcium sulfate crystals. It takes Microfiber is a trademark from the Gypsum Company in the United States. It is marketed under the name “FRANl [LIN FIBER]”. It is.

硫酸カルシウムマイクロファイバを作成する基本的方法及びその用途については 、米国特許第3.822.340号及び第4.152゜508号に開示される。Basic methods for making calcium sulfate microfibers and their uses , U.S. Pat. No. 3,822,340 and U.S. Pat. No. 4,152,508.

IIして、硫酸カルシウム・マイクロファイバは硫酸カルシウム2水和物(石膏 )粒子を含むスラリ希釈水溶液を加圧下で加熱することにより作成される。希釈 液に投入すると、2水和物分子1個と1・1/2個の水とが再結晶化して硫酸カ ルシウムアルファ半水和物の長(薄い結晶となる。半水和物マイクロファイバは スラリから一旦回収され乾燥されると、更に加熱され、残りの科学的に結合した 水分が除去され、コーティング処理され水分下でも安定化される。マイクロファ イバの安定化に関しては米国特許第3.822.340号及び第3.961゜1 05号に開示されている。II, calcium sulfate microfiber is calcium sulfate dihydrate (gypsum ) is made by heating a slurry dilute aqueous solution containing particles under pressure. dilution When added to the solution, one dihydrate molecule and 1 1/2 water molecules recrystallize and form sulfuric acid. Long lucium alpha hemihydrate (becomes a thin crystal. Hemihydrate microfiber is Once recovered from the slurry and dried, it is further heated to remove the remaining chemically bound Water is removed and coated to stabilize it under moisture. Microfa Regarding the stabilization of fibers, U.S. Pat. It is disclosed in No. 05.

硫酸カルシウム・マイクロファイバはこれまで2製造法の内の1つのバッチ製造 法により商業ベースで製造されている。Calcium sulfate microfibers have so far been manufactured in batches using one of two manufacturing methods. Manufactured on a commercial basis by law.

このバッチ製造法によれば、ある量の粉砕した石膏が十分な水と混合されて希釈 スラリか作成される。このスラリは加圧容器内で加熱されて石膏がアルファ半水 和物結晶に実質的に変換され、次いでフィルタ/分離装置へ放出され、ここでマ イクロファイバはスラリ溶媒が分離され乾燥され、所望に応じて安定化される。According to this batch manufacturing method, a certain amount of ground gypsum is mixed with enough water to dilute A slurry is created. This slurry is heated in a pressurized vessel to transform the gypsum into alpha semi-hydrated water. is substantially converted to hydrate crystals and then discharged to a filter/separator where it is The microfibers are separated from the slurry solvent, dried, and stabilized as desired.

上記のバッチ製造法により良質のマイクロファイバを製造することができるが、 このバッチ製造法では製造コストが高価になることが判明している。ある製造設 備の場合、バッチ製造法により所定量例えば約35ポンドのマイクロファイバが サイクル当たり(通常的45分光たり)製造される。製造出力はスラリの固形分 濃度を上げることにより増加できるが、この場合マイクロファイバのアスペクト 比が低(なることが判明している。逆により薄いスラリを用いることによって得 られるマイクロファイバのアスペクト比は高くなるがサイクル当たりの製造生産 出力が低(なる。バッチリアクタの規模を大きくするには更にコストがかさみ高 生産性を図ってこれを相殺する必要がある。Although high quality microfibers can be produced by the above batch production method, This batch manufacturing method has proven to be expensive. A manufacturing facility For example, a batch manufacturing method produces a predetermined amount of microfiber, e.g., about 35 pounds. produced per cycle (typically 45 minutes). Manufacturing output is solid content of slurry It can be increased by increasing the concentration, but in this case the microfiber aspect It has been found that the ratio of Although the aspect ratio of microfibers produced is higher, the manufacturing output per cycle is Output is low (results). Increasing the scale of the batch reactor will further increase the cost. We need to offset this with productivity.

また硫酸カルシウム・マイクロファイバは2製造法の内の別の1つの方法により 商業ベースで連続生産される。この製造方法では、細かに粉砕された石膏粒子と 水が混合されて約30重量%のスラリが作成される。スラリは漸変キャビティを 有するポンプを経て連続撹拌するタンクリアクタ若しくは直列に接続された複数 のりアクタへ送られる。通常リアクタは米国特許第3.579.300号に開示 されるように互いに直列に接続された3〜6個の処理段を有する円筒状の圧力容 器である。In addition, calcium sulfate microfiber is produced by another one of the two manufacturing methods. Continuously produced on a commercial basis. This manufacturing method uses finely ground gypsum particles and Water is mixed to create an approximately 30% by weight slurry. The slurry has a gradual cavity Continuously agitated tank reactor via pump with or several connected in series Sent to Nori actor. A typical reactor is disclosed in U.S. Patent No. 3.579.300. A cylindrical pressure vessel with 3 to 6 processing stages connected in series with each other so that It is a vessel.

スチームが導入されスラリと予め混合されあるいは別個に当初の処理段内に導入 されてスラリ温度が所望の変換温度及び圧力にされる。リアクタの各処理段には 別個の撹拌器を設けて、硫酸カルシウム粒子を懸濁状態に維持する。スラリを4 〜lO分の範囲内の滞留時間でリアクタの各処理段に順次通過させ、次に大気圧 レベルまで減圧する。マイクロファイバはスラリ溶媒から分離され、必要に応じ 更に処理される。Steam is introduced either pre-mixed with the slurry or introduced separately into the initial processing stage. The slurry temperature is brought to the desired conversion temperature and pressure. Each stage of the reactor has A separate stirrer is provided to keep the calcium sulfate particles in suspension. 4 slurry Pass sequentially through each stage of the reactor with a residence time in the range of ~lO min, then at atmospheric pressure. Depressurize to level. Microfibers are separated from the slurry solvent and optionally further processed.

この連続製造法はバッチ法に比べ生産性が大幅に向上される。例えば通常の製造 設備では、マイクロファイバの生産速度が時間当たり1200ポンド以上である 。しかしながらこれにより得られたマイクロファイバの最大長さと直径との比は これまで最大約45に制限され、一方、多(の用途ではより高いアスペクト比の マイクロファイバが要求されるので、より長いマイクロファイバを製造可能な連 続製造法が望まれている。This continuous manufacturing method significantly improves productivity compared to the batch method. For example, normal manufacturing The facility has a microfiber production rate of over 1200 pounds per hour. . However, the ratio between the maximum length and diameter of the microfiber obtained by this method is Up to now, it has been limited to a maximum of approximately 45, while higher aspect ratio Since microfiber is required, we have developed a chain that can produce longer lengths of microfiber. A continuous manufacturing method is desired.

この要求に応するべく、プラグ・フロラ(plugrlo曹)法が最近提案され ている(米国特許出願第324.158号に開示)。In order to meet this demand, the plug flora method has recently been proposed. (disclosed in U.S. Patent Application No. 324.158).

この方法では、細かに粉砕された石膏粒子を含むスラリ水溶液が予め過熱された スチームと混合され、ポンプにより平滑な内面を有する連続中空導管をいわゆる プラグ・フロラ状態で加圧移動される。このプラグ・フロウリアクタの長さは2 水和物が実質的に半水和物結晶に変換し得る滞留時間を生じるよう決定される。In this method, an aqueous slurry solution containing finely ground gypsum particles is preheated. The so-called continuous hollow conduit with a smooth inner surface is mixed with steam and pumped It is moved under pressure in a plug/flora state. The length of this plug flow reactor is 2 The residence time is determined to be such that the hydrate is substantially converted into hemihydrate crystals.

プラグ・フロウリアクタ内のほぼ積層流れには乱流あるいは撹拌が生じないので 、溶解した硫酸カルシウムアルファ半水和物が核形成し、長い針状種結晶となる 。The nearly laminar flow in the plug-flow reactor is free from turbulence or agitation. , dissolved calcium sulfate alpha hemihydrate nucleates into long needle-shaped seed crystals. .

例えば滞留時間が約90〜100秒のプラグ・フロウリアクタを用いて好適に連 続製造される。For example, a plug flow reactor with a residence time of approximately 90 to 100 seconds may be used. Continued production.

上記のプラグ・フロラ法では満足し得る程度にアスペクト比の高いマイクロファ イバを製造できるが、米国特許第3,579、300号に開示されるようにこの 製造法を用いて得られたマイクロファイバの直径は場合によっては幾分大きな直 径のものも視認できるものの、概して約1.0ミクロンを越えない。The plug-flora method described above uses microfabrication with a satisfactorily high aspect ratio. However, as disclosed in U.S. Pat. No. 3,579,300, The diameter of the microfibers obtained using the manufacturing method may in some cases be somewhat larger. Although some diameters are visible, they generally do not exceed about 1.0 micron.

更に乱流が存在せずスラリが殆ど混ぜられないので、プラグ・フロウリアクタ内 に供給される石膏を完全に変換することが困難である。Furthermore, since there is no turbulence and the slurry is hardly mixed, It is difficult to completely convert the supplied gypsum.

従ってより大きな直径例えば1.5〜4.0ミクロンでアスペクト比が45以上 好ましくは65以上の硫酸カルシウム・マイクロファイバを提供することが望ま れる。更に供給石膏材料をマイクロファイバに実質的に完全に変換し、製造費を 最小限に押さえて充填ファイバあるいは補ファイバに匹敵するファイバを製造す ることが望まれている。Therefore, a larger diameter, e.g. 1.5 to 4.0 microns, and an aspect ratio of 45 or more It is desirable to provide calcium sulfate microfibers, preferably 65 or higher. It will be done. Furthermore, it virtually completely converts the supplied gypsum material into microfiber, reducing manufacturing costs. To produce fibers that are comparable to filled fibers or supplementary fibers with minimal It is hoped that

(発明の開示) 本発明の主目的は供給される石膏材料を実質的に全部変換して経済的な生産速度 をもってアスペクト比の高い硫酸カルシウム・マイクロファイバを連続製造する 方法及び装置を提供することにある。(Disclosure of invention) The main purpose of the present invention is to convert substantially all of the supplied gypsum material to achieve an economical production rate. Continuous production of calcium sulfate microfiber with high aspect ratio using An object of the present invention is to provide a method and apparatus.

他の目的はマイクロファイバの寸法的成長を制御可能で高いアスペクト比を犠牲 にする事なく大きな直径を有するマイクロファイバを製造可能な方法及び装置を 提供することにある。Another objective is to be able to control the dimensional growth of microfibers at the expense of high aspect ratios. A method and apparatus capable of producing microfibers with large diameters without It is about providing.

本発明の他の目的はプラグ・フロラ法及び連続撹拌リアクタ法を組み合わせるこ とにより達成される。Another object of the present invention is to combine the plug-flora method and the continuously stirred reactor method. This is achieved by

本発明の製造装置は圧力を上昇させる漸変キャビティを有する供給ポンプと、ス ラリ/スチーム混合弁と、連続プラグ・フロウリアクタと、連続撹拌するタンク リアクタと、圧力を減少させる漸変キャビティを有する供給ポンプとを備える。The manufacturing apparatus of the present invention includes a feed pump having a gradual cavity that increases pressure, and a feed pump that increases pressure. Rari/steam mixing valve, continuous plug flow reactor, and continuous stirring tank It comprises a reactor and a feed pump with a graduated cavity to reduce the pressure.

新規なプラグ・フロウリアクタはパイプのような長い導管として構成され断面が 実質的に一定且つ平滑で切断されてない内部を有する。プラグ・フロウリアクタ はスラリ/スチーム混合弁とタンクリアクタとの間に接続される。連続撹拌する タンクリアクタは直列に連結された1個又はそれ以上円筒状の容器からなり、各 容器の直径はプラグ・フロウリアクタより実質的に大きく、夫々スラリの固形分 を懸濁状態で維持しり一粒子間接触を向上させる撹拌器を有している。撹拌タン クリアクタはプラグ・フロウリアクタと圧力レフトダウン(let down) ポンプとの間に接続される。本発明による製造装置の総ての構成部材及び各部材 間の連結部材は285°F(約140℃)台の温度あるいはそれにより生じる圧 力に対し耐用性を有し、スラリを維持可能な構造にされる。The new plug flow reactor is constructed as a long pipe-like conduit with a cross-section. It has a substantially constant, smooth, uncut interior. plug flow reactor is connected between the slurry/steam mixing valve and the tank reactor. stir continuously A tank reactor consists of one or more cylindrical vessels connected in series, each with one The diameter of the vessel is substantially larger than that of the plug flow reactor, and the solids content of the slurry, respectively. It has a stirrer to keep the particles in suspension and improve particle-to-particle contact. stirring tank The clearer is a plug/flow reactor and the pressure is left down. connected between the pump and the pump. All constituent members and each member of the manufacturing apparatus according to the present invention The connecting members between the It has a structure that can withstand force and maintain slurry.

本発明の製造法によれば、約12〜15重量%の予熱した希釈スラリ水溶液を圧 力を上昇する供給ポンプに送り、ここで飽和スチームと調整して混合し極めて迅 速に約285°F(約140℃)に上昇する。次にこの高温の乱流スラリは実質 的に積層流にし、所望の温度及び圧力に維持して、長いパイプリアクタをプラグ ・フロラ状態で移動させ石膏粒子を硫酸カルシウムアルファ半水和物に変換する 。溶解された半水和物は核形成し細い針状種結晶を形成する。またプラグ・フロ ウリアクタでの滞留時間は通常30秒台にされる。According to the production method of the present invention, a preheated diluted slurry aqueous solution of about 12 to 15% by weight is heated under pressure. The power is sent to an ascending feed pump where it is conditioned and mixed with saturated steam for extremely rapid The temperature quickly rises to about 285°F (about 140°C). Next, this high temperature turbulent slurry is Plug long pipe reactors into laminar flow and maintain desired temperature and pressure. ・Transfer in flora state and convert gypsum particles to calcium sulfate alpha hemihydrate . The dissolved hemihydrate nucleates to form thin needle-like seed crystals. Also plug flow The residence time in the Ureactor is usually on the order of 30 seconds.

この時点でアルファ半水和物の高いアスペクト比の種結晶と変換されなかった石 膏粒子からなるスラリをより容積の大きな撹拌タンクリアクタ内に直接送る。こ のリアクタの容積が大きいので、スラリの全体の流れが遅(なりリアクタ内の滞 留時間は4〜10分台となる。この滞留時間中、スラリかコンスタントに撹拌さ れ固形分が懸濁状態に維持され、変換されなかった石膏粒子あるいは種結晶を含 む懸濁粒子間が接触される。このため種結晶は半径方向及び軸方向への成長が促 進されて、直径が太き(アスペクト比の高いマイクロファイバが得られることに なる。Stones that were not converted with alpha hemihydrate high aspect ratio seed crystals at this time The slurry of plaster particles is sent directly into the larger volume stirred tank reactor. child Since the volume of the reactor is large, the overall flow of the slurry is slow (and the stagnation inside the reactor is The residence time will be on the order of 4 to 10 minutes. During this residence time, the slurry must be constantly agitated. The solids remain in suspension and contain unconverted gypsum particles or seed crystals. The suspended particles are brought into contact with each other. Therefore, the seed crystal is encouraged to grow in the radial and axial directions. microfibers with larger diameters (higher aspect ratios). Become.

スラリは撹拌タンクリアクタの連続する処理段を次第に移動するに応じ実質的に 総ての石膏粒子が変換される。このスラリは撹拌タンクリアクタから逆回転する 漸変キャビティポンプへ送られ、そこでスラリは大気圧を受ける。このスラリは 更にフィルタ等で脱水されマイクロファイバのケークが得られる。ケークは分解 され乾燥されパッケージに詰められる。As the slurry progressively moves through successive processing stages of the stirred tank reactor, it is substantially All gypsum particles are converted. This slurry is counter-rotated from the stirred tank reactor. The slurry is fed to a graded cavity pump where it is subjected to atmospheric pressure. This slurry Further, the water is dehydrated using a filter or the like to obtain a microfiber cake. The cake is disassembled It is then dried and packed into packages.

付加構成として、従来のようにマイクロファイバを更に焼成しコーティング処理 して水分を吸収しないよう安定化せしめパッケージに詰めることもできる。As an additional component, the microfiber is further fired and coated as in the conventional method. It can also be stabilized and packaged to prevent moisture absorption.

本発明による製造方法及び製造装置は従来のものに比べ多(の利点を有する。即 ち生産速度を大巾に速めることによりバッチ製造法に比ベコストが安く硫酸カル シウム・マイクロファイバを製造し得る。また従来の連続撹拌のタンクリアクタ 製造法に比ベプラグ・70ウリアクタのみによって完全に石膏粒子が変換され、 アスペクト比の高いマイクロファイバを製造できる。更に従来法より高いアスペ クト比と大きな直径を有するマイクロファイバを製造できる。また特に以下に説 明する多くの制御パラメータを考慮することにより、本発明による製造法は結晶 の核形成及び成長を効果的に制御して所定の寸法範囲内のマイクロファイバを製 造できる。The manufacturing method and manufacturing apparatus according to the present invention have many advantages over conventional ones. By greatly increasing the production speed, the cost is lower than that of the batch production method, and sulfuric acid calcium sium microfibers can be produced. In addition, conventional continuous stirring tank reactors Compared to the manufacturing method, gypsum particles are completely converted only by Beplug 70 Ureactor, Microfibers with high aspect ratios can be manufactured. Furthermore, the asperity is higher than that of the conventional method. microfibers with high efficiencies and large diameters can be produced. In particular, By taking into account a number of control parameters to clarify, the manufacturing method according to the invention effectively control the nucleation and growth of microfibers within a predetermined size range. Can be built.

以上に本発明を簡単に説明したが、より詳細な説明及び特徴若しくは利点につい て添付図面に沿い後述する。Although the present invention has been briefly described above, more detailed description and features or advantages may be required. This will be described later in conjunction with the attached drawings.

(図面の簡単な説明) 第1図は本発明による硫酸カルシウムマイクロファイバを製造する方法を示す簡 略図、第2図は第1図の製造法に好適に使用されるプラグ・フロウリアクタの一 部を断面で示した側面図、第3図は第2図の線3−3に沿った断面図、第4図は 第1図の製造法に好適に使用され連続撹拌する複数処理段のりアクタの、一部を 断面で示した側面図、第5図は第4図の線5−5に沿った断面図である。(Brief explanation of the drawing) FIG. 1 is a simplified diagram illustrating a method for producing calcium sulfate microfibers according to the present invention. A schematic diagram, FIG. 2, shows one plug flow reactor preferably used in the manufacturing method shown in FIG. FIG. 3 is a cross-sectional view taken along line 3--3 in FIG. 2, and FIG. A part of the multi-stage glue actor that is suitably used in the manufacturing method shown in Figure 1 and that continuously stirs. 5 is a cross-sectional side view taken along line 5--5 of FIG. 4; FIG.

(発明を実施するための最良の形@) 第1図に示す製造法は混合タンクIQに粉砕した石膏と水とを混合することから 開始し、希釈スラリを作成する。例えばテラ・アルバ(terra alha) は99.9%まで且ツ100メツシュまで粉砕した実質的に純粋な石膏であり、 この石膏を十分な水と混合して固形分重量%が1/2%〜15%の範囲内好まし くは約12%のスラリを作成する。また好ましくはスラリを混合タンクで約20 O’F (約93℃)まで加熱する。(Best form for carrying out the invention @) The manufacturing method shown in Figure 1 involves mixing crushed gypsum and water in a mixing tank IQ. Start and create a diluted slurry. For example, terra alha is substantially pure gypsum that has been ground to 99.9% and 100 mesh; Preferably, the gypsum is mixed with sufficient water to have a solid content in the range of 1/2% to 15% by weight. Create a slurry of approximately 12%. Also preferably, the slurry is mixed in a mixing tank for about 200 ml. Heat to O'F (approximately 93°C).

次にスラリを混合タンクから供給ポンプ12の導入部に送る。The slurry is then sent from the mixing tank to the inlet of feed pump 12.

漸変キャビティの供給ポンプ12により、スラリの圧力を約80psiまで上昇 しスラリとスチームとを混合するスラリ/スチーム混合弁20内に放出する。ま た第2図に示すように、約350°F(約177℃)の飽和スチームをスラリ/ スチーム混合弁20へ供給し、計量した上高温スラリ内に直接送入する。Gradual cavity feed pump 12 increases slurry pressure to approximately 80 psi The slurry and steam are discharged into a slurry/steam mixing valve 20 which mixes the slurry and steam. Ma As shown in Figure 2, saturated steam at about 350°F (about 177°C) is added to the slurry/ The steam is supplied to the mixing valve 20 and directly into the metered hot slurry.

第2図を参照するに、混合弁20はハウジング22と、スチーム導入部23と、 スラリ導入部24と、ニードル弁と、放出部28とを備え、ニードル弁には弁座 25と弁ステム26とが包有され、弁ステム26は軸方向に調節可能で、ノ\ン ドル27を具備しており、放出部28はプラグ・フロラ(plug −Nov) リアクタ30と直結可能である。高温スチームはスチーム導入部23に導入し、 弁ステム26と弁座25との間の開口部を経て送入する。このときニードル弁に よりスチーム供給量を調整可能である。一方スラリは制限するオリフィス29を 有するスラリ導入部24から導入する。Referring to FIG. 2, the mixing valve 20 includes a housing 22, a steam introduction part 23, It includes a slurry introduction part 24, a needle valve, and a discharge part 28, and the needle valve has a valve seat. 25 and a valve stem 26, the valve stem 26 is axially adjustable and includes a It is equipped with a plug 27, and a discharge part 28 is a plug flora (plug-Nov). It can be directly connected to the reactor 30. The high temperature steam is introduced into the steam introduction part 23, It is delivered through the opening between the valve stem 26 and the valve seat 25. At this time, the needle valve The amount of steam supplied can be adjusted more easily. On the other hand, the slurry restricts the orifice 29 The slurry is introduced from the slurry introduction section 24 having a slurry introduction section 24.

供給ポンプ12とオリフィス29との間においてスラリを約80psiの圧力ま で上昇させるが、この圧力はオリフィス29の下流の圧力より実質的に高い。従 って、スラリは細かな噴霧状態をもって、スラリ/スチーム混合弁内でニードル 弁を経て導入されるスチームジェット流路内に直接噴出する。この構成をとるこ とにより、導入されたスラリは連続的に計量され、より高温にされたスチームと 直接衝突される。この結果、熱がはり瞬間的に伝導されて、スラリの温度が極め て迅速に上昇され、このスラリに含まれた硫酸カルシウム粒子が所定の処理温度 例えば約280’F (約140℃)まで上昇される。このような加熱は針状の 種結晶を作る際に極めて好ましい工程であると考えられる。The slurry is pumped between the feed pump 12 and the orifice 29 to a pressure of approximately 80 psi. the pressure is substantially higher than the pressure downstream of the orifice 29. subordinate Therefore, the slurry is finely atomized when the needle is passed through the slurry/steam mixing valve. It is ejected directly into the steam jet channel introduced through the valve. Using this configuration The introduced slurry is continuously metered and mixed with hotter steam. directly collided. As a result, heat is transferred instantaneously, and the temperature of the slurry becomes extremely high. The calcium sulfate particles contained in this slurry are quickly raised to a predetermined processing temperature. For example, the temperature may be raised to about 280'F (about 140°C). This type of heating produces needle-like This is considered to be an extremely preferable step when making seed crystals.

高温のスラリは放出部28を経てスラリ/スチーム混合弁20から直接プラグ・ フロウリアクタ30へ送入する。プラグ・フロウリアクタ30は長手の中空導管 として構成される。懸濁粒子の沈下を防止するように高温のスラリに十分に早い 流速を与え且つ乱流を引き起こすようにプラグ・70ウリアクタの直径を決定す る。導管の長さは、主に硫酸カルシウム2水和物を硫酸カルシウムアルファ半水 和物結晶あるいはマイクロファイバに変化させるに十分な滞留時間を与えるよう に決定される。別の重要な点として、表面に欠陥があると核形成あるいは結晶に 付着場所が生じ堆積して量終的に導管に目詰まりが生じるので、プラグ・フロウ リアクタの内面31はできる限り平滑で且つ摩擦が小さいことが特に望まれる。The hot slurry is passed through the discharge section 28 and directly from the slurry/steam mixing valve 20 to the plug. It is sent to the flow reactor 30. The plug flow reactor 30 is a long hollow conduit. Constructed as. Fast enough to hot slurry to prevent settling of suspended particles Determine the diameter of the plug/70 urector to provide flow velocity and cause turbulence. Ru. The length of the conduit mainly consists of calcium sulfate dihydrate and calcium sulfate alpha hemihydrate. to give sufficient residence time to transform into hydrate crystals or microfibers. determined. Another important point is that surface defects can lead to nucleation or crystal formation. Plug flow will cause deposits to form and eventually clog the conduit. It is particularly desired that the inner surface 31 of the reactor be as smooth as possible and have as little friction as possible.

プラグ・フロウリアクタ30は無論285°F(約140℃)以上の範囲の処理 温度で生じる圧力(通常的40〜50 psi)に耐えるに十分な強度を持たせ る必要がある。また熱損失を小さくするためリアクタを断熱することも望ましい 。Of course, the plug flow reactor 30 can handle temperatures above 285°F (approximately 140°C). Must be strong enough to withstand the pressure generated by temperature (typically 40-50 psi) It is necessary to It is also desirable to insulate the reactor to reduce heat loss. .

高温で高圧のスラリはプラグ・フロウリアクタ30内をプラグ・フロラとして流 動する。プラグ・フロラとはこの液体の各増分部分が殆ど固形分のように流動し 周囲の固形分間に樵持されることを指す。換言すれば、液体スチームは実質的に 大きなせん断あるいは混合作用を生じる事なく流動されることになる。このよう な状態では、溶解した硫酸カルシウム半水和物が核形成し長(アスペクト比の高 い種結晶を成長し得る。The high-temperature and high-pressure slurry flows through the plug-flow reactor 30 as a plug-flow reactor. move. Plug flora means that each incremental portion of this liquid flows almost like a solid. Refers to being held in place by the surrounding solid matter. In other words, liquid steam is essentially It will flow without significant shear or mixing effects. like this In this state, dissolved calcium sulfate hemihydrate nucleates and forms long (high aspect ratio) can grow seed crystals.

一方、このプラグ・フロラのため、一部の硫酸カルシウム2水和物は核形成が生 じず他の結晶にも付着しないので、プラグ・フロウリアクタだけでは石膏をアル ファ半水和物結晶に完全には変換し得ないが、本発明によれば、変換されない粒 子が連続的に撹拌するタンク・リアクタ40内に移動され、第2の処理段におい て堆積ブロック(building block)になることが利点であること が判明している。On the other hand, due to this plug flora, nucleation occurs in some calcium sulfate dihydrates. Plaster does not adhere to other crystals, so a plug/flow reactor alone is not enough to aluminate gypsum. grains that cannot be completely converted into hemihydrate crystals, but according to the present invention, The sample is moved into a continuously agitated tank reactor 40 and treated in a second processing stage. The advantage is that it becomes a building block. It is clear that

連続的に撹拌するタンク・リアクタ40は第4図及び第5図に示すように、1個 または複数の処理段41a、 41b、 41cを有し、各処理段の容積は大き く、加圧シリンダ容器であり、回転羽根車42等の撹拌手段を備えている。タン ク・リアクタの代表的な例としての処理段41は直径が約15インチ高さが15 インチである。タンク・リアクタの処理段は垂直方向に積み重ねられフランジ4 3を介し直列に互いに連結される。プラグ・フロウリアクタからの高温スラリは 連続するタンクリアクタの最初の処理段の底部の導入部45から上方へ移動され 、最終処理段の頂部の導出部46から出されることが好ましい。またタンク・リ アクタ40は内部処理温度あるいはそれにより生じる圧力に対し耐え得るよう構 成される。There is one tank reactor 40 that continuously stirs, as shown in FIGS. 4 and 5. Or, it has multiple processing stages 41a, 41b, 41c, and the volume of each processing stage is large. It is a pressurized cylinder container and is equipped with stirring means such as a rotary impeller 42. Tan Processing stage 41, in a typical example of a reactor, has a diameter of about 15 inches and a height of about 15 inches. Inches. The treatment stages of the tank reactor are vertically stacked and flange 4 3 are connected to each other in series. The hot slurry from the plug flow reactor is is moved upward from the inlet 45 at the bottom of the first treatment stage of the successive tank reactor. , preferably from an outlet 46 at the top of the final processing stage. Also, the tank tank Actor 40 is constructed to withstand internal processing temperatures or the resulting pressures. will be accomplished.

タンク・リアクタ40は大容量を有するので、タンク・リアクタ40を流れるス ラリの流速はパイプリアクタの場合に比べ実質的に低い。このためスラリ溶媒か ら固形分が沈下する。Since the tank reactor 40 has a large capacity, the amount of water flowing through the tank reactor 40 is The flow rate in the Rari is substantially lower than in a pipe reactor. Therefore, slurry solvent The solid content will settle.

一方、各処理段の回転羽根車42により十分に撹拌されるので適度の乱流が生じ 沈下が防止される。このため固形分が懸濁状態に維持されるのみならず、石膏粒 子の混合及び粒子間接触が促進される。この結果、パイプリアクタからの種結晶 に付着していない粒子が付着して大きくなり半径方向及び軸方向に成長する。こ れによりアスペクト比を犠牲にする事なく大きな直径のマイクロファイバを作成 できる。On the other hand, since the rotary impeller 42 of each processing stage sufficiently stirs, a moderate amount of turbulence occurs. Subsidence is prevented. This not only keeps the solids in suspension, but also keeps the gypsum particles Particle mixing and particle-particle contact is promoted. As a result, seed crystals from the pipe reactor Particles that are not attached to the surface attach and grow in size and in the radial and axial directions. child This creates large diameter microfibers without sacrificing aspect ratio. can.

垂直方向に延びる一連のバフル部材44がタンク・リアクタ40の長さ方向にに 沿って延びるように配設され、このバフル部材44は通常矩形バ一部材として形 成される。またバフル部材44はリアクタの内部の周囲に離間して配置され、回 転羽根車作用により半径方向にのみへの流動を防止すると共に、乱流を生じさせ 石膏粒子を懸濁状態に保持する。A series of vertically extending baffle members 44 extend along the length of tank reactor 40. The baffle member 44 is typically shaped as a rectangular baffle member. will be accomplished. Further, the baffle member 44 is spaced apart around the inside of the reactor, and The rotor action prevents flow only in the radial direction, and also creates turbulence. Keeps gypsum particles in suspension.

あるいはまた、更に石膏粒子、硫酸カリウムのような結晶成長剤、または無水琥 珀酸のような核形成禁止剤を連続撹拌リアクタ内に直接投入して種ファイバの物 理的成長を制御し得る。Alternatively, additionally gypsum particles, crystal growth agents such as potassium sulfate, or anhydrous amber. A nucleation inhibitor such as silicic acid is directly injected into a continuously stirred reactor to form seed fibers. Physical growth can be controlled.

熱論回転する羽根車により引き起こされる乱流により、長い種結晶のせん断若し くは破壊が生ずる。この現象も、推進係数(drag coe4ricient )または回転羽根車の速度を制御し結晶の長さを調整して所望の製品仕様に適合 させることがより好ましい事が判明している・ タンク・リアクタ40の最終処理段を離れたスラリは大気圧を受はレットダウン (let down)ポンプ50へ送られる。ポンプ50も漸変キャピテイを有 するポンプであるが、本実施例では上流圧を維持するため逆回転され得る。The turbulent flow caused by the thermally rotating impeller causes shearing or shearing of the long seed crystal. Otherwise, destruction will occur. This phenomenon is also caused by the drag coefficient (drag coe4rient ) or by controlling the speed of the rotating impeller and adjusting the crystal length to meet desired product specifications. It has been found that it is more preferable to After leaving the final treatment stage of tank reactor 40, the slurry is subjected to atmospheric pressure and is let down. (let down) is sent to the pump 50. The pump 50 also has a graduated capacitance. However, in this example, it can be reversed to maintain upstream pressure.

スラリは大気圧に戻された後ロータリ圧カフイルタロ0若しくは他の脱水装置へ 送られて大量の自由水が除去されて、約40〜50重量%のマイクロファイバフ ィルタケーキが残される。After the slurry is returned to atmospheric pressure, it is transferred to rotary pressure Kafiltalo 0 or other dewatering equipment. A large amount of free water is removed and a microfiber buff of approximately 40-50% by weight is Filter cake is left behind.

ロータリ圧カフイルタロ0で脱水された水は混合タンク10へ循環される。これ により得られたフィルタケーキから分解され、分離されたマイクロファイバは乾 燥機62へ送られ残りの水分が更に除去される。The water dehydrated by the rotary pressure filter 0 is circulated to the mixing tank 10. this The microfibers are decomposed and separated from the filter cake obtained by drying. The remaining moisture is further removed by being sent to a dryer 62.

付加工程として、第1図に点線で示すように、乾燥した硫酸カルシウム半水和物 マイクロファイバを硬焼炉64に送り、残部の化学的に結合された水分を除去し て半水和物を溶解又は不溶硬石膏に変換する。いずれの場合も、ファイバは当業 者に周知の塗料で後処理して水分を吸収しないよう安定化する。As an additional step, as shown by the dotted line in Figure 1, dried calcium sulfate hemihydrate The microfibers are sent to a hardening furnace 64 to remove any remaining chemically bound moisture. to convert hemihydrate to soluble or insoluble anhydrite. In either case, the fiber is After-treatment with a paint well known to those skilled in the art, it is stabilized so that it does not absorb moisture.

仕上げられた硫酸カルシウムマイクロファイバは収集部66で回収され、袋7G あるいは他の好適なパッケージに詰められて分配される。The finished calcium sulfate microfibers are collected in the collecting section 66 and placed in a bag 7G. Alternatively, it may be packaged and distributed in other suitable packaging.

上述した製造法及び製造装置は従来のバッチ連続法に比べ大巾に改良され多くの 利点を有している。即ち、アスペクト比ノ高い硫酸カルシウムマイクロファイバ を良好な生産速度で原料をほぼ完全に変換して製造でき、従ってコストも低廉に なる。更に柔軟性または制御性が高く作業者はマイクロファイバ製品の成長を制 御し得る。The above-mentioned manufacturing method and manufacturing equipment have been greatly improved compared to the conventional batch continuous method, and many improvements have been made. It has advantages. In other words, high aspect ratio calcium sulfate microfibers can be produced at a good production rate with almost complete conversion of raw materials, and therefore at low cost. Become. More flexibility or control allows operators to control the growth of microfiber products. I can control it.

例えば、最初の処理段、即ちプラグ・フロウリアクタの動作パラメータは、供給 スラリ濃度、スチーム圧、制御温度、スチームの供給スラリ流への拡散、プラグ ・フロウリアクタ内の滞留時間及びリアクタの寸法である。これらのパラメー  ゛りにより、当初のアルファ半水和物種結晶の長さ及び変換程度が決定される。For example, the operating parameters of the first processing stage, i.e. the plug-flow reactor, are Slurry concentration, steam pressure, control temperature, diffusion of steam into feed slurry stream, plug -Residence time in the flow reactor and dimensions of the reactor. These parameters This determines the length and degree of conversion of the initial alpha hemihydrate seed crystal.

更に第2の処理段、即ち連続タンクリアクタでは、パラメータとして撹拌エネル ギを用いマイクロファイバの半径方向の成長のみだけではなく、最終的な軸方向 の寸法が制御される。撹拌エネルギの制御は回転羽根車の推進係数及び回転速度 を調節することにより行われ得る。また第2の処理段では更に石膏、結晶改質剤 又は核形成禁止剤を導入して最初の処理段からの種結晶の成長を制御することが できる。Furthermore, in the second processing stage, i.e. the continuous tank reactor, the stirring energy is used as a parameter. The microfibers are grown not only in the radial direction but also in the final axial direction. dimensions are controlled. The stirring energy is controlled by the propulsion coefficient and rotation speed of the rotary impeller. This can be done by adjusting the In addition, in the second treatment stage, gypsum and crystal modifier are added. Alternatively, nucleation inhibitors can be introduced to control seed crystal growth from the first processing stage. can.

直径が大きくアスペクト比の大きいマイクロファイバを製造するため、本発明に よる上述した製造法及び製造装置によるテスト製造プラントを建てた。スラリ/ スチーム混合弁を約32フイートで公称直径が1〜172インチのパイプからな るプラグ・フロウリアクタに直結した。空間を確保するため、パイプリアクタは 第2図に示されるように互いに平行に配置した4個の7フイ一ト処理段として構 成し、処理段は平滑且つ湾曲させて結合した。プラグ・フロウリアクタの出口部 は3処理段からなる連続タンクリアクタの入口部に直結した。In order to produce microfibers with large diameters and high aspect ratios, the present invention A test manufacturing plant was built using the manufacturing method and equipment described above. Slurry/ Connect the steam mixing valve to approximately 32 feet of pipe with a nominal diameter of 1 to 172 inches. directly connected to the plug flow reactor. To ensure space, the pipe reactor is It is constructed as four 7-foot processing stages arranged parallel to each other as shown in Figure 2. The processing stages were connected in a smooth and curved manner. Plug flow reactor outlet was directly connected to the inlet of a continuous tank reactor consisting of three treatment stages.

タンクリアクタの各処理段は内径が15インチで高さが15インチの円筒圧力容 器として構成し、垂直軸に沿って回転可能に中央部に羽根車が配置した。3個の 処理段は垂直方向に積み重ね、スラリは最初の処理段の最下部近傍の入口部から 最終処理段の頂部近傍の出口部へと送られた。Each processing stage of the tank reactor is a cylindrical pressure volume with an inner diameter of 15 inches and a height of 15 inches. It was constructed as a container, and an impeller was placed in the center so that it could rotate along a vertical axis. 3 pieces The processing stages are stacked vertically, and the slurry is introduced from the inlet near the bottom of the first processing stage. It was sent to an outlet near the top of the final processing stage.

このテストプラントでは複数段の連続タンクリアクタ法のみ、且つプラグ・フロ ウリアクタ法のみにより製造されるマイクロファイバと比較するためマイクロフ ァイバを製造した。This test plant uses only the multi-stage continuous tank reactor method and the plug flow method. Microfiber was used for comparison with microfiber produced only by the Ureactor method. manufactured fiber.

3処理段の動作パラメータを以下の表Iにまとめて示した。The operating parameters for the three processing stages are summarized in Table I below.

スラリ濃度  温度  滞留時間  アスペクト比 平均直径−処理法   ( 固形分の重量%)(’F)    (分)(ミクロン)(ミクロン)連続撹拌タ ンク リアクタのみ      30   285〜295  〜5      45      1.75プラグ・フロラ リアクタのみ      12   285〜295 .75〜1.0     >80     .95注二本明細書で使用した用語“アスペクト比”は夫々の マイクロファイバの実際の長さと直径との比を示すタップ密度アスペクト比(T ap Density Aspect Ratio)を意味し、所定グループの マイクロファイバの平均アスペクト比として表した。タップ密度アスペクト比の 測定は以下の手順及びASTM標準テスト法04164に基づく装置を用いて決 定した。Slurry concentration Temperature Residence time Aspect ratio Average diameter - Processing method ( Weight % of solids) (’F) (minutes) (microns) (microns) Continuous stirring tank Link Reactor only 30 285~295 ~5 45 1.75 Plug Flora Reactor only 12 285-295. 75~1.0 >80    . 95 Note 2 The term “aspect ratio” used in this specification refers to each The tap density aspect ratio (T ap Density Aspect Ratio) of a given group. Expressed as the average aspect ratio of the microfibers. tap density aspect ratio Measurements were determined using the following procedures and equipment based on ASTM Standard Test Method 04164. Established.

工程1.テストすべき14グラムのマイクロファイバサンプルの重量を2桁(t wo place)精度まで測定する。Step 1. The weight of the 14 gram microfiber sample to be tested is two orders of magnitude (t wo place) Measure to the accuracy.

工程2:このサンプルを1001目盛りの清浄な円筒体内に入れ漏れないようパ ラフィルを用いて密封する。Step 2: Place this sample in a clean cylindrical body with 1001 scale and seal it to prevent leakage. Seal using raffil.

工程3.この円筒体をタップ密度装置の保持部に置きカウンタを300にセット する。Step 3. Place this cylinder in the holding part of the tap density device and set the counter to 300. do.

工程4:このタップ密度装置をオンし、300回タッピングした後自動的に停止 する。Step 4: Turn on this tap density device and stop automatically after tapping 300 times do.

工程5:円筒体を取り出し、タッピングせずに入れたサンルの容積を記す。Step 5: Take out the cylinder and record the volume of the sample inserted without tapping.

工程6:サンプルのマイクロファイバのアスペクト比は次の式により決定した。Step 6: The aspect ratio of the sample microfiber was determined by the following formula.

タップ密度アスペクト比=  +[(9,6☆ V) + 72]”’−11, 51ここで、■は単位1で表した最終容積である。Tap density aspect ratio = + [(9,6☆V) + 72]”’-11, 51 where ■ is the final volume expressed in units of 1.

濁際調査報告 +TI+−電−O−−AeM+n−xOPCT/US901014(コー〔iTurbidity survey report +TI+-Electronic-O--AeM+n-xOPCT/US901014 (Co[i

Claims (19)

【特許請求の範囲】[Claims] (1)高温高圧で硫酸カルシウム2水和物の粒子を含む希釈スラリ水溶液を連続 的に与える供給装置と、供給装置に接続された入口部と出口部とを有し、断面が 実質的に一定且つ平滑な内面を有した連続中空導管であり、且つ内部においてス ラリを実質的にプラグ・フロウ状態で通過させ、2水和物粒子をアルファ半水和 物の針状種結晶に変換するに十分なスラリ滞留時間を与える長さにするプラグ・ フロウリアクタと、プラグ・ブロウリアクタの出口部と接続された入口部と出口 部とを有し、内部に十分なスラリを保持可能な少なくとも1個の容器を有し且つ スラリを撹拌してスラリ内で固形粒子を懸濁状態に維持するスラリ撹拌装置を具 備し、容器内を移動するスラリの滞留時間を針状種結晶を半径方向及び軸方向に 十分に成長可能に設定する連続撹拌タンクリアクタと、タンク・リアクタの出口 部に接続され、スラリを含むマイクロファイパを効果的に大気圧にしてなる減圧 装置とを備えた硫酸カルシウムマイクロファイパの連続製造装置。(1) Continuously generate diluted slurry aqueous solution containing particles of calcium sulfate dihydrate at high temperature and high pressure. a supply device that provides a feeder, an inlet portion and an outlet portion connected to the feeder, the cross section being A continuous hollow conduit with a substantially constant and smooth inner surface and an internally smooth conduit. The dihydrate particles become alpha hemihydrate by passing through the Plug the plug to a length that provides sufficient slurry residence time to convert it into needle-like seed crystals. Flow reactor and inlet and outlet connected to outlet of plug/blow reactor and at least one container capable of holding sufficient slurry therein; Includes a slurry agitation device that agitates the slurry and maintains the solid particles in suspension within the slurry. The residence time of the slurry moving in the vessel is controlled by the needle-shaped seed crystals in the radial and axial directions. Continuously stirred tank reactor and tank reactor outlet set up to allow sufficient growth The microfiber containing the slurry is effectively brought to atmospheric pressure by reducing the pressure Continuous production equipment for calcium sulfate microfibers. (2)プラグ・フロウリアクタが連続するパイプである特許請求の範囲第1項記 載の装置。(2) Claim 1, wherein the plug flow reactor is a continuous pipe. equipment. (3)パイプの公称内径が約1〜1/2インチである特許請求の範囲第2項記載 の装置。(3) Claim 2, wherein the pipe has a nominal inner diameter of approximately 1 to 1/2 inches. equipment. (4)パイプの長さが32フィートである特許請求の範囲第3項記載の装置。(4) The apparatus of claim 3, wherein the length of the pipe is 32 feet. (5)タンクリアクタが2以上の容器を備え、直列に連結され高温スラリが各容 器を所定の滞留時間をもって移動してなる特許請求の範囲第1項記載の装置。(5) A tank reactor is equipped with two or more containers connected in series and high temperature slurry is supplied to each container. 2. The apparatus according to claim 1, wherein the container is moved with a predetermined residence time. (6)タンクリアクタの各容器は垂直方向に積み重ねられ、スラリは最初の容器 の最下部近傍の入口部から入り上方にタンクリアクタを移動され最後容器の頂部 近傍の出口部から放出されるように設けられてなる特許請求の範囲第5項記載の 装置。(6) Each container of the tank reactor is stacked vertically, and the slurry is placed in the first container. Enter from the inlet near the bottom of the tank and move the tank reactor upward until it reaches the top of the container. Claim 5, wherein the liquid is disposed so as to be emitted from a nearby outlet. Device. (7)タンクリアクタの容器の数が3〜6個である特許請求の範囲第5項記載の 装置。(7) Claim 5, wherein the number of containers in the tank reactor is 3 to 6. Device. (8)更に各容器内に設けられろ撹拌装置を備えてなる特許請求の範囲第5項記 載の装置。(8) Claim 5 further comprising a stirring device provided in each container. equipment. (9)更に各容器内に設けられたロータリ撹拌装置を備え、撹拌装置の総てがタ ンクリアクタ内を垂直方向に延びる共通の回転可能なシヤフトに付設されてなる 特許請求の範囲第6項記載の装置。(9) Furthermore, each container is equipped with a rotary stirring device, and all of the stirring devices are attached to a common rotatable shaft that extends vertically within the tank reactor. An apparatus according to claim 6. (10)硫酸カルシウム半水和物の粉砕した粒子を混合し希釈スラリを作成する 工程と、加圧によりスラリを加熱し約285°F(約140℃)まで上昇させる 工程と、高温スラリを加圧下で導管内をプラグ・フロウ状態で移動し半水和物の 大部分を針状種結晶として核形成されたアルファ半水和物に変換する工程と、高 温スラリを更に連続撹拌するタンクリアクタを加圧下で移動し撹拌して固形分を 懸濁状態に維持し粒子間接触を促進させ針状種結晶の軸方向及び半径方向の成長 を促進させて所定の平均直径及びアスペクト比のマイクロフアイパを作るスラリ 移動工程と、スラリを含むマイクロフアイパの圧力を減少する工程と、マイクロ フアイパからスラリ溶媒を分離する工程とを包有してなるアスペクト比の高い硫 酸カルシウムマイクロファイパを連続的に製造する方法。(10) Mix the crushed particles of calcium sulfate hemihydrate to create a diluted slurry. process and heating the slurry to approximately 285°F (approximately 140°C) using pressure. process, the hot slurry is moved under pressure in a conduit in a plug-flow state to form hemihydrate. The process of converting the majority to alpha hemihydrate nucleated as needle-shaped seed crystals and The tank reactor that continuously stirs the hot slurry is moved under pressure and stirred to remove solids. Axial and radial growth of acicular seed crystals by maintaining them in suspension and promoting interparticle contact A slurry that promotes microfibers with a predetermined average diameter and aspect ratio. a step of moving, a step of reducing the pressure of the microfiber piper containing the slurry, and a step of reducing the pressure of the microfiber piper containing the slurry; A high aspect ratio sulfur solution comprising the step of separating the slurry solvent from the fiber A method for continuously producing calcium acid microfibers. (11)スラリ加熱工程には更に圧力密封した混合弁内で約350°F(約17 0℃)でスラリとスチームとを混合しスラリ温度を迅速に上昇させる工程が包有 されてなる特許請求の範囲第10項記載の方法。(11) The slurry heating step further includes heating to approximately 350°F (approximately 17°F) in a pressure-sealed mixing valve. It involves the process of mixing slurry and steam at 0°C) and quickly raising the slurry temperature. 11. The method according to claim 10, which comprises: (12)スラリの温度をスラリ加熱工程からマイクロファイパ分離工程までに亙 り約285°F(約140℃)に維持してなる特許請求の範囲第10項記載の方 法。(12) The temperature of the slurry is maintained from the slurry heating process to the microfiber separation process. and maintained at about 285°F (about 140°C) as claimed in claim 10. Law. (13)スラリの当初に含まれる固形分としての硝酸カルシウム2水和物粒子を 約1/2〜約15重量%にしてなる特許請求の範囲第10項記載の方法。(13) Calcium nitrate dihydrate particles as the solid content initially contained in the slurry 11. The method of claim 10, wherein the amount is about 1/2 to about 15% by weight. (14)プラグ・フロウリアクタ導管内の高温スラリの滞留時間を約30〜60 秒にしてなる特許請求の範囲第10項記載の方法。(14) Residence time of high temperature slurry in plug flow reactor conduit approximately 30-60 11. The method according to claim 10, wherein the method is expressed in seconds. (15)連続撹拌するタンクリアクタ内の高温スラリの滞留時間を約4〜6分に してなる特許請求の範囲第10項記載の方法。(15) The residence time of high-temperature slurry in the tank reactor with continuous stirring is approximately 4 to 6 minutes. The method according to claim 10, which comprises: (16)スラリ移動工程には更にタンクリアクタ内に細かく粉砕した硫酸カルシ ウム粒子を追加導入して針状種結晶に付着堆積させる工程が包有されてなる特許 請求の範囲第10項記載の方法。(16) In the slurry transfer process, finely ground calcium sulfate is also added to the tank reactor. A patent that includes the process of introducing additional particles of aluminum and depositing them on the acicular seed crystal. The method according to claim 10. (17)スラリ移動工程には更にタンクリアクタ内に結晶成長剤または核形成禁 止剤を追加導入してマイクロファイパの成長を制御する工程が包有されてなる特 許請求の範囲第10項記載の方法。(17) The slurry transfer process also includes a crystal growth agent or nucleation inhibitor in the tank reactor. The special feature includes a step of controlling the growth of microfibers by introducing an additional inhibitor. The method according to claim 10. (18)スラリの当初に含まれる固形分としての硫酸カルシウム2水和物粒子を 約12重量%にしてなる特許請求の範囲第10項記載の方法。(18) Calcium sulfate dihydrate particles as the solid content initially contained in the slurry 11. The method of claim 10, comprising about 12% by weight. (19)細かに粉砕した硫酸カルシウム2水和物粒子を固形分として約1/2〜 15重量%含むスラリ水溶液を加圧下で約285°F(約140℃)まで加熱し 、連続する中空導管をプラグ・フロウ状態で移動させ硫酸カルシウム2水和物の 一部を硫酸カルシウムアルファ半水和物の針状種結晶に変換し、種結晶を含むス ラリを連続撹拌するタンクリアクタを移動し種結晶を成長させて平均アスペクト 比が45より大きく平均直径が1.5ミクロン以上のマイクロフアイパを作成し 、スラリにかかる圧力を大気圧レベルまで減少し、マイクロファイパからスラリ 溶媒を分離して得られた硫酸カルシウムマイクロファイパ。(19) Approximately 1/2 to 1/2 finely ground calcium sulfate dihydrate particles as solid content An aqueous slurry solution containing 15% by weight is heated under pressure to about 285°F (about 140°C). , calcium sulfate dihydrate is transferred through a continuous hollow conduit in a plug-flow state. A part of the calcium sulfate alpha hemihydrate is converted into acicular seed crystals, and a seed crystal containing seed crystal is Move the tank reactor that continuously stirs the liquid to grow seed crystals and adjust the average aspect. Create a microfiber with a ratio greater than 45 and an average diameter of 1.5 microns or more. , reduces the pressure on the slurry to atmospheric pressure levels and removes the slurry from the microfiber. Calcium sulfate microfiber obtained by separating the solvent.
JP2505488A 1989-03-16 1990-03-14 Calcium sulfate microfiber manufacturing method and device Pending JPH03504596A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32485489A 1989-03-16 1989-03-16
US324,854 1989-03-16

Publications (1)

Publication Number Publication Date
JPH03504596A true JPH03504596A (en) 1991-10-09

Family

ID=23265386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2505488A Pending JPH03504596A (en) 1989-03-16 1990-03-14 Calcium sulfate microfiber manufacturing method and device

Country Status (4)

Country Link
EP (1) EP0416089A4 (en)
JP (1) JPH03504596A (en)
CA (1) CA2024146A1 (en)
WO (1) WO1990011256A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014023997A (en) * 2012-07-26 2014-02-06 M Technique Co Ltd Method for manufacturing particulates
US10035186B2 (en) 2012-03-16 2018-07-31 M. Technique Co., Ltd. Solid gold-nickel alloy nanoparticles and production method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0876996B1 (en) * 1997-05-10 2001-12-19 SICOWA Verfahrenstechnik für Baustoffe GmbH & Co. KG Process for the preparation of calcium sulfate-alpha hemi-hydrate
EP1492602A1 (en) * 2002-04-02 2005-01-05 E.I. Du Pont De Nemours And Company Apparatus and process used in growing crystals
US20080029233A1 (en) * 2006-08-03 2008-02-07 Purevision Technology, Inc. Moving bed biomass fractionation system and method
US7588634B2 (en) * 2006-09-20 2009-09-15 United States Gypsum Company Process for manufacturing ultra low consistency alpha- and beta- blend stucco
WO2015085139A1 (en) 2013-12-06 2015-06-11 Georgia-Pacific Gypsum Llc Gypsum composite modifiers
US10023496B1 (en) 2017-06-16 2018-07-17 United States Gypsum Company No fiber calcination of gypsum for gypsum fiberboard
CN111850698A (en) * 2020-07-21 2020-10-30 上海畅清生态环境科技有限公司 Phosphogypsum whisker and preparation method thereof
CN112588250B (en) * 2020-11-04 2022-03-25 四川大学 Shell-and-tube seed crystal equipment for producing double-effect seed crystal by using titanium sulfate solution and manufacturing method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US757649A (en) * 1903-07-13 1904-04-19 William Brothers Manufacture of plaster-of-paris.
GB190403225A (en) * 1904-02-09 1904-03-10 Charles Calixte Ouvrard Improvements in Acetylene Gas Lamps particularly applicable for Motor-driven Road Vehicles.
US782321A (en) * 1904-02-29 1905-02-14 William Brothers Manufacture of crystalline gypsum applicable for filling purposes.
GB1051849A (en) * 1963-12-03
GB1198807A (en) * 1963-12-03 1970-07-15 Ici Ltd Continuous process for the production of calcium sulphate alpha-hemihydrate from gypsum
US3822340A (en) * 1972-03-27 1974-07-02 Franklin Key Calcium sulfate whisker fibers and the method for the manufacture thereof
US3961105A (en) * 1972-03-27 1976-06-01 Certain-Teed Products Corporation Method for the manufacture of coated calcium sulfate whisker fibers
US3977890A (en) * 1972-08-16 1976-08-31 Johns-Manville Corporation Method for the preparation of fibrous calcium sulfate hemihydrate
US3835219A (en) * 1972-08-16 1974-09-10 Johns Manville Method for the preparation of fibrous soluble calcium sulfate anhydrite
JPS577086B2 (en) * 1973-12-17 1982-02-08
US4029512A (en) * 1974-08-05 1977-06-14 Johns-Manville Corporation Method for the preparation of fibrous insoluble calcium sulfate anhydrite
FR2330449A1 (en) * 1975-08-20 1977-06-03 Lambert Ind Calcium sulphate hemihydrate mfr. by heating gypsum - using heat in prod. to preheat gypsum by heat-exchange
DE2621611C3 (en) * 1976-05-14 1981-06-25 Skw Trostberg Ag, 8223 Trostberg Inorganic fibers, processes for their production and their use
US4152408A (en) * 1977-11-25 1979-05-01 Certain-Teed Corporation Fibrous calcium sulfate
GB2011363B (en) * 1977-12-29 1982-07-14 Idemitsu Kosan Co Production of calcium sulphate
JPS56145116A (en) * 1980-04-14 1981-11-11 Idemitsu Kosan Co Ltd Continuous preparation of light gypsum
DE3239669A1 (en) * 1982-10-27 1984-05-03 Joh. A. Benckiser Gmbh, 6700 Ludwigshafen CONTINUOUS PROCESS FOR THE PRODUCTION OF INDUSTRIAL RECYCLABLE PLASTER FROM INDUSTRIAL WASTE PLASTER
DE3615739A1 (en) * 1986-05-09 1987-11-12 Benckiser Gmbh Joh A CONTINUOUS METHOD AND DEVICE FOR PRODUCING INDUSTRIALLY RECYCLABLE PLASTER FROM INDUSTRIAL WASTE PLASTER
JPH0566496A (en) * 1991-09-05 1993-03-19 Canon Inc Original cover member for image forming device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10035186B2 (en) 2012-03-16 2018-07-31 M. Technique Co., Ltd. Solid gold-nickel alloy nanoparticles and production method thereof
US11229949B2 (en) 2012-03-16 2022-01-25 M. Technique Co., Ltd. Solid gold-nickel alloy nanoparticle
JP2014023997A (en) * 2012-07-26 2014-02-06 M Technique Co Ltd Method for manufacturing particulates

Also Published As

Publication number Publication date
EP0416089A4 (en) 1991-08-07
EP0416089A1 (en) 1991-03-13
WO1990011256A1 (en) 1990-10-04
CA2024146A1 (en) 1990-09-17

Similar Documents

Publication Publication Date Title
US20090201760A1 (en) Vortex mixer and method of obtaining a supersaturated solution or slurry
JPH03504596A (en) Calcium sulfate microfiber manufacturing method and device
EP2252391B1 (en) Vortex mixer and method of obtaining a supersaturated solution or slurry
CN100572271C (en) Produce the method for precipitated silica from peridotites
CN102897815B (en) Nano-calcium carbonate carbonization reaction kettle
CN110026123A (en) A kind of flocculation medicament quantitatively dissolves and uniformly mixes add-on system
JP2008081329A (en) Method for manufacturing gypsum dihydrate having large particle size
KR20050013579A (en) Process for the production of precipitated calcium carbonates and product produced thereby
CN101914312B (en) Preparation method of nano activated calcium carbonate for coating
Wang et al. Hydrothermal synthesis of ZnSe hollow micropheres
CN105819471A (en) Method for producing baking soda large in particle size
CN202953834U (en) Nanometer calcium carbonate carbonation reaction still
CN101913640B (en) Method for preparing superfine activated calcium carbonate
CN100999622A (en) Aluminum hydroxide aggregate
JPS6320785B2 (en)
Yuan et al. Synthesis and characterization of nano hydroxylapatite by reaction precipitation in impinging streams
CN108321426A (en) A kind of preparation method and equipment of the nickel manganese cobalt acid lithium material of single-particle pattern
CN101987926B (en) Method for preparing nano-level active calcium carbonate for rubber and plastic
DE1667531B1 (en) PROCESS FOR THE MANUFACTURING OF ANHYDROUS CALCYUM HYDROPHOSPHATE FOR LUMINANTS
CN207805580U (en) Prepare the stirred reactor of dihydrate gypsum crystal
PL100624B1 (en) METHOD OF MAKING STEEL AMMONIUM PHOSPHATE
CN110330047A (en) Gypsum rotating crystal device, the method for preparing dihydrate gypsum, α high strength gypsum and plasterboard
RU2815928C1 (en) Method for production of liquid silicon fertilizers and process line for production of liquid silicon fertilizers
JP2024510707A (en) Process for continuous preparation of alpha calcium sulfate hemihydrate and granular gypsum
TW200405897A (en) Continuous process for the production and/or workup of polysaccharide derivatives