JPH0350453A - Freezing cycle - Google Patents
Freezing cycleInfo
- Publication number
- JPH0350453A JPH0350453A JP18320489A JP18320489A JPH0350453A JP H0350453 A JPH0350453 A JP H0350453A JP 18320489 A JP18320489 A JP 18320489A JP 18320489 A JP18320489 A JP 18320489A JP H0350453 A JPH0350453 A JP H0350453A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- refrigerant
- liquid
- liquid receiver
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007710 freezing Methods 0.000 title abstract description 3
- 230000008014 freezing Effects 0.000 title abstract description 3
- 239000003507 refrigerant Substances 0.000 claims abstract description 57
- 239000007788 liquid Substances 0.000 claims abstract description 56
- 238000010438 heat treatment Methods 0.000 claims abstract description 26
- 238000009835 boiling Methods 0.000 claims abstract description 25
- 238000005057 refrigeration Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000002184 metal Substances 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分腎] この発明は冷凍リイクルに関するものである。[Detailed description of the invention] [Industrial usage] This invention relates to frozen recycling.
[従来技術]
従来、沸点の異なる複数の成分を封入した冷凍サイクル
においては、その成分比をリーイクル内で制御すること
により目的のり゛イクル↑1能を得でいた。つまり、例
えば、特開昭61−66054号公報に示されているよ
うに、ヒートボンブでは暖房時に主冷媒に低沸点成分を
混合し、冷房侍には低沸点成分を分離・貯沼して主冷媒
のリ−イクルとし、冬場の外気からの熱の汲み上げと夏
場の低沸点成分による動力増の回避を両立さけている。[Prior Art] Conventionally, in a refrigeration cycle in which a plurality of components having different boiling points are sealed, the desired recycling capacity has been achieved by controlling the ratio of the components within the recycle. In other words, for example, as shown in Japanese Unexamined Patent Publication No. 61-66054, heat bombs mix low-boiling point components with the main refrigerant during heating, while cooling samurai separates and stores low-boiling point components as the main refrigerant. This makes it possible to both pump up heat from the outside air in the winter and avoid power increases due to low boiling point components in the summer.
[発明が解決しようとする課題J
しかしながら、その分離のために精留器を別体としてお
り、バルブも多くコス1〜高となっていた。[Problem to be Solved by the Invention J] However, a rectifier is provided separately for the separation, and the cost is 1 to 100% high due to the large number of valves.
この発明の目的は、簡単な構造でi生能を向上さぜるこ
とができる冷凍り゛イクルを促供することにある。An object of the present invention is to provide a refrigeration cycle that has a simple structure and can improve ionic performance.
[課題を解決するための千段]
この発明は、圧縮機と凝縮器と受液器と蒸発器とを順に
接続し、沸点の異なる複数の成分が砧環される冷凍リイ
クルにおいて、
前記受液器内に設けられ、当該受液器により分離ざれた
液冷媒が導かれて充墳ざれる貯留室と、前記貯留室の液
冷媒を加熱するための加熱手段と、サイクル能力に応じ
て前記加熱手段を制御して前記貯留室の液冷媒を加熱す
る制御手段とを備えた冷凍ザイクルをその要旨とするも
のである。[A Thousand Steps to Solve the Problems] The present invention provides a refrigerated recycling system in which a compressor, a condenser, a liquid receiver, and an evaporator are connected in order, and a plurality of components having different boiling points are ring-circulated. a storage chamber provided in the vessel, into which the liquid refrigerant separated by the liquid receiver is guided and filled; a heating means for heating the liquid refrigerant in the storage chamber; The gist of the invention is a freezing cycle including a control means for controlling the means and heating the liquid refrigerant in the storage chamber.
[作用]
サイクル能力に応じて、制御手段は加熱手段を制御して
貯留室の液冷媒を加熱する。その結果、貯留室の液冷媒
の高沸点成分の濃度が濃くなり、循環ざれる低沸点成分
の最が多くなる。[Operation] Depending on the cycle capacity, the control means controls the heating means to heat the liquid refrigerant in the storage chamber. As a result, the concentration of high boiling point components of the liquid refrigerant in the storage chamber increases, and the amount of low boiling point components that are circulated increases.
[実施例]
以下、この発明を自動車用空調装置に具体化した一実施
例を図面に従って説明する。[Example] Hereinafter, an example in which the present invention is embodied in an air conditioner for an automobile will be described with reference to the drawings.
第1図に示すように、圧縮機1と凝縮器2と受液器3と
膨張弁4と蒸発器5とが順に接続ざれ、冷凍ナイクルを
構成している。この冷凍リイクル内には沸点の異なる2
成分の冷媒が封入され、いわゆる混合冷媒リイクルとな
っている。As shown in FIG. 1, a compressor 1, a condenser 2, a liquid receiver 3, an expansion valve 4, and an evaporator 5 are connected in this order to constitute a refrigerated Nicle. There are two types of refrigerated recycle with different boiling points.
The component refrigerants are sealed, making it a so-called mixed refrigerant recycle.
受液器3は第2図に示すように、ケーシング6内には断
熱材よりなる仕切り壁7が設(ソられ、この仕切り壁7
にて第1の室8と貯留室としての第2の室9が区画され
ている。仕切り壁7の底部には多数の小穴10が形成さ
れ、又、仕切り壁7の上面には多数の小穴11が形成さ
れている。この小穴10,11により両室8,9が連通
している。As shown in FIG. 2, the liquid receiver 3 is provided with a partition wall 7 made of a heat insulating material in the casing 6.
A first chamber 8 and a second chamber 9 serving as a storage chamber are partitioned. A large number of small holes 10 are formed in the bottom of the partition wall 7, and a large number of small holes 11 are formed in the top surface of the partition wall 7. Both chambers 8 and 9 communicate with each other through the small holes 10 and 11.
第1の室8の上面には凝縮器2に接続された配管12が
配設され、第1の室8の底面付近には膨張弁4に接続さ
れた配管13が配設されている。A pipe 12 connected to the condenser 2 is disposed on the top surface of the first chamber 8, and a pipe 13 connected to the expansion valve 4 is disposed near the bottom surface of the first chamber 8.
受液器3の第2の室9の底部には分岐管14が接続され
、その分岐管14の他端は圧縮機1と凝縮器2との間と
接続されている。この分岐管14における受液器3の第
2の室9の入口部には焼結金属15が挿入されている。A branch pipe 14 is connected to the bottom of the second chamber 9 of the liquid receiver 3, and the other end of the branch pipe 14 is connected between the compressor 1 and the condenser 2. A sintered metal 15 is inserted into the inlet of the second chamber 9 of the liquid receiver 3 in the branch pipe 14 .
又、分岐管14には電磁開閉弁16が設【ノられている
。尚、焼結金属15の代りに絞り部材を設けてもよい。Further, the branch pipe 14 is provided with an electromagnetic on-off valve 16. Incidentally, a diaphragm member may be provided instead of the sintered metal 15.
本実施例では、分岐管14と電磁開閉弁16とから加熱
手段が構成ざれている。In this embodiment, the heating means is composed of the branch pipe 14 and the electromagnetic on-off valve 16.
又、第1図に示すように、空調装置の空気通路17の途
中には送風機1Bが設(ノられ、この送風機18の駆動
により内気若しくは外気が空気通路17を通して車室内
に送られるようになっている。Further, as shown in FIG. 1, a blower 1B is installed in the middle of the air passage 17 of the air conditioner, and when the blower 18 is driven, inside air or outside air is sent into the vehicle interior through the air passage 17. ing.
又、空気通路17には蒸発器5とヒータコア19とが配
置ざれ、エアミックスダンパ20の開度により蒸発器5
を通過した空気のうちヒータコ71つに入る空気と,入
らない空気の量を調節して両者の空気が混合され、所定
の温度に制御ざれる。In addition, an evaporator 5 and a heater core 19 are arranged in the air passage 17, and the evaporator 5 is adjusted depending on the opening degree of the air mix damper 20.
The amount of air that enters the heater coil 71 and the amount of air that does not enter the heater taco 7 is adjusted so that both airs are mixed and the temperature is controlled to a predetermined temperature.
このエアミックスダンパ20の開度調整はサーボモータ
21の駆動により行なわれる。又、室内温度センザ22
は車室内の温度を検出し、外気温度センサ23は外気の
温度を検出し、ざらに、日射量センサ24は日射屋を検
出する。そして、各センザ22,23.24の検出信号
は制御手段としてのコントローラ25に送られる。コン
トローラ25はこれらの信号に塁づいてザーボモータ2
1を駆動制御するとともに、前記電磁開閉弁16を開閉
制御する。The opening degree of the air mix damper 20 is adjusted by driving a servo motor 21. In addition, the indoor temperature sensor 22
detects the temperature inside the vehicle, the outside air temperature sensor 23 detects the temperature of the outside air, and the solar radiation sensor 24 detects the solar radiation source. Detection signals from each sensor 22, 23, and 24 are sent to a controller 25 as a control means. The controller 25 controls the servo motor 2 based on these signals.
1 and also controls the opening and closing of the electromagnetic on-off valve 16.
次に、このように構或した自動車用空調装置の作用を説
明する。Next, the operation of the automobile air conditioner constructed in this manner will be explained.
コン1〜ローラ25は案内温度センザ22,外気温1食
ヒンリ23,日!ll}J最ヒンサ24からの信号に基
づいてエアミックスダンパ20の開度の調整を行なうが
、吹出し空気温度をあまり低くずる必要かない場合には
電磁聞閉弁16を閉弁状態にする。Controller 1 to roller 25 have a guide temperature sensor 22, outside temperature 1 meal hint 23, day! The opening degree of the air mix damper 20 is adjusted based on the signal from the high temperature sensor 24, but if the temperature of the blown air does not need to be lowered too much, the electromagnetic valve 16 is closed.
その結果、冷凍サイクルは沸点の異なる2成分の冷媒が
循環される。つまり、圧縮機1により高温・高圧のガス
冷媒が凝縮器2に送られ、凝縮器2により高温・高圧の
万ス冷媒が冷やされて液化され、受液器3の第1の室8
に液冷媒が貯えられ、膨張弁4により高圧の液冷媒を低
圧・低温の霧状にし、蒸発器5により蒸発する。このと
き、圧縮機1と凝縮器2との間のガス冷媒は所定の過熱
度をもっている。そして、送風機18による空気が蒸発
器5により熱交換されるとともにヒータ]ア19を通っ
て車室内に吹出される。As a result, two refrigerant components having different boiling points are circulated in the refrigeration cycle. That is, the compressor 1 sends a high-temperature, high-pressure gas refrigerant to the condenser 2, and the condenser 2 cools and liquefies the high-temperature, high-pressure gas refrigerant into the first chamber 8 of the liquid receiver 3.
A liquid refrigerant is stored in the evaporator 5, and the high-pressure liquid refrigerant is turned into a low-pressure, low-temperature mist by an expansion valve 4, and evaporated by an evaporator 5. At this time, the gas refrigerant between the compressor 1 and the condenser 2 has a predetermined degree of superheat. The air generated by the blower 18 undergoes heat exchange with the evaporator 5 and is blown into the vehicle interior through the heater 19.
又、冷房時において冷房負荷が高いと、コン1一口−ラ
25はエアミックスダンパ20の開度を第1図中a位置
に制御して蒸発器5で冷却した風をヒータコア19を通
すことなくそのまま冷風として車室内に吹出させる。In addition, when the cooling load is high during cooling, the controller 25 controls the opening degree of the air mix damper 20 to position a in FIG. It is blown directly into the vehicle interior as cold air.
コントローラ25は、冷房負荷が高いとくエアミックス
ダンパ20がa位置となると〉、電磁開閉弁16を開弁
状態にする。そして、電磁開閉弁16が聞弁状態となる
と、圧縮機1の出口の過熱度をもった刀ス冷媒が分岐管
14によって受液器3の第2の室9の底部に導入ざれる
。分離器3の第2の室9内の液冷媒【,J,焼結金属(
又は、絞り)15により気泡状になったガス冷媒の過熱
度によって加熱され、蒸允し′Pすい低沸点成分が気化
し、上部の小穴11から1ナイクルへ出て循環リ゜る。When the air mix damper 20 is at position a when the cooling load is high, the controller 25 opens the electromagnetic on-off valve 16. When the electromagnetic on-off valve 16 enters the open state, the superheated refrigerant at the outlet of the compressor 1 is introduced into the bottom of the second chamber 9 of the liquid receiver 3 through the branch pipe 14. The liquid refrigerant in the second chamber 9 of the separator 3 [, J, sintered metal (
Or, it is heated by the degree of superheating of the gas refrigerant that has become bubbles by the throttle 15, and the low boiling point components are vaporized and exit from the small hole 11 at the top to the 1Nicle for circulation.
その結果、受液器3の第2の室9内は高沸点成分の冷媒
が濃縮ざれ、定常的に滞留することとなる。As a result, in the second chamber 9 of the liquid receiver 3, the refrigerant having a high boiling point component becomes concentrated and constantly stagnates therein.
このように、冷凍リイクルの冷媒混合比を低沸点成分を
多くすることにより、低温の蒸発温度を得ることができ
る。この際に、冷房負荷が低下すると同時に混合比を変
えて高洲点成分もlナイクル内を循環させ、圧縮機1へ
付与する動力の増加を抑制するようになっている。In this way, a low evaporation temperature can be obtained by increasing the refrigerant mixture ratio of refrigerant recycle to include low boiling point components. At this time, at the same time as the cooling load decreases, the mixture ratio is changed so that the high point component is also circulated through the lnicle, thereby suppressing an increase in the power applied to the compressor 1.
このように本実施例では、沸点の異なる2成分の冷媒が
循環される冷凍り゛イクルにおいて、受液器3内に受液
器3により分離された液冷媒が充墳ざれる第2の室9(
貯留室〉を設【ノるとともに第2の室9の液冷媒を加熱
するための分岐管14と電磁開閉弁16(加熱手段)と
を設1プ、コントローラ25により高いザイクル能力が
必要なときに電磁聞閉弁16を開弁させて第2の室9の
液冷媒を加熱するようにした。In this way, in this embodiment, in a refrigeration cycle in which two component refrigerants having different boiling points are circulated, the liquid receiver 3 is provided with a second chamber in which the liquid refrigerant separated by the receiver 3 is filled. 9(
When a high cycle capacity is required by the controller 25, a branch pipe 14 and an electromagnetic shut-off valve 16 (heating means) are installed to heat the liquid refrigerant in the second chamber 9. The liquid refrigerant in the second chamber 9 is heated by opening the solenoid valve 16.
その結果、能力が必要な高負荷時には、分岐管14に設
けられた電磁開閉弁16が聞かれ、圧縮機1、凝縮器2
、受液器3の第1の室8、膨張弁4、蒸発器5を順に低
沸点成分の多い冷媒が循環し、逆に受液器3の第2の室
9に高沸点成分の冷媒が濃縮滞留するため、低温が得ら
れる。一方、負荷が低下した時には、電磁開閉弁16が
閉じられ、成分分#t機能を停止することができ、圧縮
践1、凝縮器2、受液器3の第1の室8、膨張弁4、蒸
発器5の冷媒は、リ−イクルへ封入した低・高沸点冷媒
の混合比に等しい成分比で循環するため能力をセーブし
、圧縮機1の圧縮に必要な動力を低減することができる
。よって、受液器3内に第2の室9を設けるとともに1
つのバルブ(電磁開閉弁16)を設けるだけでよいので
、全体の構造を簡単にでき、コストダウンを図ることが
できる。As a result, during high loads that require high capacity, the electromagnetic on-off valve 16 provided in the branch pipe 14 is activated, and the compressor 1, condenser 2
The refrigerant containing many low boiling point components is circulated in the first chamber 8 of the liquid receiver 3, the expansion valve 4, and the evaporator 5 in this order, and conversely, the refrigerant containing high boiling point components is circulated in the second chamber 9 of the liquid receiver 3. Because it concentrates and stays there, a low temperature is obtained. On the other hand, when the load decreases, the electromagnetic on-off valve 16 is closed and the component #t function can be stopped, and the compression chamber 1, the condenser 2, the first chamber 8 of the liquid receiver 3, and the expansion valve 4 Since the refrigerant in the evaporator 5 circulates at a component ratio equal to the mixing ratio of the low and high boiling point refrigerants sealed in the recycle, capacity can be saved and the power required for compression by the compressor 1 can be reduced. . Therefore, the second chamber 9 is provided in the liquid receiver 3, and the first
Since only one valve (electromagnetic on-off valve 16) is required, the overall structure can be simplified and costs can be reduced.
又、高負荷時に、受液器3の第2の室9の液冷媒を加熱
するための熱はもともと圧縮機1と凝縮器2の間のガス
冷媒の過熱度分であるので、冷凍リイクルの効率を低下
させることはない。Furthermore, during high loads, the heat for heating the liquid refrigerant in the second chamber 9 of the liquid receiver 3 is originally the degree of superheating of the gas refrigerant between the compressor 1 and the condenser 2, so There is no reduction in efficiency.
さらに、受液器3の第2の室9の底部に設けた分岐管1
4の人口部に焼結金属15(又以絞り)を用いたので、
受液器3の第2の室9を上界する過熱度をもった気泡が
細かくなり第2の室9の液冷媒と熱交換しやすくなる。Further, a branch pipe 1 provided at the bottom of the second chamber 9 of the liquid receiver 3
Since we used sintered metal 15 (or diaphragm) for the population part of 4,
The superheated bubbles rising above the second chamber 9 of the liquid receiver 3 become finer and can easily exchange heat with the liquid refrigerant in the second chamber 9.
又、第2の室9の液冷媒が高沸点成分に濃縮ざれる過程
で、減少しないように第1の室8の循環冷媒が仕切り壁
7の小穴10を通じて第2の室9内に入る。尚、この小
穴10と上部のガス抜き用の小穴11の両方の穴径とそ
の数を調整することで第2の室9内の液冷媒は気泡を含
んだ状態で第2の室9内を満たすーような設計を行なう
ことができる。Further, in the process of concentrating the liquid refrigerant in the second chamber 9 to high boiling point components, the circulating refrigerant in the first chamber 8 enters the second chamber 9 through the small hole 10 in the partition wall 7 so as not to be reduced. By adjusting the diameter and number of both this small hole 10 and the small hole 11 for gas venting in the upper part, the liquid refrigerant in the second chamber 9 can flow inside the second chamber 9 in a state containing bubbles. We can create a design that satisfies your needs.
尚、この発明は上記実施例に限定されることはなく、例
えば、上記実施例では受液器3の第2の室9への熱源と
して圧縮機1と凝縮器2の間の過熱度をもったガス冷媒
を利用したが、第3図に示すように、第2の室9の内に
ニクロム線等の発熱体26を加熱手段として設置し、電
源27と発熱体26とを接点2Bを介して接続する。そ
して、高負荷■5に接点28を閉じることにより允熱体
26を発熱させる。こうすることにより、分岐管14が
省略できてシステムが簡単となる。Note that the present invention is not limited to the above-mentioned embodiment. For example, in the above-mentioned embodiment, the degree of superheat between the compressor 1 and the condenser 2 is used as a heat source to the second chamber 9 of the liquid receiver 3. However, as shown in FIG. 3, a heating element 26 such as a nichrome wire is installed in the second chamber 9 as a heating means, and the power source 27 and the heating element 26 are connected through the contact 2B. Connect. Then, by closing the contact point 28 under high load (5), the heating element 26 is caused to generate heat. By doing so, the branch pipe 14 can be omitted and the system becomes simple.
又、第4図に示すように、ヒー1ヘボンブに応用しても
よい。同図において、29は四方弁、30〜33は逆止
弁、34は室外熱交換器、35は室内熱交換器である。Further, as shown in FIG. 4, the present invention may be applied to a heat bomb. In the figure, 29 is a four-way valve, 30 to 33 are check valves, 34 is an outdoor heat exchanger, and 35 is an indoor heat exchanger.
そして、暖房時において暖房負荷の大きいときは電磁開
閉弁16を開づ↑状態にして低沸点成分を多くし、暖房
負荷が低下した後は低・高沸点成分を循環させるように
してもよい。Then, during heating, when the heating load is large, the electromagnetic on-off valve 16 may be opened to the ↑ state to increase the low boiling point components, and after the heating load has decreased, the low and high boiling point components may be circulated.
ざらに、混合冷媒の成分の分離に限らず、例えば、従来
の単一成分冷媒(例えば、R12)を刺入した冷凍サイ
クルに対しても適用できる。一般に冷凍サイクルには冷
凍機の油が圧縮機の潤滑の目的で封入ざれ、冷媒に溶解
してリーイクルを循環させているが、油は沸点が高いた
め特に冷房時冷媒と油の混合による沸点上昇によって蒸
允湿度が高くなって冷房能力を低下させている。分岐管
14の78磁開閉5t16を聞(ノると受液器3の第2
の室9へ高沸点の浦か濃縮}j{}留するため、リイク
ル内の循環する冷媒(例えば、R12)は抽をほとんど
含まないため高純度の冷媒となって、上記冷媒能力の低
下を阻止できる。In general, the present invention is not limited to separating the components of a mixed refrigerant, but can also be applied to, for example, a refrigeration cycle in which a conventional single-component refrigerant (for example, R12) is inserted. Generally, oil from the refrigerating machine is sealed in the refrigeration cycle for the purpose of lubricating the compressor, and is dissolved in the refrigerant to circulate the recycle. However, since oil has a high boiling point, the boiling point increases when the refrigerant and oil are mixed, especially during cooling. This increases vapor humidity and reduces cooling capacity. Listen to the 78 magnetic opening/closing 5t16 of the branch pipe 14 (when you hear it, the second
Since the refrigerant with a high boiling point is concentrated into the chamber 9 of the recycle, the refrigerant circulating in the recycle (for example, R12) contains almost no effluent, so it becomes a high-purity refrigerant and prevents the above-mentioned decrease in refrigerant capacity. It can be prevented.
又、負荷状態の検出は、負荷が高いほど大きな冷媒流損
、高い冷媒圧力、膨張弁の聞度、冷房の風橙をもたらす
送風機の速度等を用いても一二い。The load state may also be detected using the following information: the higher the load, the greater the refrigerant flow loss, the higher the refrigerant pressure, the expansion valve's level, the speed of the blower that produces the orange cooling air, etc.
[発明の効果]
以上詳述したようにこの発明によれば、簡単な構造で性
能を向上さぜることかできる浸れた効果を発揮する。[Effects of the Invention] As described in detail above, the present invention provides a significant effect of improving performance with a simple structure.
第1図は実施例の車両用空調装固を示寸図、第2図&よ
受液器を示す図、第3図は別例の受液器を示す図、第4
図は別例の冷凍ザイクルを示す図である。
1は圧縮機、2【よ凝縮器、3は受液器、5(よ蒸発器
、9は貯留室としての第2の室、14は加熱手段を構成
する分岐管、16は加熱手段を措成ザる電磁開閉弁、2
5は制御手段としてのコンl・口ーノ。Figure 1 is a dimensional drawing of a vehicle air conditioning system according to an embodiment, Figure 2 is a diagram showing a liquid receiver, Figure 3 is a diagram showing another example of a liquid receiver, and Figure 4 is a diagram showing a liquid receiver of another example.
The figure shows another example of a frozen cycle. 1 is a compressor, 2 is a condenser, 3 is a liquid receiver, 5 is an evaporator, 9 is a second chamber as a storage chamber, 14 is a branch pipe constituting a heating means, and 16 is a heating means. Solenoid on-off valve, 2
5 is a controller as a control means.
Claims (1)
沸点の異なる複数の成分が循環される冷凍サイクルにお
いて、 前記受液器内に設けられ、当該受液器により分離された
液冷媒が充墳される貯留室と、 前記貯留室の液冷媒を加熱するための加熱手段と、 サイクル能力に応じて前記加熱手段を制御して前記貯留
室の液冷媒を加熱する制御手段とを備えたことを特徴と
する冷凍サイクル。[Claims] 1. A compressor, a condenser, a liquid receiver, and an evaporator are connected in order,
In a refrigeration cycle in which a plurality of components having different boiling points are circulated, a storage chamber is provided in the liquid receiver and filled with a liquid refrigerant separated by the liquid receiver, and the liquid refrigerant in the storage chamber is heated. A refrigeration cycle comprising: a heating means for heating the liquid refrigerant in the storage chamber; and a control means for heating the liquid refrigerant in the storage chamber by controlling the heating means according to cycle capacity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18320489A JPH0350453A (en) | 1989-07-15 | 1989-07-15 | Freezing cycle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18320489A JPH0350453A (en) | 1989-07-15 | 1989-07-15 | Freezing cycle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0350453A true JPH0350453A (en) | 1991-03-05 |
Family
ID=16131598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18320489A Pending JPH0350453A (en) | 1989-07-15 | 1989-07-15 | Freezing cycle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0350453A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7137625B2 (en) | 2002-02-12 | 2006-11-21 | Ricoh Company, Ltd. | Sheet finisher including means for setting cutting position image forming system including the sheet finisher |
WO2021240800A1 (en) * | 2020-05-29 | 2021-12-02 | 三菱電機株式会社 | Refrigeration cycle device |
-
1989
- 1989-07-15 JP JP18320489A patent/JPH0350453A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7137625B2 (en) | 2002-02-12 | 2006-11-21 | Ricoh Company, Ltd. | Sheet finisher including means for setting cutting position image forming system including the sheet finisher |
US7458567B2 (en) | 2002-02-12 | 2008-12-02 | Ricoh Company, Ltd. | Sheet finisher and image forming system using the same |
US7822378B2 (en) | 2002-02-12 | 2010-10-26 | Ricoh Company, Ltd. | Sheet finisher and image forming system using the same |
WO2021240800A1 (en) * | 2020-05-29 | 2021-12-02 | 三菱電機株式会社 | Refrigeration cycle device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100419564B1 (en) | Refrigerant cycle system with hot-gas bypass structure | |
US5771700A (en) | Heat pump apparatus and related methods providing enhanced refrigerant flow control | |
AU2004237783B2 (en) | Heat pump and heat pump system | |
USRE40499E1 (en) | Pulsed flow for capacity control | |
US5174123A (en) | Methods and apparatus for operating a refrigeration system | |
US4326868A (en) | Refrigeration system utilizing a gaseous refrigerant bypass | |
US6971246B2 (en) | Vehicle air conditioner with front and rear air conditioning units | |
US4122687A (en) | Refrigeration system with low energy defrost | |
CA2140179C (en) | Two mop expansion valves, one pressure setting for heating mode and one for cooling mode | |
CA2011741C (en) | Transport refrigeration system having means for enhancing the capacity of a heating cycle | |
JP2017171284A (en) | Gas liquid separation/liquid-receiving device, and heat pump system | |
EP0295894B1 (en) | Transport refrigeration system having means for enhancing the capacity of a heating cycle | |
JP2014213689A (en) | Vehicle air conditioner and expansion valve | |
JPH05142294A (en) | Thermal shock tester | |
JPH0350453A (en) | Freezing cycle | |
JP4263646B2 (en) | Air conditioner for vehicles | |
US2133961A (en) | Refrigeration apparatus | |
JP3356386B2 (en) | Environmental test equipment using refrigerant switching type refrigerator | |
JPH08296942A (en) | Freezer-refrigerator and its controlling method | |
EP1260776B1 (en) | A heat exchanger for an air conditioning system | |
JPH07132729A (en) | Air conditioner | |
JPH08207547A (en) | Automobile air conditioner | |
JPH07294041A (en) | Refrigerator | |
JPH0699729A (en) | Heat pump type air conditioner for vehicle | |
KR20220073000A (en) | Automotive air conditioning system |