JPH03503277A - Method for producing thin film perovskite phase lead scandium tantalate - Google Patents

Method for producing thin film perovskite phase lead scandium tantalate

Info

Publication number
JPH03503277A
JPH03503277A JP1511695A JP51169589A JPH03503277A JP H03503277 A JPH03503277 A JP H03503277A JP 1511695 A JP1511695 A JP 1511695A JP 51169589 A JP51169589 A JP 51169589A JP H03503277 A JPH03503277 A JP H03503277A
Authority
JP
Japan
Prior art keywords
lead
scandium
heated
tantalum
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1511695A
Other languages
Japanese (ja)
Inventor
トランドル,クライヴ
ハズデル,ニール バーナード
Original Assignee
プレッシイ オウヴァーシーズ リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by プレッシイ オウヴァーシーズ リミテッド filed Critical プレッシイ オウヴァーシーズ リミテッド
Publication of JPH03503277A publication Critical patent/JPH03503277A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/409Oxides of the type ABO3 with A representing alkali, alkaline earth metal or lead and B representing a refractory metal, nickel, scandium or a lanthanide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 薄膜ペロブスカイト相鉛スカンジウムタンクレートの製造方法 本発明は薄膜ペロブスカイト(pe rov sk i te)相鉛スカンジウ ムタンタレートの製造方法、特に圧電装置用途の薄膜を製造する有機金属化学蒸 着(MOCVD)法の改良に関する。[Detailed description of the invention] Method for producing thin film perovskite phase lead scandium tankrate The present invention is based on thin film perovskite (perovskite) phase lead scandiate. Methods for producing mutantalate, especially organometallic chemical vapors for producing thin films for piezoelectric devices. Concerning improvements in the MOCVD method.

セラミック誘導熱検出器を製作する場合、材料の薄膜片を製造する必要が多い。When making ceramic induction heat detectors, it is often necessary to fabricate thin strips of material.

従来、このためには、面倒な、時間のかかるラッピング及び切削法を適用してい た。また、薄膜セラミックの代替法として、これらセラミックの最近開発された 金属有機プリカーサ−を利用する方法が広く使用されている。これら方法では、 金属有機溶液から金属有機化学蒸着(MOCV D)によって薄膜を蒸着する。Traditionally, this involves applying cumbersome and time-consuming lapping and cutting methods. Ta. Also, as an alternative to thin-film ceramics, recently developed Methods utilizing metal-organic precursors are widely used. In these methods, Thin films are deposited by metal organic chemical vapor deposition (MOCVD) from metal organic solutions.

これらいずれの方法も、厚さが01μ未満か、それ以上になるように、セラミッ ク薄膜を制御しながら蒸着する。In both of these methods, the ceramic is Controlled deposition of thin films.

これら方法は、チタン酸鉛等の物質に対して開発され、結果はよいが、鉛スカン ジウムタンクレート(PST)に応用できない。というのは、所要の体心立方( ペロブスカイト)結晶構造のPST薄膜を蒸着できないからである。These methods have been developed for materials such as lead titanate and have shown good results, but lead scans It cannot be applied to dium tank rate (PST). This is because the required body-centered cubic ( This is because a PST thin film having a perovskite (perovskite) crystal structure cannot be deposited.

従来、金属有機プリカーサ−から鉛スカンジウム及び特表平3−503277  (2) タンタル酸化物を共蒸着しても、生成した鉛スカンジウムタンタレートが面心立 方相(パイロクロア−py r。Conventionally, from metal-organic precursors to lead scandium and Special Table of Contents Hei 3-503277 (2) Even if tantalum oxide is co-deposited, the produced lead scandium tantalate will not stand out. Hoso (pyrochlore-pyr.

chlore)のみを呈するか、あるいは最善でも、望ましくないf、c、c、 相を高率で含有する体心立方相(ペロブスカイト)を呈する薄膜を得られるに過 ぎない。本出願人は、共願である、英国特許出願第8809955.1号に前記 問題の一つの解決法を開示している。しかし、この方法は、4つの段階からなる 。即ち、酸化スカンジウム及び酸化タンタルを共蒸着して、薄膜を形成する第1 段階;この薄膜をアニーリングする第2段階;このアニーリングした薄膜に酸化 鉛を蒸着する第3段階:そしてこの結果得られた複層を再度アニーリングして、 ペロブスカイト相を呈する鉛スカンジウムタンタレート化合物を得る第4段階で ある。この方法は前記間コに一つの解決を与えるが、にもかかわらず時間がかか り、従って完全に満足のいくものではない。chlore) or, at best, undesirable f, c, c, It is possible to obtain a thin film exhibiting a body-centered cubic phase (perovskite) containing a high proportion of Ginai. The applicant has filed the above patent application in co-applicant UK Patent Application No. 8809955.1. Discloses one solution to the problem. However, this method consists of four steps. . That is, the first step is to co-evaporate scandium oxide and tantalum oxide to form a thin film. Step: Annealing this thin film Second step: Oxidizing this annealed thin film A third step of depositing lead: the resulting multilayer is then re-annealed and In the fourth step to obtain a lead scandium tantalate compound exhibiting a perovskite phase. be. Although this method provides a solution to the above problem, it is nevertheless time consuming. and therefore not completely satisfactory.

本発明の目的は、この問題をより直接的に解決する方法を提供することにある。The purpose of the present invention is to provide a method for solving this problem more directly.

即ち、本発明によれば、気相有機金属試薬から3種類の金属酸化物すべてを共蒸 着して、薄膜を形成し、これを1工程でアニーリングして、ペロブスカイトPS Tを形成できることが見いだされた。条件が適当ならば、アニーリングをしなく ても、酸化物がペロブスカイト相として蒸着できる。That is, according to the present invention, all three metal oxides can be co-evaporated from a gas-phase organometallic reagent. perovskite PS, which is then annealed in one step to form a thin film. It has been found that T can be formed. If the conditions are suitable, do not annealing. However, the oxide can be deposited as a perovskite phase.

本発明は、酸素及び有機金属鉛スカンジウム及びタンタルのガス状試薬を混合室 に導入して、ガス混合物を形成し、そしてこのガス混合物を反応器に導入し、加 水分解剤を存在させた状態で該混合物を加熱基体に暴露して、該基体上に薄膜を 形成する工程からなるR膜ペロブスカイト相鉛スカンジウムタンタレートの製造 方法を提供するものである。The present invention combines oxygen and organometallic lead scandium and tantalum gaseous reagents into a mixing chamber. is introduced into the reactor to form a gas mixture, and the gas mixture is introduced into the reactor and processed. The mixture is exposed to a heated substrate in the presence of a water splitting agent to form a thin film on the substrate. Production of R film perovskite phase lead scandium tantalate consisting of the process of forming The present invention provides a method.

条件が適当ならば、即ちガス状試薬が化学量論量比で混合されている場合には、 ペロブスカイト相鉛スカンジウムタンクレート薄膜を直接形成できる。別な条件 では、前記工程に引き続いて、基体のアニーリングを行うことによって上記ペロ ブスカイトを形成できる。If the conditions are suitable, i.e. when the gaseous reagents are mixed in stoichiometric proportions, Perovskite phase lead scandium tankrate thin films can be directly formed. different conditions Next, following the above steps, the above perforation is achieved by annealing the substrate. Can form buskites.

なお、加水分解は、基体/ガス界面で生じる複雑な熱分解反応時に起きると考え られる。つまり、水蒸気の代わりに、例えば揮発性アルコール(即ち、低級アル コール)等の別な加水分解剤も使用することができる。It is believed that hydrolysis occurs during a complex thermal decomposition reaction that occurs at the substrate/gas interface. It will be done. This means that instead of water vapor, for example volatile alcohols (i.e. lower Other hydrolyzing agents can also be used, such as (coal).

先願である英国特許出願第8809955;  1号明細書に記載したの同じ金 属有機試薬を使用することができる。即ち、酸化鉛については、任意の揮発性鉛 化合物が使用できる。好ましいのは、次式で示すような、鉛ターシャリーブトキ シド等の鉛アルコキンドあるいはβ−ジケトネートである。Earlier British Patent Application No. 8809955; Same gold as stated in Specification No. 1 Organic reagents of the genus can be used. That is, for lead oxide, any volatile lead Compounds can be used. Preferably, a lead tertiary-button metal, as shown in the following formula: These are lead alcokindes such as sido or β-diketonates.

式中、R2は好ましくは水素であるが、ハロゲン又は低級アルキルでもよい。R o及びR”はそれぞれアルキル、アリール、アルコキシ又はフッ素化(fluo renated)アルキルから選択する。In the formula, R2 is preferably hydrogen, but may also be halogen or lower alkyl. R o and R'' are each alkyl, aryl, alkoxy or fluorinated (fluo renated) alkyl.

才た、酸化スカンジウムについては、次式のβ−ジケトネート類が使用できる。For scandium oxide, β-diketonates of the following formula can be used.

但し、R1、Ro及びR”は前と同じ定義である。However, R1, Ro and R'' have the same definitions as before.

また、酸化タンタルについては、メトキシドやエトキシド等のタンクルアルコキ シドが使用できる。あるいは、次式に示すようなアルコキシタンタルβ−ジケト ネートも好適である。Regarding tantalum oxide, tantalum alkoxides such as methoxide and ethoxide are also used. Can be used by Sid. Alternatively, an alkoxytantalum β-diketo as shown in the following formula Nate is also suitable.

U余白コ 但し、R,はアルキルで、R2、R″及びR”の定義は前述の通りである。U margin However, R is alkyl, and the definitions of R2, R'' and R'' are as described above.

本発明において好ましいプリカーサ−は次の通りである。Preferable precursors in the present invention are as follows.

(1)鉛ビス(2,2−ジメチル−6,6,7,7,8,8,8−ヘプタフルオ ロオクタン−3,5−ジオ不(2)スカンジウムトリス(2,2−ジメチル−6 ,6,7,7,8,8,8−ヘプタフルオロオクタン−3,5−ジオ不−1・、 及び (3)タンタルペンタエトキシド。(1) Lead bis(2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro) looctane-3,5-dioun(2) scandium tris(2,2-dimethyl-6 ,6,7,7,8,8,8-heptafluorooctane-3,5-dioun-1. as well as (3) Tantalum pentaethoxide.

プリカーサ−(1)及び(2)はそれぞれ鉛Fod及びスカンジウムFodと呼 ばれている。Precursors (1) and (2) are called lead Fod and scandium Fod, respectively. It's been revealed.

本明細書に添付した図面について説明すると、第1図は本発明によりMOCVD 蒸着を実施する装置特表千3−503277 (3) の該略図であり、そして 第2図及び第3図は本発明により製造したペロブスカイト相鉛スカンジウムタン クレート薄膜(アニーリングを行ったものと、行わなかったもの)についてのX 線回折曲線図である。To explain the drawings attached to this specification, FIG. Equipment for performing vapor deposition Special Table 13-503277 (3) , and Figures 2 and 3 show perovskite phase lead scandium tan produced according to the present invention. X for crate thin films (with and without annealing) It is a line diffraction curve diagram.

以下、各図面について本発明の実施態様を説明する。Embodiments of the present invention will be described below with reference to each drawing.

但し、以下の説明は例示のみを目的としている。However, the following description is for illustrative purposes only.

第1図に示す装置は1絹6つの流量制御器1.3.5.7.9及び11.1組4 つの加熱されたステンレスチール製のバブル発生器13.15.17及び19、 混合室21、及び反応器23を備えている。基体25はヒーター27上の反応器 23内部に設定する。排ガスは、低温トラップ31、スロットルバルブ33、前 段トラップ35、ルーツポンプ37及び回転ポンプ39からなるポンプ装置29 によって反応器23から除去する。反応器23には、UV/可視光窓41及び容 量形圧力計43を設ける。例えばアルゴン等の不活性ガスを流量制御器のひとつ 、即ち制御器1を介して直接的に、あるいはそれぞれステンレススチール製のバ ブル発生器のうちの3つの発生器13.15及び17及び流量制御器のうちの3 つの制御器2.5、及び7を介して間接的に、混合室21に導入する。これら3 つのバブル発生器13.15及び17のそれぞれには有機金属鉛、スカンジウム 及びタンタルプリカーサ−を装入しておく。これらの蒸気も混合室21に導入す る。そして、残りの流量制御器、即ち制御器11を介して混合室21に直接導入 する酸素と混合する。第2導入口47に隣接して設けた第1導入口45から反応 器23にガスと蒸気の混合物を装入する。The apparatus shown in Figure 1 includes 1 silk 6 flow controllers 1.3.5.7.9 and 11.1 sets 4 two heated stainless steel bubble generators 13.15.17 and 19; It includes a mixing chamber 21 and a reactor 23. Substrate 25 is a reactor on heater 27 Set inside 23. Exhaust gas is sent to the cold trap 31, throttle valve 33, front Pump device 29 consisting of stage trap 35, roots pump 37 and rotary pump 39 is removed from the reactor 23 by. The reactor 23 has a UV/visible window 41 and a container. A volume type pressure gauge 43 is provided. For example, one of the flow controllers for inert gas such as argon. , i.e. directly via the controller 1 or in each case via a stainless steel bar. 3 of the bull generators 13.15 and 17 and 3 of the flow controllers It is introduced into the mixing chamber 21 indirectly via two controllers 2.5 and 7. These 3 Each of the two bubble generators 13.15 and 17 contains organometallic lead, scandium and tantalum precursor are charged. These vapors are also introduced into the mixing chamber 21. Ru. Then, it is directly introduced into the mixing chamber 21 via the remaining flow rate controller, that is, the controller 11. mix with oxygen. Reaction occurs from the first inlet 45 provided adjacent to the second inlet 47. The vessel 23 is charged with a mixture of gas and steam.

残りの加熱されたステンレススチール製バブル発生器、即ち発生器19(水を装 入しである)から第2導入口47を介して水蒸気を装入する。場合によっては、 不活性ガスを残りの流量制御器9及びバブル発生器19を介して装入してもよい 。The remaining heated stainless steel bubble generator, generator 19 (filled with water) Steam is introduced through the second inlet 47 from the inlet (inlet). In some cases, Inert gas may be introduced via the remaining flow controller 9 and bubble generator 19 .

鉛スカンジウムタンタレート薄膜の蒸着は次のようにして行う。The lead scandium tantalate thin film is deposited as follows.

プリカーサ−(1)、(2)及び(3)を別々に加熱して、真空状態でバブル連 行ガス流れによって運ぶことができる温度にする。各プリカーサ−(1)、(2 )及び(3)について好適な温度は(1)80°C3(2)90℃及び(3)5 5℃で、それぞれのガス流■は10110及び455cmである。次に、蒸気を 混合室21に移して、アルゴン(4sscm)及び酸素(23sscm)と混合 した後、例えばサファイヤ、酸化マグネじ′ウノ・や窒化アルミニウム等であれ ばよい、加熱された基体25を入れた反応器23にガス7/蒸気混合物を送り、 好適には、650℃に加熱して、有機金属を熱分解1−1鉛、スカンジウム及び タンクルの酸化物膜を形成する。Precursors (1), (2) and (3) are heated separately and placed in a bubble chain under vacuum. line to a temperature that can be carried by the gas flow. Each precursor (1), (2 ) and (3), the preferred temperatures are (1) 80°C, (2) 90°C, and (3) 5 At 5°C, the respective gas flows are 10110 and 455 cm. Then steam Transfer to mixing chamber 21 and mix with argon (4sscm) and oxygen (23sscm) After that, be it sapphire, magnetic oxide, aluminum nitride, etc. The gas 7/steam mixture is then fed into the reactor 23 containing the heated substrate 25; Preferably, the organic metal is heated to 650° C. to pyrolyze 1-1 lead, scandium and Forms a tankle oxide film.

有機金属蒸気を反応器に導入する導入口45における、あるいはその付近におけ るガス流れに水蒸気を導入する場合には、酸化鉛分に富む、蒸着薄膜をアニーリ ングして、ペロブスカイト鉛スカンジウムタ゛lタレートにする。驚くべき結果 が得られる。というのは、ゾルゲル法によって蒸着した同様な酸化物薄膜はアニ ーリングしても全くこのような相にはならないからでる。さらに、プリカーサ− の割合を慎重に制御して、化学量論量的組成に近い鉛含量にすると、蒸着薄膜は 純粋なペロブスカイト相になり、アニーリングは必要ない。At or near the inlet 45 for introducing organometallic vapor into the reactor. When water vapor is introduced into the gas stream, the deposited thin film, which is rich in lead oxide, can be annealed. to form perovskite lead scandium talate. amazing results is obtained. This is because similar oxide thin films deposited by sol-gel methods are This is because even if you use a ring, you will not get a phase like this at all. Furthermore, the precursor By carefully controlling the proportion of lead content close to stoichiometric composition, the deposited thin film can be It becomes a pure perovskite phase and no annealing is required.

夫旌豊↓ 以下の表に、実験パラメーターをまとめる。Fu Jeongfeng ↓ The table below summarizes the experimental parameters.

表1 プリカーサ−(1)   (2)   (3)アルゴン流1t(sscm)     10   10   4ズユpニサ一温度(’C)   82   エ阻− 54酸素流jl(sscm)          23室圧              1000 mTorr基体7基体温度°Cサファイヤ/650°C水蒸 気流量cm”/h          15蒸着酸化物、Pb、Sc、Ta酸化 物  アモルファス(1)鉛Fod (2)スカンジウムFad (3)タンタルエトキシド 蒸気条件下で、Pb:Sc:Taの元素比が3.9:1:1.3の鉛、スカンジ ウム及びタンタルを含む薄膜をアモルファス層として形成する。次に、鉛ジルコ ネートによって非接触で取り囲んだ状態で、9・00°Cで10時間アニーリン グすると、ペロブスカイト構造の鉛スカンジウムタンタレート薄膜が得られる。Table 1 Precursor (1) (2) (3) Argon flow 1t (sscm)  10  10  4    82  E- 54 Oxygen flow l (sscm) 23 Chamber pressure 1000 mTorr Substrate 7 Substrate temperature °C Sapphire/650 °C Water vapor Air flow rate cm”/h 15 Vapor-deposited oxides, Pb, Sc, Ta oxidation Material Amorphous (1) Lead Fod (2) Scandium Fad (3) Tantalum ethoxide Under steam conditions, lead, scandi, with an elemental ratio of Pb:Sc:Ta of 3.9:1:1.3 A thin film containing aluminum and tantalum is formed as an amorphous layer. Next, lead zirco Annealed at 9.00°C for 10 hours while being surrounded without contact by This yields a lead scandium tantalate thin film with a perovskite structure.

(第2図)。(Figure 2).

以下の表に、別な実験パラメーターをまとめる。The table below summarizes the different experimental parameters.

l プリカーサ−(])   (2)   (3)アルゴン流ffi(sScm)     13   10   8プリカーサ一温度(’C)   79  104    63酸素流量(sscm)          23室圧              IQQQ mTorr基体7基体温度°C窒化アルミニウム/65 0’C水蒸気流量am 3/ h          15芭道111物、pb 、鈷マ堕醇化物  ベロースZカイト −(1)鉛Fod (2)スカンジウムFod (3)タンクルエトキシド 表2に記載の条件で、鉛、スカンジウム及びタンタルを2.96:2.31・l の元素比で含む薄膜を形成する。X線分析(第3図)したところ、このものはペ ロブスカイト構造の鉛スカンジウムタンタレートであること水の代わりに追加酸 素源としてアルコールを使用することができる。l Precursor (]) (2) (3) Argon flow ffi (sScm) 13 10 8 Precursor temperature ('C) 79 104 63 Oxygen flow rate (sscm) 23 Room pressure IQQQ mTorr Substrate 7 Substrate temperature °C Aluminum nitride/65 0’C water vapor flow rate am 3/h 15 Basmichi 111, pb , Kouma Fallen Monster Bellows Z Kite - (1) Lead Fod (2) Scandium Fod (3) Tankle ethoxide Under the conditions listed in Table 2, lead, scandium, and tantalum were mixed at 2.96:2.31·l. Form a thin film containing an elemental ratio of . X-ray analysis (Figure 3) revealed that this item was a pen. Added acid instead of water to be lead scandium tantalate with lobskite structure Alcohol can be used as a source.

[余白] 表1 プリカーサ−(1)   (2)   (3)ヘリウム流1t(sscm)   ’   6   4   3プリカーサ一温度(’C)   97   64    45酸素流量(sscm)          15室圧              1000 mTorr基体/基体温度℃    サファイヤ7650 °C水蒸気流ff1cm’/h          15(2)スカンジウムF od (3)タンクルエトキシド 蒸気条件下で、鉛、スカンジウム及びタンタル酸化物をアモルファス薄膜として 蒸着した。これを実施例1と同様にアニーリングしたところ、ペロブスカイト層 の鉛スカンジウムタンクレートが得られた。[margin] Table 1 Precursor (1) (2) (3) Helium flow 1t (sscm) ’ 6 4 3 Precursor temperature (’C) 97 64 45 Oxygen flow rate (sscm) 15 Room pressure      1000 mTorr Substrate/Substrate temperature °C Sapphire 7650 °C water vapor flow ff1cm’/h 15(2) Scandium F od (3) Tankle ethoxide Lead, scandium and tantalum oxides as amorphous thin films under steam conditions Deposited. When this was annealed in the same manner as in Example 1, a perovskite layer was formed. of lead scandium tankrate was obtained.

N      へ I′V+1n) 手続補正書(方式) 平成 3年 4月26日Go to N I′V+1n) Procedural amendment (formality) April 26, 1991

Claims (12)

【特許請求の範囲】[Claims] 1.酸素及び有機金属鉛スカンジウム及びタンタルのガス状試薬を混合室に導入 して、ガス混合物を形成し、そしてこのガス混合物を反応器に導入し、加水分解 剤を存在させた状態で該混合物を加熱された基体に暴露して、該基体上に薄膜を 形成する工程からなる薄膜ペロプスカイト相鉛スカンジウムタンタレートの製造 方法。1. Introducing oxygen and organometallic lead scandium and tantalum gaseous reagents into the mixing chamber. to form a gas mixture, and introduce this gas mixture into a reactor for hydrolysis. The mixture in the presence of the agent is exposed to a heated substrate to form a thin film on the substrate. Production of thin film perovskite phase lead scandium tantalate consisting of forming process Method. 2.加水分解剤が水蒸気である請求項第1項記載の方法。2. 2. A method according to claim 1, wherein the hydrolyzing agent is water vapor. 3.加水分解剤が揮発性アルコールである請求項第1項記載の方法。3. 2. The method of claim 1, wherein the hydrolyzing agent is a volatile alcohol. 4.該ガス状試薬が鉛ターシャリーブトキシド等の鉛アルコキシドあるいはβ− ジケトネート、スカンジウムβ−ジケトネート等のスカンジウム酸化物、及びメ トキシドやエトキシド等のタンタルアルコキシド、あるいはアルコキシタンタル β−ジケトネートである請求項第1〜3項のいずれか1項に記載の方法。4. The gaseous reagent is a lead alkoxide such as lead tert-butoxide or β- diketonates, scandium oxides such as scandium β-diketonates, and Tantalum alkoxides such as toxides and ethoxides, or tantalum alkoxy The method according to any one of claims 1 to 3, wherein the β-diketonate is a β-diketonate. 5.該ガス状試薬が鉛ビス(2,2−ジメチル−6、6、7、7、8、8、8− ヘプタフルオロオクタン−3、5−ジオネート)、スカンジウムトリス(2、2 −ジメチル−6、6、7、7、8、8、8−ヘプタフルオロオクタン−3、5− ジオネート及びタンタルペンタエトキシドである請求項第1〜4項のいずれか1 項に記載の方法。5. The gaseous reagent is lead bis(2,2-dimethyl-6,6,7,7,8,8,8- heptafluorooctane-3,5-dionate), scandium tris(2,2 -dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5- Any one of claims 1 to 4, which is dionate and tantalum pentaethoxide. The method described in section. 6.不活性ガスを存在させた状態で、該ガス状試薬を混合室で混合する請求項第 1〜5項のいずれか1項に記載の方法。6. Claim No. 1, wherein the gaseous reagent is mixed in a mixing chamber in the presence of an inert gas. The method according to any one of items 1 to 5. 7.該基体がサファイヤ、酸化マグネシウム又は窒化アルミニウムからなる請求 項第1〜6項のいずれか1項に記載の方法。7. A claim in which the substrate is made of sapphire, magnesium oxide or aluminum nitride The method according to any one of Items 1 to 6. 8.該基体を650℃に加熱する請求項第1〜7項のいずれか1項に記載の方法 。8. The method according to any one of claims 1 to 7, wherein the substrate is heated to 650°C. . 9.該ガス状試薬を化学量論比で混合する請求項第1〜8項のいずれか1項に記 載の方法。9. According to any one of claims 1 to 8, the gaseous reagents are mixed in a stoichiometric ratio. How to put it on. 10.さらに、該基体をアニーリングする工程を含む請求項第1〜8項のいずれ か1項に記載の方法。10. Any one of claims 1 to 8, further comprising the step of annealing the substrate. or the method described in paragraph 1. 11.該ガス状試薬を加熱して、真空状態でバブル連行ガス流れによって該混合 室に運ぶことができる温度にする請求項第1〜10項のいずれか1項に記載の方 法。11. The gaseous reagents are heated and mixed by a bubble-entrained gas flow under vacuum conditions. The person according to any one of claims 1 to 10, wherein the temperature is such that it can be transported to a room. Law. 12.該鉛プリカーサーを80℃に、該スカンジウムプリカーサーを90℃に、 そして該タンタルプリカーサーを55℃に加熱する請求項第11項に記載の方法 。12. The lead precursor is heated to 80°C, the scandium precursor is heated to 90°C, The method according to claim 11, wherein the tantalum precursor is heated to 55°C. .
JP1511695A 1988-11-05 1989-11-06 Method for producing thin film perovskite phase lead scandium tantalate Pending JPH03503277A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB888825948A GB8825948D0 (en) 1988-11-05 1988-11-05 Method for production of thin film perovskite phase lead scandium tantalate
GB8825948.6 1988-11-05

Publications (1)

Publication Number Publication Date
JPH03503277A true JPH03503277A (en) 1991-07-25

Family

ID=10646382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1511695A Pending JPH03503277A (en) 1988-11-05 1989-11-06 Method for producing thin film perovskite phase lead scandium tantalate

Country Status (4)

Country Link
EP (1) EP0396703A1 (en)
JP (1) JPH03503277A (en)
GB (1) GB8825948D0 (en)
WO (1) WO1990005202A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2250029A (en) * 1990-11-23 1992-05-27 Marconi Gec Ltd Perovskite lead scandium tantalate film
US5790156A (en) * 1994-09-29 1998-08-04 Tektronix, Inc. Ferroelectric relaxor actuator for an ink-jet print head

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3356527A (en) * 1964-04-23 1967-12-05 Ross W Moshier Vapor-plating metals from fluorocarbon keto metal compounds
EP0055459A1 (en) * 1980-12-29 1982-07-07 Rikuun Electric co. Process for producing oxides using chemical vapour deposition
GB2131611B (en) * 1982-11-17 1986-11-12 Standard Telephones Cables Ltd Dielectric materials

Also Published As

Publication number Publication date
EP0396703A1 (en) 1990-11-14
WO1990005202A1 (en) 1990-05-17
GB8825948D0 (en) 1988-12-14

Similar Documents

Publication Publication Date Title
EP0630424B1 (en) Ferroelectric thin films made by metalorganic chemical vapor deposition
US5677002A (en) Chemical vapor deposition of tantalum- or niobium-containing coatings
JP3875491B2 (en) Chemical properties of precursors for chemical vapor deposition of ruthenium or ruthenium oxide.
EP1027358B1 (en) Anhydrous mononuclear tris(beta-diketonate) bismuth compositions for deposition of bismuth-containing films, and method of making the same
CN107428677A (en) Diaza dialkenyl compound, film, which are formed, uses raw material, the manufacture method of film and diaza diolefin compound
JP3224450B2 (en) Ruthenium oxide film forming method
JP2000281694A (en) Organometallic compound for organometallic vapor phase epitaxy
Peng et al. Metalorganic chemical vapor deposition of ferroelectric Pb (Zr, Ti) O3 thin films
JPH08124798A (en) Zirconium(zr)organic metal precursor and preparation thereof
JP3611640B2 (en) Method for depositing group 8 elements and raw material compounds used
JPH03503277A (en) Method for producing thin film perovskite phase lead scandium tantalate
JPH02504023A (en) Production method of perovskite lead scandium tantalate
JP3593757B2 (en) Method for producing bismuth titanate ferroelectric thin film
JP2004256510A (en) Bismuth source solution for chemical vapor deposition and method for forming bismuth-containing thin film using the same
JPH0977592A (en) Production of bismuth laminar ferroelectric thin film
JPH09195050A (en) Production of oxide or metal
JP2996849B2 (en) Method and apparatus for synthesizing lead β-diketonate
JPH05148656A (en) Production of thin potassium niobate tantalate film
JPH0776090B2 (en) Method for manufacturing zirconia thin film
KR20020018555A (en) Cvd method, supplementary materials used in the same, the film and the elements made by the same
KR100399606B1 (en) Method for the preparation of a pzt thin layer by a metal organic chemical vapor deposition
JPH0661450A (en) Formation method of tantalum oxide thin film
JP4797474B2 (en) Metal complex having β-diketonato having alkoxyalkylmethyl group and alkoxy as ligand, and method for producing metal-containing thin film using the metal complex
JP2518121B2 (en) Method for producing BiSrCaCuO-based superconducting film
JP2007112790A (en) Method for producing organometal compound, and method for producing metal-containing membrane by using the organometal compound obtained by the method