JPH0350278Y2 - - Google Patents

Info

Publication number
JPH0350278Y2
JPH0350278Y2 JP1986121596U JP12159686U JPH0350278Y2 JP H0350278 Y2 JPH0350278 Y2 JP H0350278Y2 JP 1986121596 U JP1986121596 U JP 1986121596U JP 12159686 U JP12159686 U JP 12159686U JP H0350278 Y2 JPH0350278 Y2 JP H0350278Y2
Authority
JP
Japan
Prior art keywords
fuel
low
flow rate
speed
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986121596U
Other languages
Japanese (ja)
Other versions
JPS6326759U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986121596U priority Critical patent/JPH0350278Y2/ja
Priority to KR1019870008501A priority patent/KR880003099A/en
Publication of JPS6326759U publication Critical patent/JPS6326759U/ja
Application granted granted Critical
Publication of JPH0350278Y2 publication Critical patent/JPH0350278Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/10Other installations, without moving parts, for influencing fuel/air ratio, e.g. electrical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、低速系ベンチユリを備え、特に低速
域での混合気の空燃比を極めて適正に制御し得る
ようにした気化器の低速燃料系に関するものであ
る。
[Detailed description of the invention] [Field of industrial application] The present invention is a low-speed fuel system of a carburetor that is equipped with a low-speed system bench lily and is capable of controlling the air-fuel ratio of the air-fuel mixture particularly in the low-speed range. It is related to.

〔従来の技術及び考案が解決しようとする問題点〕[Problems to be solved by conventional techniques and ideas]

一般に気化器の低速系として、第10図に示さ
れる如く、スローポート37、スロージエツト3
8及びスローエアジエツト39等により構成され
たものが知られている。この場合、スローポート
33からの燃料流出量は、スロツトルバルブ40
の開度に応じ該バルブ40の下流側に開口するス
ローポート37の開口面積を変化せしめることに
より調整され、これによつて燃料流量の計量が行
なわれる。ところで、このスローポート37の孔
径及び位置を選定するには極めて多くの工数を要
し、又、原理的にスロツトルバルブ35の開度は
ベンチユリ41の負圧に比しその空気流量を正確
に代表し得ず、従つてスロツトルバルブ40を介
しての燃料流量の制御は困難である。これに対し
従来、特公昭61−19822号公報に記載されている
如く、メインジエツトとベンチユリ部との間に圧
力センサを配設してその圧力差に基づき燃料流量
のズレを検出し、さらにこれをフイードバツクす
ることにより適正な混合気を得る方法が提案され
ている。しかしこの方法では、特に低速域におい
て極めて低圧のベンチユリ負圧の検出は困難であ
り、又、圧力センサ自体にも精度上の問題が生じ
得るという不都合がある。一方、本出願人による
特願昭60−146627号において、かかる低速域に対
し極めて効果的に適用され得る燃料系が提案され
ているが、この場合、低速系ベンチユリは用いら
れておらず、本考案とは別異の構成が採用されて
いる。
Generally, as a low speed system of a carburetor, as shown in FIG.
8 and a slow air jet 39 are known. In this case, the amount of fuel flowing out from the slow port 33 is
The fuel flow rate is adjusted by changing the opening area of the slow port 37, which opens downstream of the valve 40, in accordance with the opening degree of the valve 40, thereby measuring the fuel flow rate. By the way, selecting the hole diameter and position of the slow port 37 requires an extremely large number of man-hours, and in principle, the opening degree of the throttle valve 35 cannot accurately control the air flow rate compared to the negative pressure of the bench lily 41. Therefore, controlling the fuel flow rate via the throttle valve 40 is difficult. Conventionally, as described in Japanese Patent Publication No. 61-19822, a pressure sensor is disposed between the main jet and the bench lily to detect the difference in fuel flow rate based on the pressure difference. A method has been proposed for obtaining a proper air-fuel mixture by feedback. However, this method has disadvantages in that it is difficult to detect an extremely low bench lily negative pressure, especially in a low speed range, and there may also be problems with the accuracy of the pressure sensor itself. On the other hand, in Japanese Patent Application No. 60-146627 filed by the present applicant, a fuel system that can be applied extremely effectively to such a low speed range is proposed, but in this case, a low speed system bench lily is not used. A configuration different from that originally proposed has been adopted.

本考案はかかる実情に鑑み、スローポート等バ
イパス選定のセツテイング等の簡便化を計り且つ
耐久性に優れた気化器の低速系燃料供給装置を提
供することを目的とする。
In view of these circumstances, it is an object of the present invention to provide a low-speed fuel supply system for a carburetor that simplifies the setting of bypass selection such as a slow port and has excellent durability.

〔問題点を解決するための手段及び作用〕 本考案による低速系燃料供給装置では、空気流
量に応じた負圧を発生し得る低速系ベンチユリが
設けられ、該ベンチユリ部がスロージエツトと連
通されると共に両者間の適所に該連通路内の液面
高さを検出するセンサを配設し、さらに該センサ
の信号に基づきスロージエツト及びスローポート
間に設けられた燃料流量制御手段が作動せしめら
れる。ここに燃料流量制御手段は、設定された液
面より高いか低いかを検出した液面センサの信号
によつて空気流量を正しく代表する低速系ベンチ
ユリの負圧に正確に追従するように燃料流量を制
御するので、空気流量が変化しても低速域におい
て常に適正な空燃比の混合気が供給される。
[Means and effects for solving the problems] The low-speed fuel supply system according to the present invention is provided with a low-speed system bench lily capable of generating negative pressure according to the air flow rate, and the bench lily portion is communicated with the slow jet. A sensor for detecting the level of liquid in the communication passage is disposed at a suitable location between the two, and a fuel flow rate control means provided between the slow jet and the slow port is operated based on a signal from the sensor. Here, the fuel flow rate control means adjusts the fuel flow rate so as to accurately follow the negative pressure of the low-speed system bench lily, which accurately represents the air flow rate, based on the signal from the liquid level sensor that detects whether the liquid level is higher or lower than a set liquid level. Therefore, even if the air flow rate changes, a mixture with an appropriate air-fuel ratio is always supplied in the low speed range.

〔実施例〕〔Example〕

第1図乃至第8図は、本考案による低速系燃料
供給装置の第一実施例を示し、図中、1は気化器
の吸気通路、2は該吸気通路1を開閉し得るエア
バルブ、3はエアバルブ2に連結されたダイアフ
ラム3aとスプリング3bとエアバルブ2の下流
側に連通せしめられた負圧室3cとを備えたエア
バルブ2のための作動制御手段、4は固定ベンチ
ユリ、5はスロツトルバルブ、6は固定ベンチユ
リ4に開口するメインノズル、7はメインエアジ
エツト、8はメインジエツト、9は固定ベンチユ
リ4の下流側においてエアバルブ2の上流側と下
流側とをバイパスする低速系ベンチユリ、10は
低速系ベンチユリ9とスロージエツト11を介し
てメインジエツト8の下流側とを連通せしめる通
路、12は通路10に配設された例えば第2図の
如く回路構成された発光素子12a及び受光素子
12bからなる検知手段、13はスロツトルバル
ブ5の外周縁と吸気通路1の内周面とによつて形
成される負圧発生部分に開口するスローポート、
14は燃料通路15の適所に配設され入力電圧の
変化によつて該通路15を開閉せしめ得るソレノ
イドバルブ、16はソレノイドバルブ14への入
力電圧を制御する制御回路、17はフロートチヤ
ンバである。上記の場合、作動制御手段3は、エ
ンジン停止時にはスプリング3bによつて弾圧さ
れたダイアフラム3aを介してエアバルブ2を閉
塞位置に保持せしめ、エンジン始動後少なくとも
その低速域以降においてエアバルブ2の下流側に
生じる負圧によつてスプリング3bの弾力に抗し
ダイアフラム3aを変位せしめてエアバルブ2を
開放せしめ得るように構成されている。又、検知
手段12は通路10内の燃料柱10aの液面高さ
が設定値より高いか低いかを検知してこれに対応
する出力Oh,OL(第2図、第3図参照)を出力し
得るように構成されている。さらに制御回路16
は例えば第4図に示される如く(−)端子に基準
電圧VRが、(+)端子に検知手段12からの出力
が入力せしめられ得る比較器Cと比較器Cの出力
側に接続されたトランジスタTとを含んでいて、
検知手段12からの出力Oh,OLに対応してソレ
ノイドバルブ14を大小二段階(以下、A段階、
B段階という)に開閉せしめ得るように構成され
ている。
1 to 8 show a first embodiment of a low-speed fuel supply system according to the present invention, in which 1 is an intake passage of a carburetor, 2 is an air valve that can open and close the intake passage 1, and 3 is an air valve that can open and close the intake passage 1. Actuation control means for the air valve 2, comprising a diaphragm 3a and a spring 3b connected to the air valve 2, and a negative pressure chamber 3c communicated with the downstream side of the air valve 2; 4 is a fixed bench lily; 5 is a throttle valve; 6 is a main nozzle that opens into the fixed bench lily 4, 7 is a main air jet, 8 is a main jet, 9 is a low-speed system bench lily that bypasses the upstream and downstream sides of the air valve 2 on the downstream side of the fixed bench lily 4, and 10 is a low-speed system. A passage 12 communicates the system bench 9 with the downstream side of the main jet 8 via the slow jet 11, and 12 is a detection means disposed in the passage 10 and consisting of a light emitting element 12a and a light receiving element 12b having a circuit configuration as shown in FIG. 2, for example. , 13 is a slow port that opens into a negative pressure generating portion formed by the outer peripheral edge of the throttle valve 5 and the inner peripheral surface of the intake passage 1;
Reference numeral 14 designates a solenoid valve that is disposed at a suitable location in the fuel passage 15 and can open and close the passage 15 according to changes in input voltage, 16 a control circuit that controls the input voltage to the solenoid valve 14, and 17 a float chamber. . In the above case, the operation control means 3 holds the air valve 2 in the closed position via the diaphragm 3a compressed by the spring 3b when the engine is stopped, and after the engine is started, the operation control means 3 holds the air valve 2 in the closed position at least after the low speed range. The air valve 2 is configured to be able to open the air valve 2 by displacing the diaphragm 3a against the elasticity of the spring 3b by the generated negative pressure. Further, the detection means 12 detects whether the liquid level height of the fuel column 10a in the passage 10 is higher or lower than a set value, and outputs corresponding outputs O h and O L (see Figs. 2 and 3). It is configured so that it can output. Furthermore, the control circuit 16
For example, as shown in FIG. 4, the reference voltage V R is connected to the (-) terminal and the output side of the comparator C to which the output from the detection means 12 can be inputted to the (+) terminal. It includes a transistor T,
Corresponding to the output O h and O L from the detection means 12, the solenoid valve 14 is operated in two stages (hereinafter referred to as A stage).
It is constructed so that it can be opened and closed during the B stage.

本実施例による低速系燃料供給装置は上記のよ
うに構成されているから、エンジンの低速域にお
いてエアバルブ2は吸気通路1を閉塞せしめてい
て、吸入空気は固定ベンチユリ4の下流側より低
速系ベンチユリ9を通つてマニホールドへ導かれ
る。この低速域では、固定ベンチユリ4の負圧が
メインノズル6より燃料を噴出せしめる程十分に
は上昇しておらず、一方、低速系ベンチユリ9の
負圧は空気流量の二乗に比例する。また、スロー
ジエツト11の下流に発生する燃料圧力は通路1
5における燃料流量の二乗に比例するので、この
燃料圧力と低速系ベンチユリ9の負圧を一致させ
れば、該ベンチユリ9の空気流量に応じ常に所定
量の燃料を供給することができる。いま、スロツ
トルバルブ5が低開度位置にあり、従つてスロー
ポート13の該バルブ5による負圧側開口面積も
小さく、且つソレノイドバルブ14が通路15を
A段階で開放せしめて該通路15内を燃料が流れ
ている場合、このとき通路10の燃料柱10aの
液面高さが設定値以下ならば、即ち、低速系ベン
チユリ9に発生している負圧に対応する空気流量
に対して燃料流量が多過ぎるため過濃混合気とな
つているが、発光素子12aから発せられる光は
通路10を通過する間に散乱されるので受光素子
12bの受光量は少ないため、これに基づく検知
手段12の出力は低出力側OLとなる(第2図参
照)。この出力OLは制御回路16へ送出される
が、この場合基準電圧VRより小さいので、該制
御回路16からのソレノイドバルブ14への駆動
信号は停止せしめられ、これによりソレノイドバ
ルブ14の開度がB段階になつてスロージエツト
11の下流側の燃料圧力は上昇せしめられる。か
くして、この燃料圧力と低速系ベンチユリ9の負
圧との圧力差に基づき燃料柱10aの液面が上昇
する。又、通路10の燃料柱10aの液面高さが
設定値以上ならば、即ち、低速系ベンチユリ9の
空気流量に対して燃料流量が、少な過ぎて過薄混
合気となつているが、この場合、燃料柱10a内
の燃料によつて発光素子12aからの受光素子1
2bへの光量は減少し、この結果、検知手段12
の出力は高出力側Ohとなる(第2図参照)。この
出力Ohは制御回路16を介してソレノイドバル
ブ14へ駆動信号として送出せしめられ、これに
より該バルブ14の開度がA段階へ切換えられ
る。この結果、燃料流量が大きくなり、従つてス
ロージエツト11の下流側の燃料圧力が低くなつ
て燃料柱10aの液面高さが低くなる。かかる液
面の上昇、下降が交互に繰り返されることにより
燃料柱10aの高さは設定値に維持され、斯して
低速系ベンチユリ9の負圧とスロージエツト11
の下流側の燃料圧力と一致する。即ち、吸入空気
流量を正しく代表する低速系ベンチユリ9の負圧
に対しスローポート13からの燃料流出量が正確
に追従するので、低速域全域に亘つて常に適正な
空燃比の混合気が供給される。
Since the low speed system fuel supply system according to this embodiment is configured as described above, the air valve 2 closes the intake passage 1 in the low speed range of the engine, and the intake air is supplied from the downstream side of the fixed bench lily 4 to the low speed system bench lily. 9 to the manifold. In this low speed range, the negative pressure in the fixed bench lily 4 has not risen enough to cause fuel to be ejected from the main nozzle 6, while the negative pressure in the low speed system bench lily 9 is proportional to the square of the air flow rate. Furthermore, the fuel pressure generated downstream of the slow jet 11 is
Since the fuel pressure is proportional to the square of the fuel flow rate at 5, if this fuel pressure and the negative pressure of the low-speed system bench lily 9 are matched, a predetermined amount of fuel can always be supplied according to the air flow rate of the bench lily 9. Now, the throttle valve 5 is at the low opening position, and therefore the opening area of the slow port 13 on the negative pressure side by the valve 5 is small, and the solenoid valve 14 opens the passage 15 at stage A to open the inside of the passage 15. When fuel is flowing, if the liquid level height of the fuel column 10a in the passage 10 is below the set value, that is, the fuel flow rate is lower than the air flow rate corresponding to the negative pressure generated in the low-speed system bench lily 9. However, since the light emitted from the light emitting element 12a is scattered while passing through the passage 10, the amount of light received by the light receiving element 12b is small. The output will be on the low output side O L (see Figure 2). This output O L is sent to the control circuit 16, but in this case, since it is smaller than the reference voltage V R , the drive signal from the control circuit 16 to the solenoid valve 14 is stopped, and the opening of the solenoid valve 14 is thereby stopped. reaches the B stage, and the fuel pressure on the downstream side of the slow jet 11 is increased. Thus, the liquid level in the fuel column 10a rises based on the pressure difference between this fuel pressure and the negative pressure of the low-speed system bench lily 9. If the liquid level height of the fuel column 10a of the passage 10 is above the set value, that is, the fuel flow rate is too small compared to the air flow rate of the low-speed system bench lily 9, resulting in an overly lean mixture. In this case, the light receiving element 1 from the light emitting element 12a is caused by the fuel in the fuel column 10a.
2b decreases, and as a result, the detection means 12
The output of is O h on the high output side (see Figure 2). This output Oh is sent as a drive signal to the solenoid valve 14 via the control circuit 16, thereby switching the opening degree of the valve 14 to the A stage. As a result, the fuel flow rate increases, the fuel pressure on the downstream side of the slow jet 11 decreases, and the liquid level in the fuel column 10a decreases. By repeating this rising and falling of the liquid level alternately, the height of the fuel column 10a is maintained at the set value, and thus the negative pressure in the low-speed system bench 9 and the slow jet 11 are
corresponds to the downstream fuel pressure. That is, since the amount of fuel flowing out from the slow port 13 accurately follows the negative pressure of the low-speed system vent 9, which accurately represents the intake air flow rate, a mixture with an appropriate air-fuel ratio is always supplied throughout the low-speed range. Ru.

上述のように空気流量と燃料流量との間の関係
を直接的に制御し、これによつて空燃比が決定さ
れるので、例えばスローポート13の孔径や位置
等の微妙なセツテイングをすることなく自動的に
空気流量と燃料流量とが調整され、この結果、か
かるセツテイング工数が大幅に低減され得る。
As mentioned above, since the relationship between the air flow rate and the fuel flow rate is directly controlled and the air-fuel ratio is determined thereby, there is no need to make delicate settings such as the hole diameter and position of the slow port 13. The air flow rate and fuel flow rate are automatically adjusted, and as a result, such setting man-hours can be significantly reduced.

尚、上記実施例における検知手段12の発光素
子12a、受光素子12bは第5図に示される如
く通路10に配設されてもよく、又、第7図に示
される如く配設され且つこのとき燃料柱10aに
不透明物質からなる浮子10bを浮かべることに
より液面高さを検知するようにしてもよい。これ
らの場合、検知手段12からの出力は液面高さに
より夫々第6図及び第8図に示される如く制御回
路16への信号を送出し、上記実施例と同様の作
用効果が得られる。
Incidentally, the light emitting element 12a and the light receiving element 12b of the detection means 12 in the above embodiment may be arranged in the passage 10 as shown in FIG. 5, or may be arranged as shown in FIG. The liquid level height may be detected by floating a float 10b made of an opaque material on the fuel column 10a. In these cases, the output from the detection means 12 sends signals to the control circuit 16 as shown in FIGS. 6 and 8, respectively, depending on the liquid level height, and the same effects as in the above embodiments can be obtained.

第9図は第二実施例を示し、コンパウンドタイ
プの気化器の一次側Pへ本低速系燃料供給装置を
適用した例である。図中、21はベンチユリ、2
2はスロツトルバルブ、23はスロージエツト2
4とベンチユリ21とを連通せしめる通路、25
は通路23に配設され第一実施例と同様に構成さ
れた検知手段、26は通路27を介してスロージ
エツトと連通し一次側Pの吸気通路に開口するス
ローポート、28は通路27の適所に配設され第
一実施例と同様に構成されたソレノイドバルブで
あり、二次側Sはベンチユリ29、スロツトルバ
ルブ30、メインノズル31、メインエアジエツ
ト32、メインジエツト33、スロージエツト3
4及びスローエアジエツト35からなり、スロツ
トルバルブ30はベンチユリ21及びベンチユリ
29の負圧によつて作動する制御手段36によつ
て低速域においては二次側Sの吸気通路を閉塞せ
しめるように設定されている。
FIG. 9 shows a second embodiment, in which the present low-speed fuel supply device is applied to the primary side P of a compound type carburetor. In the figure, 21 is a bench lily, 2
2 is the throttle valve, 23 is the slow jet 2
4 and the bench lily 21 are connected to each other, 25
26 is a slow port that communicates with the slow jet through the passage 27 and opens into the intake passage on the primary side P; 28 is a detection means disposed in the passage 23 and configured similarly to the first embodiment; This is a solenoid valve arranged and configured similarly to the first embodiment, and the secondary side S includes a bench lily 29, a throttle valve 30, a main nozzle 31, a main air jet 32, a main jet 33, and a slow jet 3.
4 and a slow air jet 35, the throttle valve 30 is configured to close the intake passage on the secondary side S in a low speed range by a control means 36 operated by the negative pressure of the bench lily 21 and the vent lily 29. It is set.

本実施例の場合、エンジンの低速域においては
吸入空気は一次側Pより供給されるが、検知手段
25、ソレノイドバルブ28等は第一実施例と同
様に作動する。即ち、ベンチユリ21を流れる空
気流量を正しく代表する該ベンチユリ21の負圧
に対しスロージエツト24の下流側の燃料圧力と
の比が常に一定値になるようにスローポート26
から吐出する燃料流量が制御されるので、空気流
量が変化しても常に一定の空燃比の混合気がマニ
ホールドへと供給される。この場合にも第一実施
例と同様にスローポート26のセツテイング工数
の低減が図られ得る等の効果が得られると共に、
一次側Pにおける低速域での極めて適正な混合気
が得られる。又、エンジンが低速域以上になるの
に伴ない混合気の供給が徐々に二次側Sへ移行せ
しめられるのは、基本的に通常のコンパウンドタ
イプの気化器と同様である。
In the case of this embodiment, intake air is supplied from the primary side P in the low speed range of the engine, but the detection means 25, solenoid valve 28, etc. operate in the same manner as in the first embodiment. That is, the slow port 26 is adjusted so that the ratio of the fuel pressure on the downstream side of the slow jet 24 to the negative pressure of the bench lily 21, which accurately represents the air flow rate flowing through the vent lily 21, is always a constant value.
Since the flow rate of fuel discharged from the manifold is controlled, a mixture with a constant air-fuel ratio is always supplied to the manifold even if the air flow rate changes. In this case as well, similar effects as in the first embodiment can be obtained, such as reducing the number of man-hours required for setting the slow port 26.
An extremely appropriate air-fuel mixture can be obtained on the primary side P in a low speed range. Further, as the engine speed increases beyond the low speed range, the supply of the air-fuel mixture is gradually shifted to the secondary side S, which is basically the same as in a normal compound type carburetor.

尚、上記各実施例におけるソレノイドバルブ1
4,28は、入力パルスによつてデユーテイ制御
されるものであつても、また入力電圧の変化によ
つて燃料通路15,27を導通遮断するものであ
つてもよい。又、検知手段12,25として電気
接点を備えた浮子が採用され得、これら何れの場
合も上記実施例と同様の効果が得られる。
In addition, the solenoid valve 1 in each of the above embodiments
The fuel passages 4 and 28 may be duty-controlled by input pulses, or may be made to conduct or cut off the fuel passages 15 and 27 based on changes in input voltage. Furthermore, floats equipped with electrical contacts may be employed as the detection means 12, 25, and in either case, the same effects as in the above embodiments can be obtained.

〔考案の効果〕[Effect of idea]

上述のように本考案による低速系燃料供給装置
は、そのセツテイング工数の低減が図られる等、
実用上極めて優れた利点を有し、且つ低速域での
適正な混合気を供給し得、気化器の低速系燃料供
給装置として著しい効果がもたらされ得る。
As mentioned above, the low-speed fuel supply system according to the present invention has the following advantages:
It has extremely excellent practical advantages, can supply an appropriate air-fuel mixture in a low speed range, and can be extremely effective as a low speed fuel supply device for a carburetor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第8図は本考案による低速系燃料供
給装置の第一実施例を示し、第1図は全体の構成
を示す概略断面図、第2図は燃料柱高さを検知す
る検知手段の回路図、第3図は該検知手段の出力
と燃料柱高さの関係を示すグラフ、第4図はソレ
ノイドバルブの制御回路図、第5図及び第7図は
夫々検知手段の配設例を示す燃料柱部分の断面
図、第6図及び第8図は夫々第5図及び第7図の
検知手段の出力と燃料柱高さの関係を示すグラ
フ、第9図は第二実施例を示し、コンパウンドタ
イプの気化器に適用された本考案による低速系燃
料供給装置について示す断面図、第10図は従来
の気化器の低速系燃料系について示す断面図であ
る。 1……吸気通路、2……エアバルブ、3,36
……制御手段、4……固定ベンチユリ、5,2
2,30……スロツトルバルブ、6,31……メ
インジエツト、9……低速系ベンチユリ、10,
23……通路、11,24……スロージエツト、
12,25……検知手段、13,26……スロー
ポート、14,28……ソレノイドバルブ。
1 to 8 show a first embodiment of the low-speed fuel supply system according to the present invention, FIG. 1 is a schematic sectional view showing the overall configuration, and FIG. 2 is a detection means for detecting the fuel column height. 3 is a graph showing the relationship between the output of the detection means and the height of the fuel column, FIG. 4 is a control circuit diagram of the solenoid valve, and FIGS. 5 and 7 each show examples of the arrangement of the detection means. 6 and 8 are graphs showing the relationship between the output of the detection means and the height of the fuel column shown in FIGS. 5 and 7, respectively, and FIG. 9 shows the second embodiment. FIG. 10 is a cross-sectional view of a low-speed fuel supply system according to the present invention applied to a compound type carburetor, and FIG. 10 is a cross-sectional view of a low-speed fuel system of a conventional carburetor. 1... Intake passage, 2... Air valve, 3, 36
...Control means, 4...Fixed bench lily, 5,2
2,30...Throttle valve, 6,31...Main jet, 9...Low speed system bench lily, 10,
23...Aisle, 11,24...Slow jet,
12, 25...Detection means, 13, 26...Slow port, 14, 28...Solenoid valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 空気流量に応じた負圧を発生し得る低速系ベン
チユリと、スロージエツト及びスローポートを連
通する低速燃料通路と、低速系ベンチユリ及び低
速燃料通路を連通する連通路と、該連通路に配設
されていて燃料柱の液面高さを検出する検知手段
と、前記低速燃料通路の連通路との接続部の下流
側に配設されていて前記検知手段からの出力信号
に基づいて作動制御される燃料流量制御手段とが
備えられていて、前記空気流量に対して燃料柱の
液面高さを一定に制御するように、燃料流量制御
手段によつて燃料流量が制御されるようにした気
化器の低速系燃料供給装置。
A low-speed fuel passage that communicates with a low-speed bench lily that can generate negative pressure according to the air flow rate, a slow jet and a slow port, a communication passage that communicates the low-speed bench lily and the low-speed fuel passage, and a communication passage that is disposed in the communication passage. a detection means for detecting the liquid level height of the fuel column; and a fuel disposed downstream of a connection portion between the low-speed fuel passage and the communication passage, and whose operation is controlled based on an output signal from the detection means. a flow rate control means, and the fuel flow rate is controlled by the fuel flow rate control means so as to control the liquid level of the fuel column to be constant with respect to the air flow rate. Low speed fuel supply system.
JP1986121596U 1986-08-07 1986-08-07 Expired JPH0350278Y2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1986121596U JPH0350278Y2 (en) 1986-08-07 1986-08-07
KR1019870008501A KR880003099A (en) 1986-08-07 1987-08-03 Low speed fuel control device of carburetor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986121596U JPH0350278Y2 (en) 1986-08-07 1986-08-07

Publications (2)

Publication Number Publication Date
JPS6326759U JPS6326759U (en) 1988-02-22
JPH0350278Y2 true JPH0350278Y2 (en) 1991-10-28

Family

ID=31011019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986121596U Expired JPH0350278Y2 (en) 1986-08-07 1986-08-07

Country Status (2)

Country Link
JP (1) JPH0350278Y2 (en)
KR (1) KR880003099A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119822A (en) * 1984-07-02 1986-01-28 Toyoda Autom Loom Works Ltd Suction twist spinning frame

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119822A (en) * 1984-07-02 1986-01-28 Toyoda Autom Loom Works Ltd Suction twist spinning frame

Also Published As

Publication number Publication date
JPS6326759U (en) 1988-02-22
KR880003099A (en) 1988-05-13

Similar Documents

Publication Publication Date Title
US4375800A (en) Control system for internal combustion engines, provided with an exhaust gas recirculation control having a fail safe function
JPH0323354A (en) Exhaust gas reflux detecting device for exhaust gas reflex device for internal combustion engine
GB2047440A (en) Exhaust gas recirculation control system
US4383409A (en) Air/fuel ratio control system for internal combustion engines, having function of detecting air/fuel ratio control initiating timing
US4383408A (en) Exhaust gas purifying method of an internal combustion engine
US4091781A (en) Air-fuel ratio control system in an internal combustion engine
JPH0514101B2 (en)
JPS5865946A (en) Intake device for internal-combustion engine
JPH0350278Y2 (en)
US4071006A (en) Exhaust gas recirculating system
JPS6181534A (en) Exhaust emission control device for mount internal-combustion engine
GB2073318A (en) Ic engine fuel injection control system
JPS6135372B2 (en)
US4224911A (en) Apparatus for controlling the amount of secondary air fed into an internal combustion engine
US4375211A (en) Air-fuel ratio control system
JPS6124588B2 (en)
US4222237A (en) Exhaust gas purifying apparatus for internal combustion engine
US4503834A (en) Feedback control system for supplying a fluid to an apparatus operable with the fluid
US4510904A (en) Vacuum operated idle speed control device
EP0255952A2 (en) Low-speed fuel control system for carburetors
US4594977A (en) Secondary air system for internal combustion engine with deceleration control
US4179882A (en) Apparatus for controlling the amount of secondary air fed into an internal combustion engine
US4363210A (en) Exhaust gas purifying system for internal combustion engines
US4681078A (en) Air-fuel ratio control system for an internal combustion engine
JPS6023720Y2 (en) Exhaust component concentration detection device