JPH03502234A - Concentrated circulation bed thermal power generator capable of desulfurizing combustion gas - Google Patents

Concentrated circulation bed thermal power generator capable of desulfurizing combustion gas

Info

Publication number
JPH03502234A
JPH03502234A JP88501145A JP50114588A JPH03502234A JP H03502234 A JPH03502234 A JP H03502234A JP 88501145 A JP88501145 A JP 88501145A JP 50114588 A JP50114588 A JP 50114588A JP H03502234 A JPH03502234 A JP H03502234A
Authority
JP
Japan
Prior art keywords
thermal power
power generator
circulation
combustion chamber
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP88501145A
Other languages
Japanese (ja)
Inventor
フィギエール、アラン
ペルチュイス、エドモンド
シュレタン、マニュエル
ペトロヴィック、アレクサンドル
Original Assignee
アンスティテュ フランセ デュ ペトロール
シャルボナージュ ドゥ フランス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アンスティテュ フランセ デュ ペトロール, シャルボナージュ ドゥ フランス filed Critical アンスティテュ フランセ デュ ペトロール
Priority claimed from PCT/FR1987/000511 external-priority patent/WO1988005144A1/en
Publication of JPH03502234A publication Critical patent/JPH03502234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ガスの脱硫が可能な集中循環式火力発電機この発明は高硫黄燃料を燃焼できしか もコンパクトな一体型で有効熱の生産と燃焼ガスの脱硫から可能な火力発電気が 目的である。[Detailed description of the invention] Centralized circulation thermal power generator capable of desulfurizing gas This invention can only burn high sulfur fuel. Thermal power generation is possible from the production of effective heat and the desulfurization of combustion gas with a compact integrated structure. It is a purpose.

火力発電機の排気による硫黄酸化物の放出を保護区域内できびしく制限する規制 は高硫黄分燃料の使用を禁止するが、これは他方で若干の経済的利点になり得る 、すなわち褐炭に類似する一部の石炭や精製プロセスで生じる石油残留物の場合 がそうである。Regulations that strictly limit the release of sulfur oxides from thermal power generator exhaust within protected areas prohibits the use of high sulfur fuels, which on the other hand could be of some economic advantage , i.e. for some coals similar to lignite and petroleum residues from refining processes. That's right.

一般には大出力施設に適する煙の事故処理法のほかに、一部の化石燃料を利用す る火力発電設備ではカルシウムをベースとする吸収剤(石灰岩、石灰、ドロマイ トなど)を炉内に直接噴射して燃料中に脱硫を行う。In addition to smoke incident treatment methods that are generally suitable for high-power facilities, there are Calcium-based absorbents (limestone, lime, dolomite, ) is injected directly into the furnace to desulfurize the fuel.

この直接脱硫法は主として固体燃料用と考えられ、その効率(30〜60%)は 燃焼室内の温度分布に大きく依存Ca     *ルシウム し、石灰の大量消費を必要とする(比率S ”  硫黄3〜4モル1モルのオー ダ)。This direct desulfurization method is considered to be mainly used for solid fuels, and its efficiency (30-60%) is Highly dependent on temperature distribution within the combustion chamber Ca * Lucium and requires large consumption of lime (ratio S” 3-4 moles of sulfur 1 mole of lime) da).

別の方式は「ドライ・アッシュ」とよぶ流動層式ボイラを使用するもので、約8 00〜900℃で作動し燃料を吸収剤が内部で緊密に接触する。Another method uses a fluidized bed boiler called "dry ash", which produces approximately 8. It operates between 00 and 900 degrees Celsius, and the fuel and absorbent are in close contact inside.

特に固体粒子の組織的再循環を伴う「急速」または「循環式」流動層内では、比 較的低いGa/s比(1,5〜2モル1モル)を伴う極めて高い脱硫率(85〜 90%)が得られる。Particularly in "rapid" or "circulating" fluidized beds with systematic recirculation of solid particles, Extremely high desulfurization efficiency (85-2 mol 1 mol) with relatively low Ga/s ratio (1,5-2 mol 1 mol) 90%) is obtained.

しかし循環層式自動脱硫火力発電機にはある程度の技術問題がつきものである。However, circulating bed automatic desulfurization thermal power generators are associated with certain technical problems.

特にその信頼性は熱交換ビームの抵抗、摩擦や腐食現象と密接に関連する。In particular, its reliability is closely related to the resistance, friction and corrosion phenomena of the heat exchange beam.

提案の装置は実証技術を使用して活用できるので、信頼性があるという本質的利 点をもつ。更に発明に係る発電機はコンパクトであまり場所をとらない。Since the proposed device can be utilized using demonstration technology, it has the essential advantage of being reliable. Has a point. Furthermore, the generator according to the invention is compact and does not take up much space.

主導的考えは3つの主要素を組合わせて、交換面をしばしば急速な損傷の原因と なる高速の団体粒子束から保護するよう配置することである。The leading idea is to combine three main elements to make replacement surfaces often prone to rapid damage. It is important to arrange the structure so that it is protected from high-velocity collective particle fluxes.

同様に提案に係る発電機は本質的に特に冷壁の炉または燃焼室、燃焼ガスの顕熱 を捕える回収ボイラ、ならびに目立つ内部交換面がなく上方炉と後方交換器の間 を通過するガスを脱硫する機能のある中間的循環層を備える。Similarly, the proposed generator is essentially a cold-walled furnace or combustion chamber, in which the sensible heat of the combustion gases is between the upper furnace and the rear exchanger without noticeable internal exchange surfaces. It has an intermediate circulation layer which has the function of desulfurizing the gas passing through it.

「冷壁」とは隔壁が熱を取出す手段を備えるものである。A "cold wall" is one in which a partition wall is provided with means for extracting heat.

一般的にこの発明は燃焼室、循環層と復熱ボイラを備える火力発電機に関係する 。発明によって循環層と燃焼室は共通する隔壁を存する。In general, the invention relates to a thermal power generator comprising a combustion chamber, a circulating bed and a recuperating boiler. . According to the invention, the circulation bed and the combustion chamber have a common partition.

この共通壁は循環層に一次流体束を供給する最低1つのオリフィスと/または循 環層に二次流体束を供給する最低1つのオリフィスを備える。This common wall has at least one orifice supplying the primary fluid flux to the circulation layer and/or the circulation layer. At least one orifice is provided for supplying a secondary fluid flux to the annular layer.

この共通壁は冷壁とする。同様に燃焼室の他の壁も冷壁にできる。This common wall will be a cold wall. Similarly, the other walls of the combustion chamber can also be cold walls.

各冷壁には流体が循環する。A fluid circulates through each cold wall.

発明によって循環層と熱回収ボイラも共通壁をもつ。According to the invention, the circulation bed and the heat recovery boiler also have a common wall.

同様に燃焼室と熱回収ボイラも共通壁をもてる。Similarly, the combustion chamber and heat recovery boiler can have a common wall.

循環層の壁は断熱材で被覆する。The walls of the circulation layer are covered with thermal insulation.

その固体材を吸収剤で構成した脱硫循環層は炉から出る高温ガスを駆動流体とす る。The desulfurization circulation layer, which is made of solid material with an absorbent, uses the high-temperature gas coming out of the furnace as the driving fluid. Ru.

ガス温度は発電機の負荷とともに変化するので、循環層の脱硫最適温度(800 〜900℃)維持は補給燃料を反応器内に噴射して行い、燃焼は上流の炉からく る過剰酸素で、また場合により新たな助燃剤の供給で行われる。Since the gas temperature changes with the load of the generator, the optimal temperature for desulfurization of the circulation bed (800 ~900℃) Maintenance is performed by injecting supplementary fuel into the reactor, and combustion is carried out from the upstream furnace. This is done with excess oxygen and, if necessary, with a fresh supply of combustion improver.

発明に係る発電機は縦に配置した3つの主要素の独走的な空間配分によりコンパ クトになり、従ってプレハブ化が容易である。The generator according to the invention can be compacted by independent spatial distribution of three main elements arranged vertically. Therefore, it is easy to prefabricate.

発明は付録図に示す非限定的な実施例の説明で一層分かり易く、またその利点も 更に明らかとなる。The invention will be better understood and its advantages will be better understood by the description of non-limiting embodiments shown in the appendix figures. It becomes even clearer.

図1は発明に係る火力発電機の概略を示す。FIG. 1 schematically shows a thermal power generator according to the invention.

図2はこのような発電機の透視略図である。FIG. 2 is a schematic perspective view of such a generator.

図3と4は火力発電機の各要素の異なる配置例を示す。3 and 4 show examples of different arrangements of the elements of a thermal power generator.

発明に係るコンパクトな自動脱硫装置の原理を図1で示すが、これは上流の炉ま たは燃焼室内へ霧状に噴射する固体または液体燃料の燃焼に適した実施例である 。The principle of the compact automatic desulfurization equipment according to the invention is shown in Figure 1. This embodiment is suitable for the combustion of solid or liquid fuels that are injected into the combustion chamber in the form of a mist. .

燃焼室1は優先的に冷壁とし、交換面は例えば「膜壁」タイプ、すなわち流体の 循環手段を燃焼室の隔壁に連結またはそのを一体化する。この冷隔壁は燃焼ガス 温度が稼働中は800〜850℃の範囲に納まるようなサイズとする。The combustion chamber 1 has preferentially a cold wall, and the exchange surfaces are of the "membrane wall" type, i.e. of the fluid The circulation means is connected to or integrated with the bulkhead of the combustion chamber. This cold bulkhead is a combustion gas The size shall be such that the temperature will be within the range of 800 to 850°C during operation.

バーナ3は窒素酸化物の排出を制限し、完全な無公害型発電機とするため「低N Ox型」バーナである。Burner 3 is designed to limit nitrogen oxide emissions and provide a completely pollution-free generator. It is an "Ox type" burner.

これらの条件で、残存酸素量が反応器6とサイクロン型分離機10を備える循環 層1G内で少なくとも二次燃焼を行うに有する量となるよう過剰空気または助燃 剤を調節する。Under these conditions, the amount of residual oxygen is Excess air or auxiliary combustion is added to at least an amount sufficient to carry out secondary combustion in layer 1G. adjust the agent.

循環層16の反応機6は共通隔壁17により炉1に連接し、両装置間の連絡はこ の隔壁内に設けた流路で直接に行う。The reactor 6 of the circulation bed 16 is connected to the furnace 1 by a common partition 17, and this is the communication between both devices. This is done directly in the flow path provided within the partition wall.

燃焼室1からでる循環層の一次供給ガス束41は下部流路4を経るが、二次ガス 束は上部流路5による。The primary supply gas bundle 41 of the circulation layer coming out of the combustion chamber 1 passes through the lower flow path 4, but the secondary gas The bundle is via the upper channel 5.

内部隔壁は耐摩耗性の薄い耐火絶縁材層7から成り、熱損失は実質的に炉1のケ ーシングを洗う放熱流体で回収する。The internal partition consists of a thin layer of wear-resistant refractory insulation material 7, so that the heat loss is substantially reduced to the case of the furnace 1. Collect with heat dissipating fluid that washes the sink.

図1の例で補助燃料と/または窒素酸化物吸収剤が最低1つのオリフィス9によ り反応器8の下部に噴射され、これが循環層の高密度位相を構成する。しかし一 方または両方の材料を特に戻り脚部20のレベルで噴射するなど、循環層の循環 ループの別の場所で噴射しても発明の枠を逸脱するものではない。In the example of FIG. is injected into the lower part of the reactor 8, which constitutes the dense phase of the circulating bed. But one circulation of the circulation layer, such as by injecting one or both materials, especially at the level of the return leg 20. Injection at another location in the loop does not depart from the scope of the invention.

上述の下部流路4と上部流路5からきて循環層で駆動流体と助燃剤となる酸化ガ スまたは煙4G、51は循環層の高密度位相18のあちらこちらに噴射される。Oxidizing gas comes from the lower flow path 4 and upper flow path 5 mentioned above and becomes a driving fluid and a combustion aid in the circulation layer. Gas or smoke 4G, 51 is injected here and there in the dense phase 18 of the circulating layer.

−次束のガスまたは煙41は、穿孔グリル8または流動化した固体マス内でガス の良好な配分を確保できる他の装置を介して、高密相を通る。- the next bundle of gases or smoke 41 is disposed of in a perforated grille 8 or in a fluidized solid mass; through the dense phase through other devices that can ensure a good distribution of.

二次束のガスまたは煙51は発散ゾーンともいう反応器の転移ゾーンまたは希釈 ゾーン19に噴射され、更に反応器6内の垂直部分または循環軸に対し段階的部 分で多数のオリフィスにより分配される。−次束の導入についても同様である。The secondary bundle of gases or smoke 51 is the transition zone or dilution zone of the reactor, also called the divergence zone. injected into zone 19 and also in a vertical section within reactor 6 or in a stepwise section relative to the circulation axis. distributed by multiple orifices in minutes. The same is true for the introduction of −order bundles.

フラップなど適当な手段により煙を一次束41と二次束に制御配分して、反応器 6内の燃焼の進展を調整しまた高密相18外に出る固体流量を変えてリサイクル させる。Controlled distribution of the smoke into the primary bundle 41 and the secondary bundle by appropriate means such as flaps is carried out in the reactor. Adjust the progress of combustion in 6 and change the flow rate of solids exiting the dense phase 18 for recycling. let

このリサイクルは上述のような便宜なサイクロンなどの分離器10を介して行う 。再循環量は例えば流体サイフオンまたは「L量弁」など機械式または油圧式の 弁装置12で調節する。This recycling takes place via a separator 10, such as a convenient cyclone as described above. . The recirculation volume can be controlled by a mechanical or hydraulic system such as a fluid siphon or "L volume valve". It is regulated by a valve device 12.

脱流循環層16を構成する反応器6、サイクロンIOと連絡脚部20は全体が耐 火絶縁被覆7、llで熱から保護する。The reactor 6, cyclone IO, and connecting leg 20 that constitute the deflow circulation layer 16 are entirely resistant. Protect from heat with fire insulation coating 7,ll.

脱流ガス21は分離器10の上部を出て復熱ボイラ!3に入り、その熱エネルギ ーを管束から成る交換面14に伝える。The deflowed gas 21 exits the upper part of the separator 10 and enters the recuperator! 3 and its thermal energy is transmitted to an exchange surface 14 consisting of a tube bundle.

煙は最後に導管15から出て既知タイプのろ過システム(図示せず)に向う。The smoke finally exits through conduit 15 to a filtration system (not shown) of known type.

リサイクルしないまたは循環層16の分離器lOから逃げた固形ごみの除去は燃 焼室の底部で弁23により塞げるオリフィス22から、またグリルのレベルの循 環層の高密相18の底部で弁25を備えるオリフィス24から、さらに/または 復熱ボイラの底部で弁27により塞げるオリフィス26過熱蒸気を生産する図1 の実施例で、燃焼室からくるエアルジョンのような放熱流体は管路30により加 圧容器またはフラスコ23に送られる。図1で発電機の上方に位置するこのフラ スコには管路30aを介して復熱ボイラ13からくるエマルシヨン28aも流入 する。容器29内の流体は蒸気の形で管路31によりタービン32、暖房システ ムなどの利用設備に送られる。放熱量体はそのエネルギーの一部を放出し更に復 水器(図示せず)で復水した後、弁手段33により復熱ボイラ13の管束14と 燃焼室1のwi激回路に配分され、この回路は燃焼室の隔壁の一部をなす導管を 備えるかまたは水都により形成される。Removal of solid waste that is not recycled or that has escaped from the separator lO of the circulation layer 16 is by combustion. From an orifice 22 which is plugged by a valve 23 at the bottom of the grilling chamber, the circulation is also provided at the level of the grill. from an orifice 24 with a valve 25 at the bottom of the dense phase 18 of the annular layer and/or An orifice 26 which is plugged by a valve 27 at the bottom of the recuperating boiler produces superheated steam FIG. In this embodiment, the heat dissipating fluid, such as air ion, coming from the combustion chamber is heated by conduit 30. It is sent to a pressure vessel or flask 23. This flap located above the generator in Figure 1 The emulsion 28a coming from the recuperation boiler 13 also flows into the SC via the pipe 30a. do. The fluid in the container 29 is transported in the form of steam by a line 31 to a turbine 32 and a heating system. The data is sent to the equipment used, such as the system. A heat dissipating mass emits part of its energy and recovers it further. After condensing in a water heater (not shown), the valve means 33 connects the tube bundle 14 of the recuperating boiler 13. This circuit is distributed to the combustion chamber 1 circuit, which runs through a conduit that forms part of the combustion chamber bulkhead. equipped with or formed by water cities.

タンビン32の出口と弁33間の放熱流体の移動、管束14と導管34への供給 は一部を鎖線で示す導管35.3G、37により行う。導管はもちろん断熱保護 する。Transfer of heat dissipating fluid between the outlet of the tumbin 32 and the valve 33, supplying the tube bundle 14 and the conduit 34 This is carried out through conduits 35.3G and 37, some of which are indicated by chain lines. Insulation protection for conduits as well do.

図2は炉1、循環層16の反応器6や復熱ボイラ13を近接させて最適性能とし た実施例を示す。Figure 2 shows that the furnace 1, the reactor 6 of the circulating bed 16, and the recuperator 13 are placed close together to achieve optimal performance. An example is shown below.

各構成要素の垂直部分は方形(図3を参照)をなすので、相互の熱接触を緊密化 、隔壁の大気への致命的損失を最小化できる。The vertical parts of each component are rectangular (see Figure 3), ensuring close thermal contact with each other. , the catastrophic loss of the bulkhead to the atmosphere can be minimized.

図2で隔壁17は炉1と循環層の反応器6の内部に達する前に終り、従って内部 通過4が簡単となる。In FIG. 2 the partition wall 17 ends before reaching the interior of the furnace 1 and the circulating bed reactor 6 and therefore Passage 4 becomes easier.

この図ではサイクロン、放熱流体の循環導管、バーナは省いた。In this diagram, the cyclone, heat dissipation fluid circulation conduit, and burner are omitted.

オリフィス38はバーナ3の取付けを可能にする。The orifice 38 allows the burner 3 to be installed.

オリフィス40は循環流束42の分離器lO方への反応器6出口である。Orifice 40 is the outlet of reactor 6 for recycle flux 42 towards separator IO.

オリフィス43は分離器10からくるガス21の入口で復熱ボイラ13(図1) の方に向く。The orifice 43 is the inlet of the gas 21 coming from the separator 10 to the recuperator boiler 13 (Figure 1). turn towards.

図2に示す実施例で循環層6は炉1と同様に上方には伸びず、隔壁44のに前で 終る。隔壁の上部には平行六面体型の復熱ボイラ13と直接に連接する同じく平 行六面体型の型枠45が乗る。In the embodiment shown in FIG. end. At the top of the bulkhead, there is also a parallelepiped-shaped recuperator 13 that is directly connected to the recuperating boiler 13. A formwork 45 having a row and hexahedron shape is placed on it.

オリフィス46は循環層の反応器6に分離器1G(図1)を連結する脚部20( 図1)の連絡部に対応する。The orifice 46 connects the leg 20 (FIG. 1) connecting the separator 1G (FIG. This corresponds to the communication section in Figure 1).

図3は図2に示す発電機の反応器レベルでの断面を示す。FIG. 3 shows a cross-section of the generator shown in FIG. 2 at the reactor level.

図3で循環層1Bの反応器6はその4面に断熱材47を使用する。燃焼室は同時 に49で反応器にまた50で復熱ボイラと共通する平面隔壁48を有する。In FIG. 3, the reactor 6 of the circulation layer 1B uses a heat insulating material 47 on its four sides. combustion chamber at the same time It has a planar bulkhead 48 common to the reactor at 49 and to the recuperating boiler at 50.

復熱ボイラ13と循環層の反応器6は平面隔壁48にほぼ垂直な共通隔壁52を もつ。The recuperator 13 and the circulating bed reactor 6 have a common partition wall 52 that is substantially perpendicular to the planar partition wall 48. Motsu.

図4は発明に係る装置の変化例で、炉1と反応器6とに共通する平面隔壁53を 復熱ボイラ13が有する。FIG. 4 shows a modification of the device according to the invention, in which a flat partition wall 53 common to the furnace 1 and the reactor 6 is The recuperation boiler 13 has it.

炉1と反応器6に共通する隔壁54はボイラの平面隔壁53にほぼ垂直をなす。The bulkhead 54 common to the furnace 1 and the reactor 6 is approximately perpendicular to the planar bulkhead 53 of the boiler.

図1で弁33はタービン32の出力、バーナ3が消費する燃料の量、更に/また は循環層の反応器6の温度を考慮して操作できる。In FIG. 1, the valve 33 is configured to control the output of the turbine 32, the amount of fuel consumed by the burner 3, and/or can be operated in consideration of the temperature of the reactor 6 of the circulating bed.

強制的ではもちろんないが、例えば9で補助燃料を循環層に導入することで循環 層の温度をより柔軟に調整でFIG、2 国際調査報告 国際調査報告 FR8700511 S^ 20074Of course, it is not forced, but for example, by introducing auxiliary fuel into the circulation layer in step 9, circulation can be achieved. FIG. 2 by adjusting the temperature of the layer more flexibly international search report international search report FR8700511 S^ 20074

Claims (1)

【特許請求の範囲】 1.燃料室、循環層と復熱ボイラを備え、上記循環層と上記燃焼室が共通の隔壁 をもつことを特徴とする火力発電機。 2.上記の共通管壁が循環層に一次流束を供給する少なくとも1つのオリフィス を備えることを特徴とするクレーム1に記載の火力発電機。 3.上記の共通隔壁が上記循環層に二次流速を供給する少なくとも1つのオリフ ィスを備えることを特徴とするクレーム1または2に記載の火力発電機。 4.上記の共通隔壁が冷壁であることを特徴とするクレーム1〜3のいずれかに 記載の火力発電機。 5.上記燃焼室が冷壁構造であることを特徴とするクレーム1〜3のいずれかに 記載の火力発電機。 8.上記の冷壁が流体の循環を備えることを特徴とするクレーム4または5のい ずれかに記載の発電機。 7.上記循環層と上記復熱ボイラが共通の隔壁を有することを特徴とするクレー ム1〜5のいずれかに記載の発電機。 8.上記燃焼室と上記復熱ボイラが共通の隔壁を有することを特徴とするクレー ム1〜7のいずれかに記載の発電機。 9.循環層の隔壁が断熱材の被覆を備えることを特徴とするクレーム1〜8のい ずれかに記載の発電機。[Claims] 1. Equipped with a fuel chamber, a circulation layer, and a recuperator, the circulation layer and the combustion chamber share a common partition wall. A thermal power generator characterized by having. 2. at least one orifice, said common tube wall providing a primary flux to the circulation bed; The thermal power generator according to claim 1, comprising: 3. at least one orifice wherein said common partition provides a secondary flow rate to said circulation bed; The thermal power generator according to claim 1 or 2, characterized in that the thermal power generator is equipped with a system. 4. Any one of claims 1 to 3, wherein the common partition wall is a cold wall. The thermal power generator mentioned. 5. According to any of claims 1 to 3, wherein the combustion chamber has a cold wall structure. The thermal power generator mentioned. 8. The method according to claim 4 or 5, characterized in that said cold wall is provided with fluid circulation. The generator described in any of the above. 7. A clay characterized in that the circulation layer and the recuperation boiler have a common partition wall. The generator according to any one of Items 1 to 5. 8. A clay material characterized in that the combustion chamber and the recuperating boiler have a common partition wall. 8. The generator according to any one of Items 1 to 7. 9. Claims 1 to 8, characterized in that the partition wall of the circulation layer is provided with a covering of a heat insulating material. The generator described in any of the above.
JP88501145A 1987-12-23 1987-12-23 Concentrated circulation bed thermal power generator capable of desulfurizing combustion gas Pending JPH03502234A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR1987/000511 WO1988005144A1 (en) 1986-12-24 1987-12-23 Polyfuel heat generator with integrated circulating bed

Publications (1)

Publication Number Publication Date
JPH03502234A true JPH03502234A (en) 1991-05-23

Family

ID=9347017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP88501145A Pending JPH03502234A (en) 1987-12-23 1987-12-23 Concentrated circulation bed thermal power generator capable of desulfurizing combustion gas

Country Status (1)

Country Link
JP (1) JPH03502234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095539A (en) * 2012-11-12 2014-05-22 Mitsubishi Heavy Ind Ltd Boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095539A (en) * 2012-11-12 2014-05-22 Mitsubishi Heavy Ind Ltd Boiler

Similar Documents

Publication Publication Date Title
US5465690A (en) Method of purifying gases containing nitrogen oxides and an apparatus for purifying gases in a steam generation boiler
KR920001094B1 (en) Method of buring solid fuel by means of a fluidized bed
CN102084184B (en) Method of controlling combustion in oxygen combustion boiler and apparatus therefor
CN101545676A (en) High-efficiency energy-saving emission-reduction circulating fluid bed organic heat carrier boiler
DK162112B (en) PRESSED, CARBON HEATED STEAM GENERATOR
RU2107866C1 (en) Boiler with circulating fluidized bed under pressure working at supercritical pressure of steam
CN114017770B (en) Multi-medium slag cooler for circulating fluidized bed boiler
JP2009019870A (en) Fluidized bed gasification combustion furnace
US4936230A (en) Multifuel heat generator with integrated circulating bed
JPH0364628A (en) Gas turbine-steam turbine combined cycle system and power plant for use in executing the same
CN109506231A (en) Environment-friendly and energy-efficient biomass recirculating fluidized bed boiler steam/water circulating integrated morphology
US5435123A (en) Environmentally acceptable electric energy generation process and plant
EP0262105B1 (en) Method in fluidized bed combustion
JP2731631B2 (en) Method for maintaining a nominal operating temperature of flue gas in a PFBC power plant
JPH03502234A (en) Concentrated circulation bed thermal power generator capable of desulfurizing combustion gas
JP3770653B2 (en) Gasification combustion method using fluidized bed furnace
GB2049134A (en) Fluidized bed fuel burning
JPH08296835A (en) Pulverized coal fired thermal power generation system
JPS63503240A (en) Method and apparatus for reducing nitrogen oxide emissions during solid fuel combustion
RU2028543C1 (en) Circulating fluidized-bed furnace
JPH075898B2 (en) Coal gasifier
Zylkowski et al. Black Dog AF BC Retrofit for Emission Reduction, Capacity Increase, and Life Extension
KR102590497B1 (en) Burner for coal-fired power plant and power generation system for recycling coal-fired power plant having the same
JP2001041414A (en) Inner temperature controller for circulating fluidized- bed combustor and operating method thereof
PL176719B1 (en) Method of and apparatus for generating gases for propelling a gas turbine in a combined gas/steam power generation plant