JPH0350117B2 - - Google Patents

Info

Publication number
JPH0350117B2
JPH0350117B2 JP58107738A JP10773883A JPH0350117B2 JP H0350117 B2 JPH0350117 B2 JP H0350117B2 JP 58107738 A JP58107738 A JP 58107738A JP 10773883 A JP10773883 A JP 10773883A JP H0350117 B2 JPH0350117 B2 JP H0350117B2
Authority
JP
Japan
Prior art keywords
pressure
circuit
compressor
load side
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58107738A
Other languages
Japanese (ja)
Other versions
JPS601394A (en
Inventor
Shigeru Abe
Ekizo Shibata
Tadashi Kanetani
Yasunobu Fujita
Mitsuji Konishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10773883A priority Critical patent/JPS601394A/en
Publication of JPS601394A publication Critical patent/JPS601394A/en
Publication of JPH0350117B2 publication Critical patent/JPH0350117B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は圧縮機の制御における予測投入制御回
路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a predictive input control circuit for controlling a compressor.

〔発明の背景〕[Background of the invention]

圧縮機台数制御の、従来技術を第1図なしし第
3図により説明する。
A conventional technique for controlling the number of compressors will be explained with reference to FIG. 1 and FIG. 3.

従来、圧縮機の台数制御運転を行なう場合、負
荷側使用風量が増加すると、負荷側圧力が低下し
て第1図に示す圧力低下点に達した場合、停止し
ている圧縮機を起動させて、負荷側圧力を制御目
標圧力Mに近づける。又、その逆に、負荷側使用
風量が減少すると、負荷側圧力が上昇し、圧力上
昇点まで達した場合、運転している圧縮機を停止
させて、負荷側圧力を制御目標圧力Mに近づけ
る。この動作をくり返し行ない、負荷側圧力が第
1図の制御目標圧力Mを中心に、ある幅に納まる
様に制御する。
Conventionally, when controlling the number of compressors, when the air volume used on the load side increases and the pressure on the load side decreases and reaches the pressure drop point shown in Figure 1, the stopped compressor is started. , bring the load side pressure closer to the control target pressure M. Conversely, when the air volume used on the load side decreases, the load side pressure increases, and when it reaches the pressure rise point, the operating compressor is stopped to bring the load side pressure closer to the control target pressure M. . This operation is repeated to control the load side pressure within a certain range around the control target pressure M shown in FIG. 1.

しかし、圧縮機の保護のために、起動頻度の制
限、過投入や過停止を防止するため、起動、停止
は1台毎にある時限を置いて行なわれる様考慮さ
れている。
However, in order to protect the compressors, the starting frequency is limited, and in order to prevent overcharging and overstopping, consideration has been given to starting and stopping each compressor after a certain time limit.

第2図に示す様な負荷側使用風量特性におい
て、時間Tに負荷側の使用風量が急激に増加して
場合、負荷圧力が第1図の様に急激に低下する。
ここで負荷圧力が圧力低下点Lに達すると、圧縮
機の1台が起動する。
In the load side usage air volume characteristics as shown in FIG. 2, if the usage air volume on the load side increases rapidly at time T, the load pressure suddenly decreases as shown in FIG.
When the load pressure reaches the pressure drop point L, one of the compressors is activated.

圧縮機は、無負荷起動が原則であり、圧縮機が
起動して負荷側に圧縮空気を供給できるのは、起
動から約10秒後であり、負荷側圧力は、その間、
さらに低下を続け、停止している圧縮機が再び追
加起動される。このように、負荷側圧力が、圧力
低下点L以上になる迄、圧縮機の起動がくり返さ
れる。第3図の圧縮機運転台数特性では、時間T
後の圧縮機追加運転台数が4台となつている。
In principle, the compressor starts without load, and the compressor can start and supply compressed air to the load side about 10 seconds after startup, and during that time, the pressure on the load side will decrease.
The pressure continues to drop further, and the stopped compressor is additionally started again. In this way, the compressor is repeatedly started until the load side pressure becomes equal to or higher than the pressure drop point L. In the characteristics of the number of compressors in operation in Figure 3, the time T
The number of additional compressors in operation after that was 4.

圧縮機の運転により、負荷側圧力が圧力低下点
L以上になると、圧縮機の起動指令は解除される
が、負荷側の急激な負荷風量に対処するために、
圧縮機の必要台数よりも運転台数が多くなり、過
投入となるため、当然ながら、負荷側圧力が上昇
し続け、今度は逆に、負荷側圧力が圧力上昇点H
以上となる。
When the load side pressure becomes equal to or higher than the pressure drop point L due to compressor operation, the compressor start command is canceled, but in order to deal with the sudden load air volume on the load side,
As the number of compressors in operation exceeds the required number, resulting in overloading, the load-side pressure naturally continues to rise, and this time, conversely, the load-side pressure reaches the pressure rise point H.
That's all.

運転している圧縮機には停止指令が出される
が、圧縮機を駆動している誘導電動機の保護のた
めに一度運転したら一定時限停止できないため
に、すぐには停止出来ず、余剰圧縮機がある時間
運転され続けることになる。
A stop command is issued to the compressor that is in operation, but to protect the induction motor that drives the compressor, once it has started, it cannot be stopped for a certain period of time, so it cannot be stopped immediately and the excess compressor It will continue to be operated for a certain period of time.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、負荷側使用風量の急激な増加
に対して負荷側圧力低下、圧縮機の運剰運転を防
止する予測投入制御回路を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a predictive input control circuit that prevents a drop in pressure on the load side and excessive operation of the compressor in response to a sudden increase in the amount of air used on the load side.

〔発明の概要〕[Summary of the invention]

第2図に示す負荷側使用風量が急激に増加する
時間Tは、生産稼動開始時等、時間設定が可能で
あり、圧縮機の必要台数も設備稼動量からみて容
易に分る。
The time T shown in FIG. 2 during which the air volume used on the load side rapidly increases can be set at a time such as at the start of production operation, and the required number of compressors can be easily determined from the amount of equipment operation.

この時間T、及び圧縮機の必要台数をスケジユ
ールタイマー等により時間設定を行ない、負荷側
使用風量急増の時間Tよりも以前に、圧縮機を必
要台数運転させておくことにより、負荷側の圧力
確保、圧縮機の余剰運転の防止が可能となる。
This time T and the required number of compressors are set using a schedule timer, etc., and the required number of compressors are operated before the time T when the air volume used on the load side suddenly increases, thereby ensuring pressure on the load side. , it becomes possible to prevent excessive operation of the compressor.

又、負荷側使用風量急増の時間T以前の圧縮機
の運転により、負荷側圧力が上昇し、圧縮機に停
止指令が出るのを一旦ロツクして、圧縮機が停止
しない様にする必要が生じるが、このロツク解除
は、負荷側使用風量急増後の圧力低下条件により
行なうことで、スケジユールタイマーでロツク解
除を行なつた場合の、設定誤差により不具合(時
間Tが遅れた場合、圧縮機が負荷側使用風量急増
前、あるいは、急増中に停止してしまう)をなく
す様考慮している。
In addition, if the compressor is operated before the time T when the air volume used on the load side suddenly increases, the load side pressure will rise, and it will be necessary to temporarily lock the stop command to the compressor to prevent the compressor from stopping. However, this lock release is performed based on the pressure drop condition after a sudden increase in the amount of air used on the load side.If the lock release is performed using a schedule timer, there may be a problem due to a setting error (if time T is delayed, the compressor may be under load). Consideration has been given to eliminating the possibility of the system shutting down before or during a sudden increase in air usage.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第4図ないし第8図
に基づいて説明する。
An embodiment of the present invention will be described below with reference to FIGS. 4 to 8.

まず、スケジユールタイマー等により負荷側の
使用風量急増点の時間T、及び圧縮機必要運転台
数が運転するのに必要な時間tを第4図のように
設定する。
First, a schedule timer or the like is used to set the time T at which the usage air volume on the load side suddenly increases, and the time t required for the required number of operating compressors to operate, as shown in FIG.

今、第5図で、時間T―t迄の圧縮機台数制御
は、従来技術で説明した様に、負荷側圧力が、制
御目標圧力に近づくように働く。第5図と第6図
から明らかな様に、圧縮機の運転台数が負荷側使
用風量に合つた台数となるよう、負荷側の使用風
量が増加すれば、負荷側圧力が圧力低下点Lに達
し、圧縮機が1台起動する。又、負荷側の使用風
量が減少すれば、負荷側圧力上昇点Hに達し、圧
縮機が1台停止する。
Now, in FIG. 5, the number of compressors is controlled until time Tt, as explained in the prior art, so that the load side pressure approaches the control target pressure. As is clear from Figures 5 and 6, if the air volume used on the load side increases so that the number of operating compressors matches the air volume used on the load side, the load side pressure will reach the pressure drop point L. reached, and one compressor starts. Moreover, if the air volume used on the load side decreases, the load side pressure rise point H is reached and one compressor stops.

時間がT―tに達すると、予測投入指令により
圧縮機は負荷側圧力に無関係に、強制的に運転を
行ない、時間tの間に圧縮機の必要台数が運転さ
れる。
When the time reaches Tt, the compressors are forced to operate regardless of the load side pressure by the predicted input command, and the required number of compressors are operated during the time t.

第7図は複数台の圧縮機の予測投入制御回路で
あり、次のように構成されている。
FIG. 7 shows a predictive input control circuit for a plurality of compressors, and is configured as follows.

タイマー設定回路に設けたスケジユールタイマ
ーT24が動作をすると、励磁された増幅リレー
T24Xの第1接点T24X1を閉じると、低圧
回路の圧縮機起動指令用リレーLXをt時間励磁
させ、強制的に圧力低下信号LX′を与えて、圧縮
機の必要台数を運転させる。
When the schedule timer T24 provided in the timer setting circuit operates, the first contact T24X1 of the energized amplification relay T24X is closed, and the compressor start command relay LX in the low pressure circuit is energized for a period of time t, forcibly reducing the pressure. Apply signal LX′ to operate the required number of compressors.

この時、圧力上昇回路の圧力上昇信号HX′が出
ないように、つまり圧力上昇リレーHXが励磁し
ないように、増幅リレーT24Xの第2接点T2
4X2を閉じる。尚、第1および第2接点はタイ
マーの設定時間だけ閉じている。第2接点T24
X2が閉じると、ロツク回路に設けたロツク用リ
レーTNが励磁されると、ロツク用リレーTNの
B接点であるロツク接点TNbは時間tつまり負
荷使用量が増加している間だけ開放されているの
で、この間圧力上昇回路に設けたロツク接点
TNbを開放し、圧力ロツク回路から圧力上昇信
号HX′を出さないように、強制的にロツクをす
る。
At this time, in order to prevent the pressure increase signal HX' of the pressure increase circuit from being output, that is, to prevent the pressure increase relay HX from being energized,
Close 4X2. Note that the first and second contacts are closed only for the time set by the timer. Second contact T24
When X2 is closed, the lock relay TN provided in the lock circuit is energized, and the lock contact TNb, which is the B contact of the lock relay TN, is open only for a time t, that is, while the load usage is increasing. Therefore, during this time, the lock contact provided in the pressure increase circuit
Open TNb and forcibly lock it so that the pressure increase signal HX' is not output from the pressure lock circuit.

もし、投入予測制御回路にロツクタイマーTN
およびロツク接点TNbを設けていない場合、圧
縮機を余分に運転しているのであるから、負荷側
圧力は当然ながら上昇し、第5図の圧力上昇点H
以上になるため、圧力上昇により、予測投入以前
に運転していた圧縮機は停止してしまう。
If the lock timer TN is installed in the input prediction control circuit,
If the lock contact TNb is not provided, the compressor is being operated redundantly, so the load side pressure naturally increases, and the pressure rise point H in Figure 5.
As a result, the compressor that was operating before the predicted injection stops due to the pressure increase.

この様に、使用風量急増に対応出来る準備をし
ておき、時間Tになつた時に、負荷側使用風量に
間に合うだけの圧縮機が運転されているため、負
荷側圧力を、圧力低下点迄低下させることなく、
追従させることが可能となる。
In this way, preparations are made to respond to a sudden increase in air usage, and when time T arrives, the compressor is operating in time to meet the air usage on the load side, so the load side pressure is reduced to the pressure drop point. without letting
It becomes possible to follow.

時間Tを過ぎた時に、負荷側使用風量が急増す
るため、今迄負荷側圧力が圧力上昇点H以上にあ
つたものが、圧力上昇点Hより低下する。この条
件により、第8図のタイムチヤートに示す様に、
TNのリレーを無励磁にさせることで、予測投入
後の圧縮機停止指令のロツクを解除することがで
き、本来の制御状態に戻る。
When the time T has passed, the air flow rate used on the load side increases rapidly, so that the load side pressure, which has been above the pressure rise point H, falls below the pressure rise point H. Under these conditions, as shown in the time chart of Figure 8,
By de-energizing the TN relay, it is possible to release the lock on the compressor stop command after the predicted turn-on and return to the original control state.

この圧縮機停止指令のロツク解除は、スケジユ
ールタイマーT24でで予め設定しておいてもよ
いが、負荷側使用風量急増点Tが遅れた場合、停
止指令ロツクの解除が時間的に早くなり、負荷側
使用風量が急増する前になつた場合は、圧縮機は
停止してしまう。この様に危険性を考慮し、本発
明では、圧力で監視してロツク解除を行なう。
This unlocking of the compressor stop command may be set in advance using the schedule timer T24, but if the load-side usage air volume increase point T is delayed, the lock of the stop command will be released earlier in time, and the load If this occurs before the side air flow increases rapidly, the compressor will stop. Taking this risk into consideration, the present invention uses pressure to monitor and release the lock.

〔発明の効果〕〔Effect of the invention〕

本発明の予測投入制御回路によれば、この回路
にロツクタイマーTNおよびロツク接点TNb等を
設けることにより、圧縮機を余分に運転している
のであるから、負荷側圧力は当然ながら上昇し、
第5図の圧力上昇点H以上になるため、圧力上昇
により、予測投入以前に運転していた圧縮機は停
止してしまうのを防止することができるようにな
つた。このため、負荷側圧力を、使用可能圧力以
下に下げることなく、また、従来制御と比べ省エ
ネルギーとなり、又制御系の安定化が図れるよう
になつた。
According to the predictive power supply control circuit of the present invention, by providing a lock timer TN, a lock contact TNb, etc. in this circuit, the compressor is operated redundantly, so the load side pressure naturally increases.
Since the pressure rises above the pressure rise point H in FIG. 5, it is now possible to prevent the compressor that was operating before the predicted injection from stopping due to the pressure rise. Therefore, the load-side pressure is not lowered below the usable pressure, energy is saved compared to conventional control, and the control system can be stabilized.

また、予測投入制御回路にロツクタイマーとロ
ツク接点を設ければよいから、簡単な回路で実現
することができる。
Further, since a lock timer and a lock contact may be provided in the predictive input control circuit, it can be realized with a simple circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の負荷側圧力―時間特性図、第2
図は圧縮空気の負荷側使用風量―時間特性図、第
3図は従来の圧縮機の運転台数―時間特性図、第
4図は本発明の予測投入指令―時間特性図、第5
図は本発明の負荷側圧力―時間特性図、第6図は
本発明の圧縮機の運転台数―時間特性図、第7図
は本発明の一実施例の電気回路図、第8図は第7
図のタイムチヤートである。 HX…圧力上昇リレー、T24X…増幅リレ
ー。
Figure 1 is a conventional load-side pressure-time characteristic diagram, Figure 2
Figure 3 shows the compressed air load side used air volume vs. time characteristic diagram, Figure 3 shows the conventional number of operating compressors vs. time characteristic diagram, Figure 4 shows the predicted injection command of the present invention vs. time characteristic diagram, and Figure 5 shows the time characteristic diagram.
Figure 6 is a load side pressure-time characteristic diagram of the present invention, Figure 6 is a compressor operation number-time characteristic diagram of the present invention, Figure 7 is an electric circuit diagram of an embodiment of the present invention, and Figure 8 is a diagram of the time characteristic diagram. 7
This is a time chart. HX...Pressure increase relay, T24X...Amplification relay.

Claims (1)

【特許請求の範囲】[Claims] 1 複数台の圧縮機を予測投入する制御回路にス
ケジユールタイマー設定回路と、圧力低下回路
と、圧力上昇回路と、ロツク回路とを並列接続
し、上記タイマ設定回路にスケジユールタイマー
が設定されると励磁される増幅リレーを設け、増
幅リレーが励磁されると閉じる第1および第2接
点を圧力低下回路およびロツク回路に設け、第1
接点が閉じると圧縮機に起動指令を与え圧縮機の
圧力を強制的に低下させる圧縮機起動指令用リレ
ーを低圧回路に設け、第2接点が閉じるとロツク
回路に設けた負荷使用量が増加する間だけ励磁さ
れるロツク用リレーを設け、ロツク用リレーが励
磁されると、圧力上昇回路のロツク接点を開放
し、圧力上昇回路を強制的にロツクすることを特
徴とする空気圧縮機の予測投入制御回路。
1 A schedule timer setting circuit, a pressure reduction circuit, a pressure increase circuit, and a lock circuit are connected in parallel to a control circuit that predictably turns on multiple compressors, and when the schedule timer is set in the timer setting circuit, the excitation is activated. an amplifying relay, the pressure reducing circuit and the locking circuit having first and second contacts that close when the amplifying relay is energized;
When the contact closes, a compressor start command relay is installed in the low pressure circuit that gives a start command to the compressor and forcibly reduces the pressure of the compressor, and when the second contact closes, the load usage of the lock circuit increases. Predictive start-up of an air compressor characterized in that a locking relay is provided which is energized only for a certain period of time, and when the locking relay is energized, a locking contact of a pressure increasing circuit is opened and the pressure increasing circuit is forcibly locked. control circuit.
JP10773883A 1983-06-17 1983-06-17 Method of predicted starting of operation in control of air compressors Granted JPS601394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10773883A JPS601394A (en) 1983-06-17 1983-06-17 Method of predicted starting of operation in control of air compressors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10773883A JPS601394A (en) 1983-06-17 1983-06-17 Method of predicted starting of operation in control of air compressors

Publications (2)

Publication Number Publication Date
JPS601394A JPS601394A (en) 1985-01-07
JPH0350117B2 true JPH0350117B2 (en) 1991-07-31

Family

ID=14466700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10773883A Granted JPS601394A (en) 1983-06-17 1983-06-17 Method of predicted starting of operation in control of air compressors

Country Status (1)

Country Link
JP (1) JPS601394A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295883A (en) * 1987-05-25 1988-12-02 Shinko Electric Co Ltd Method of controlling number of compressors
US6078760A (en) 1997-07-14 2000-06-20 Seiko Epson Corporation Image forming apparatus having an inverse and re-fixing sub-mode
JP5997626B2 (en) * 2013-02-12 2016-09-28 株式会社豊田自動織機 Compressed air supply system and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144112A (en) * 1974-05-10 1975-11-19

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54172194U (en) * 1978-05-24 1979-12-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144112A (en) * 1974-05-10 1975-11-19

Also Published As

Publication number Publication date
JPS601394A (en) 1985-01-07

Similar Documents

Publication Publication Date Title
JPH0452396B2 (en)
JPS63134360A (en) Air source device
GB2053358A (en) Oil-cooled compressor
JPH0350117B2 (en)
US4856965A (en) Control system of pumping operation using AC exciting generator-motor
US4710840A (en) Generating system with fault detection
JPH05231332A (en) Liquid supply device
EP0104872A2 (en) Air conditioning and compressor control system
JPH0378584A (en) Starting circuit for air compressor
JPS6060287A (en) Operation control of compressor
JP3005504B2 (en) Water supply system
JPH0359449B2 (en)
US2462232A (en) Control means
JP3248591B2 (en) Control equipment for compression equipment
JPS6050288A (en) Water supply system controller
JPS62255590A (en) Control circuit for constantly operating feed water discharge pressure of pump system
JP2000120448A (en) Fuel compressor system for gas turbine
SU658366A1 (en) Method of automatic regulation of refrigerator compressor capacity
JPH06103137B2 (en) Vehicle freezer control device
JPS5752606A (en) Automatic control system for turbine
JPS6079195A (en) Protective apparatus for variable speed-change pump
JPS60259782A (en) Unit number controller for screw compressor
JPS5939197Y2 (en) Turbo compressor control valve operating device
JPS61236376A (en) Restart limiter of motor
JPH0151659B2 (en)