JPH03500157A - Spinner duct exhaust for propulsion type turboprop engine - Google Patents

Spinner duct exhaust for propulsion type turboprop engine

Info

Publication number
JPH03500157A
JPH03500157A JP1506454A JP50645489A JPH03500157A JP H03500157 A JPH03500157 A JP H03500157A JP 1506454 A JP1506454 A JP 1506454A JP 50645489 A JP50645489 A JP 50645489A JP H03500157 A JPH03500157 A JP H03500157A
Authority
JP
Japan
Prior art keywords
air
propeller
engine
housing
flight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1506454A
Other languages
Japanese (ja)
Inventor
トンプソン,グレイグ イー.
ローズ,ジヤツク ホール
グレコ,ロバート ジエー.
ベタートン,ジヤツク デイー.
Original Assignee
アライド・シグナル・インコーポレーテツド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/187,619 external-priority patent/US4892269A/en
Priority claimed from US07/285,822 external-priority patent/US4930725A/en
Application filed by アライド・シグナル・インコーポレーテツド filed Critical アライド・シグナル・インコーポレーテツド
Publication of JPH03500157A publication Critical patent/JPH03500157A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/02Hub construction
    • B64C11/14Spinners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/20Adaptations of gas-turbine plants for driving vehicles
    • F02C6/206Adaptations of gas-turbine plants for driving vehicles the vehicles being airscrew driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 推進型ターボプロップエンジン用スピナダクト排気(技術分野) ロベラ装置、特にエンジンを内蔵したエンジンハウジングを流通し放出される高 温排気ガスを、下流に配設されたプロペラ装置との干渉を最小限に押さえて流動 させるダクト構成に関する。[Detailed description of the invention] Spinner duct exhaust for propulsion type turboprop engines (technical field) Lobera equipment, especially high-temperature gases released through the engine housing containing the engine. Flows hot exhaust gas with minimal interference with the propeller device installed downstream. Regarding the duct configuration.

(背景技術) 航空機に使用されるガスタービン駆動のプロペラ装置(ターボプロップとも言う )は白菜で一般に以前から知られていたが、近年子期しなかったような従来のジ ェットエンジンより優れた幾つかの利点が判明してその構成に注目がなされてい る。(Background technology) A gas turbine-driven propeller device (also called a turboprop) used in aircraft ) has been generally known as Chinese cabbage for a long time, but in recent years it has grown into a traditional cabbage that has not matured. Several advantages over jet engines have been discovered, and attention has been paid to their composition. Ru.

ターボプロップはジェットエンジンはど高速で飛行できないが燃料効率が、特に 小型飛行機の場合数段優れている。更にターボプロップは通常上昇速度が早いの で短距離飛行ではより効果的である。従来のターボプロップの問題としてはノイ ズレベルが高いことが挙げられるが、プロペラをエンジンあるいはキャビン(客 室)の背部に配置した最近の推進型(pusher)構成の開発によりこの問題 点も殆ど解決され、極めてノイズの低いキャビンが実現された。一方かかる推進 型構成には幾つかの新しい問題点も見いだされてはいる。Turboprops cannot fly as fast as jet engines, but their fuel efficiency is For small airplanes, this is several orders of magnitude better. Additionally, turboprops typically climb faster. It is more effective for short distance flights. The problem with conventional turboprops is noise. One of the reasons for this is that the propeller has a high level of Recent developments in pusher configurations located on the back of the chamber have eliminated this problem. Most of these issues have been resolved, resulting in a cabin with extremely low noise. On the other hand, such promotion Several new problems have also been discovered in the type construction.

動力源としてガスタービンエンジンを用いる場合、昨今の航空機に推進型プロペ ラ構成を与える際に生じる大きな問題点の1つは、推進プロペラと排気ジェット との間に生じる干渉をプロペラ効率またはジェット推進力を大幅に減少させるこ となく抑止することにある。プロペラ効率は高温の排気ガスがプロペラ羽根の下 流の流路に放出される際約3〜7%低減する。更に、高温のジェット流がプロペ ラ羽根に放出されたとき通常羽根の振動あるいは熱問題が生じ、また排気ジェッ ト流との干渉問題も生じる。最新の非金属若しくはアルミニウムのプロペラ羽根 は高温ジェット流に対する長時間の耐力はない。排気が冷却用の外気と混合され 、その温度が2〜3百度減少する場合でさえ、熱疲労により羽根の寿命が短くな り熱論推進に寄与するジェット推進力が減少される。When using a gas turbine engine as a power source, modern aircraft are equipped with propulsion type propellers. One of the major problems that arises when providing a configuration is the propulsion propeller and exhaust jet. The interference that occurs between propellers can significantly reduce propeller efficiency or jet thrust. The goal is to suppress it. Propeller efficiency is determined by the fact that high-temperature exhaust gas is below the propeller blades. It is reduced by about 3-7% when discharged into the flow path. Furthermore, the high temperature jet stream This usually causes vibration or heat problems in the airfoils and exhaust jets. The problem of interference with the flow also arises. Modern non-metallic or aluminum propeller blades does not have long-term resistance to high-temperature jet flow. Exhaust air is mixed with outside air for cooling , even if the temperature decreases by 2-300 degrees, the life of the blade will be shortened due to thermal fatigue. The jet thrust that contributes to thermal propulsion is reduced.

このような問題点を解決する幾つかの方法が既に提案されている。プロペラの半 径を越える位置まで横方向へジェットガス流を変更させる構成(例えば、米国特 許第2.604.276号参照)が提案されているが、十分な長さと大きさのガ スダクトを設けて排気をプロペラ外部の安全距離まで流動させるために占める空 間が過度に大になっていた。また、排気路に湾曲部を設ける構成、あるいは飛行 路に対し角度をもって排気ガス抜き部を設ける構成をと・る場合、ジェットスラ スト力の減少あるいはタービンに加わる背圧の増加が生じて、プロペラの推進力 となる動力が低減され高い前進力ロスにより空気力学的効率が減少するような悪 影響を受ける。Several methods have already been proposed to solve these problems. propeller half A configuration that changes the jet gas flow laterally to a position beyond the diameter (for example, a U.S. special No. 2.604.276) has been proposed, but if the gas is of sufficient length and size, air ducts to allow the exhaust to flow to a safe distance outside the propeller. The gap was too large. In addition, a configuration in which the exhaust path has a curved part or a flight When using a configuration in which the exhaust gas vent is provided at an angle to the road, the jet slurry The propulsion force of the propeller is reduced due to a decrease in the thrust force or an increase in the back pressure on the turbine. The negative impact is that aerodynamic efficiency is reduced due to reduced power and high loss of forward force. to be influenced.

ターボプロップエンジンの他の問題点は、エンジンハウジング及びその内部の部 材を好適に冷却する必要がある点にある。プロペラ装置自体は通常地上において アイドリング動作中でプロペラが無負荷状態で軽く回転し、十分な冷却空気を特 に低空気速度で供給できないため、追加の内部冷却装置の付加が必要となる。一 方このような冷却装置の付加のため重量若しくは消費動力が余分に必要となり、 全体の効率に悪影響を与える。Another problem with turboprop engines is the engine housing and its internal parts. The point is that it is necessary to cool the material appropriately. The propeller device itself is usually on the ground. During idling operation, the propeller rotates lightly under no load and provides sufficient cooling air. cannot be supplied at low air velocities, requiring the addition of additional internal cooling equipment. one However, the addition of such a cooling device requires additional weight or power consumption, Negative impact on overall efficiency.

以上のことから、推進型ターボプロップエンジンの構成に改良の必要があること は当業者には明らかであろう。Based on the above, it is necessary to improve the configuration of propulsion type turboprop engines. will be clear to those skilled in the art.

(発明の開示) 従って本発明の主目的はエンジンハウジングの側壁を通過することなく、エンジ ンハウジングの背部からタービン排気ガスを直接案内する方法及びその構造を提 供することにある。(Disclosure of invention) Therefore, the main object of the present invention is to prevent the engine from passing through the side wall of the engine housing. The present invention proposes a method and structure for directly guiding turbine exhaust gas from the back of the turbine housing. It is about providing.

本発明の他の目的は、標準の推進型プロペラ装置がタービンの排気ガスの悪影響 を受けないよう分離されたターボプロップエンジンを提供することにある。It is another object of the present invention to provide a standard propulsion type propeller system that avoids the adverse effects of turbine exhaust gases. The objective is to provide an isolated turboprop engine that is not subject to

本発明の別の目的はジェットスラスト力の損失を最小限にしてプロペラ装置から 分離することにある。Another object of the invention is to minimize the loss of jet thrust force from the propeller system. It consists in separating.

本発明の更に別の目的は空気をエンジンハウジング内に通過させ低い空気速度で もターボプロップエンジンを冷却する方法を提供することにある。Yet another object of the invention is to pass air into the engine housing at low air velocities. Another objective is to provide a method of cooling turboprop engines.

本発明は高温の燃焼生成ガスをタービンの出口部からノズル形状のモーメント変 換室へ案内し、ここでエンジンハウジングの冷却空気をガス流と混合するため後 方へ延設した内部ガス流路を含む新規な排気ガスダクト装置を備えたターボプロ ップエンジンを提供することにより、従来の欠点を解決し、更に幾つかの利点を も得ることができる。混合されたガス流はプロペラのハブ部を覆うロータリスピ ナ装置の周囲に一体に形成された下流の環形排気流路を通過せしめられる。環形 排気流路内には流体力学的形状の中空なカフス部材が各プロペラ羽根の根部を取 囲み高温ガス流から保護するよう配置される。重要な点は、環形排気流路及びカ フス部材によりファン構造体が形成され、スピナ装置の回転によりこのファン構 造体を介しガス流がモーメント変換室から導出される点にある。The present invention moves high-temperature combustion gas from the outlet of the turbine through a moment change of the nozzle shape. into the exchange room where the cooling air for the engine housing is mixed with the gas stream. TurboPro with a new exhaust gas duct system including an internal gas flow path extending towards the By providing a top-up engine, it solves the traditional drawbacks and also provides some advantages. You can also get The mixed gas flow passes through a rotary spindle that covers the hub of the propeller. and a downstream annular exhaust flow path integrally formed around the periphery of the device. Ring-shaped Inside the exhaust flow path, a hydrodynamically shaped hollow cuff member attaches to the root of each propeller blade. The enclosure is arranged to protect from hot gas flow. The important point is that the annular exhaust flow path and A fan structure is formed by the frame member, and this fan structure is rotated by the rotation of the spinner device. The point is that the gas flow is led out of the moment conversion chamber through the structure.

本発明は排気ホーンを突出させることな(流体力学的に平滑なタービンハウジン グを設ける(このため約10%だけ流体抵抗が減少される)だけではなく、地上 でのアイドリング動作(タービンを流通する空気によりエンジンハウジング内に 十分な冷却空気が吸入されずプロペラによりファンが駆動されない状態)のよう な低空気速度でもターボプロップエンジン及び部材を確実に十分に冷却すること にある。The present invention eliminates the need to protrude the exhaust horn (hydrodynamically smooth turbine housing). (which reduces the fluid resistance by about 10%) as well as idling operation (air flowing through the turbine causes the air to flow into the engine housing) (The fan is not driven by the propeller due to insufficient cooling air being sucked in.) Ensure adequate cooling of turboprop engines and components even at low air velocities. It is in.

正常な飛行動作中、十分な量の空気が用いられてエンジンが十分に冷却され、排 気ガス流が迅速に流動され、ファンの動力が実質的に不要になる。カフス部材の 形状及び角度はジェット推進力とプロペラ推進力との比が各種の値を持つよう設 計でき、総合推進力ではなく総合効率が設計巡航速度で最大となることが好まし い。During normal flight operations, sufficient air is used to ensure that the engine is sufficiently cooled and exhausted. The air gas stream is rapidly flowed and fan power is substantially eliminated. cuff member The shape and angle are designed so that the ratio of jet propulsion force to propeller propulsion force has various values. It is preferable that the total efficiency, rather than the total propulsion force, be maximized at the design cruising speed. stomach.

プロペラ羽根は中空の羽根状のカフス部材により高温の排気ガスと直接接触しな いよう保護されているので、標準または非金属製の羽根装置を使用し得且つ推進 型ターボプロップエンジンに通常化じる振動または熱問題も生じない。The propeller blades have hollow blade-like cuff members that prevent them from coming into direct contact with high-temperature exhaust gas. Standard or non-metallic vane devices can be used and propulsion is protected. There are also no vibration or thermal problems that are typical of type turboprop engines.

本明細書の特許請求の範囲においては特に本発明の主題が示されているが、本発 明の特徴あるいは利点は添付図面に示す好ましい実施例に沿って以下に詳細に説 明するに応じ理解されよう。Although the subject matter of the invention is particularly pointed out in the claims of this specification, The features and advantages of the invention will be described in detail below with reference to the preferred embodiments shown in the accompanying drawings. It will be understood as it is explained.

(図面の簡単な説明) 第1図は本発明を適用するターボプロップエンジンの部分拡大断面図、第2図は 第1図の後方部の更に詳細な拡大図、第3図は第2図の線3−3に沿って切断し たスピナ装置の横断断面図、第4図は第2図の線4−4に沿って切断したスピナ 装置端部での横断断面図である。(Brief explanation of the drawing) Figure 1 is a partially enlarged sectional view of a turboprop engine to which the present invention is applied, and Figure 2 is a A more detailed enlarged view of the rear portion of Figure 1, Figure 3 cut along line 3-3 of Figure 2. FIG. 4 is a cross-sectional view of the spinner device taken along line 4--4 in FIG. FIG. 3 is a cross-sectional view at the end of the device.

(発明を実施するための最良の形態) 第1図には本発明を適用する推進ターボプロップエンジン装置の部分断面図が示 されている。この推進ターボプロップエンジン装置にはガスタービンエンジン1 0が包有されており、ガスタービンエンジンIOは流体力学的なハウジング15 により囲まれ且つ減速歯車装置2oの後端部を介し標準のプロペラ装fi3(B =連結され、プロペラ装置30自体にはロータリスピンナ装置50が付設されて いる。(Best mode for carrying out the invention) FIG. 1 shows a partial sectional view of a propulsion turboprop engine device to which the present invention is applied. has been done. This propulsion turboprop engine device includes a gas turbine engine 1 0 is contained in the gas turbine engine IO and the hydrodynamic housing 15 The standard propeller unit fi3 (B = connected, and a rotary spinner device 50 is attached to the propeller device 30 itself. There is.

更に詳述するに、ガスタービンエンジン1oには前後に長手に延びるエンジンハ ウジング11が具備されており、このエンジンハウジングIIには前端部側に主 空気導入口12が形成される。またエンジンハウジング11には少なくとも1個 、好ましくは2個の排気出口部13がエンジンハウジング11の後端部の両側に 配置される。エンジンハウジング11には通常のコンプレッサ・燃焼器・タービ ン部14が協働する部材(図示せず)と共に内蔵され、高温で圧縮された燃焼生 成物流により機械的動力が発生される。ガスタービンエンジン10には更に通常 の付属装置、例えばスタータ23、ジェネレータ24、オイルクーラ25及び他 の周知の部材が具備される。上述の構成により得られた機械的動力はガスタービ ンエンジン1oの出力シャフト21から排気出口部13の後方に配設された減速 歯車装置ff21]を介して出力される。More specifically, the gas turbine engine 1o has an engine hub that extends longitudinally from front to back. The engine housing II is equipped with a housing 11, and the engine housing II is equipped with a An air inlet 12 is formed. Also, at least one in the engine housing 11 , preferably two exhaust outlet sections 13 are provided on either side of the rear end of the engine housing 11. Placed. The engine housing 11 includes a normal compressor, combustor, and turbine. The engine part 14 is built in together with cooperating members (not shown), and the combustion product is compressed at high temperature. Mechanical power is generated by the product stream. Gas turbine engine 10 also typically has auxiliary equipment, such as starter 23, generator 24, oil cooler 25, and others The well-known members are provided. The mechanical power obtained by the above configuration is A speed reducer disposed behind the exhaust outlet section 13 from the output shaft 21 of the engine 1o. gear device ff21].

ハウジング15は外部金属壁16で作られ、ガスタービンエンジン10及び減速 歯車装置20を空気力学的に好ましい形状をもって囲繞している。機関室17が 外部金属壁16とエンジンハウジング11との間に区画される。ハウジング15 の下部には冷却空気導入口26が形成され、ここから導入された空気が冷却空気 放出ダクト27を経て後方へ送られ、ハウジング15の後端部から流出される( これは後で更に詳述する)。ハウジング15の前方端部には主空気導入口18が 形成されており、燃焼用空気は主空気導入口18から主空気導入口12へと送ら れ、一方ハウシンク15の後方端部は減速歯車装置2oとロータリスピンナ装置 50との間の横断平面の位置まで延びている。The housing 15 is made of an external metal wall 16 and houses the gas turbine engine 10 and the reducer. It surrounds the gear system 20 with an aerodynamically favorable shape. Engine room 17 It is partitioned between an external metal wall 16 and the engine housing 11. Housing 15 A cooling air inlet 26 is formed at the bottom of the It is sent to the rear through the discharge duct 27 and is discharged from the rear end of the housing 15 ( This will be discussed in more detail later). A main air inlet 18 is provided at the front end of the housing 15. The combustion air is sent from the main air inlet 18 to the main air inlet 12. On the other hand, the rear end of the house sink 15 is connected to the reduction gear device 2o and the rotary spinner device. 50.

第2図及び第3図に更に詳示されるように、ハウジング15の後方端部には一端 部が開口されたモーメント変換室45が外部金属壁I6との間に形成される。更 に詳述するにモーメント変換室45は外部金属壁16に付設された付設金属シー ト44と減速歯車装置の出力シャフト21を囲む機尾隔壁43との間に区画され ている。モーメント変換室45は後述するようにスピナ装置の環形流路51に向 かって後方に開口され、また前方においては第1に排気出口部13と連通ずる排 気中間ダクト42と、第2にハウジング空洞部17と連通ずる機関空気噴入部4 6と、第3に冷却空気放出ダクト27と連通する冷却空気噴入部47と連通して いる。好ましくは、排気中間ダクト42の終端部がハウジング15の一端部にお いて対向する半部の如き半円状の開口部をなすように2分して設けられ、ハウジ ング空気噴入部46及び冷却空気噴入部47もハウジングの一端部において上下 の半部の如き半円状の開口部として設けられている。As shown in more detail in FIGS. 2 and 3, the rear end of the housing 15 has one end. A moment conversion chamber 45 with an open portion is formed between the external metal wall I6 and the external metal wall I6. Change In detail, the moment conversion chamber 45 includes an attached metal sheet attached to the external metal wall 16. 44 and the aft bulkhead 43 surrounding the output shaft 21 of the reduction gear device. ing. The moment converting chamber 45 is directed toward the annular channel 51 of the spinner device, as described below. Once opened at the rear, and at the front, there is an exhaust which first communicates with the exhaust outlet part 13. The engine air inlet 4 communicates with the air intermediate duct 42 and secondly with the housing cavity 17. 6, and thirdly communicates with a cooling air injection part 47 that communicates with the cooling air discharge duct 27. There is. Preferably, the terminal end of the intermediate exhaust duct 42 is located at one end of the housing 15. The housing is divided into two halves to form a semicircular opening such as opposite halves. The cooling air injection part 46 and the cooling air injection part 47 are also arranged vertically at one end of the housing. It is provided as a semicircular opening, such as the half of a.

ロータリスピンナ装置50はハウジング15の後方に配列され、ロータリスピン ナ装置50の付加部材としての外壁部53がハウジングと空気力学的に好適に連 結される。ロータリスピンナ装置50の円錐状の内壁部52は後方に向かうに応 じ収束するように形成され、プロペラ装置30を周囲環境から保護する。概して 外壁部53は円錐状の内壁部52の全長の約172〜2/3に亙って延設される が、排気流の抵抗を減少するために割愛しても良い。The rotary spinner device 50 is arranged at the rear of the housing 15, and The outer wall portion 53 as an additional member of the inner device 50 has a good aerodynamic connection with the housing. tied. The conical inner wall portion 52 of the rotary spinner device 50 The propeller device 30 is formed to converge to protect the propeller device 30 from the surrounding environment. generally The outer wall portion 53 extends approximately 172 to 2/3 of the total length of the conical inner wall portion 52. However, it may be omitted to reduce exhaust flow resistance.

円錐状の内壁部52と外壁部53との間にはモーメント変換室45に整合させ環 形流路51が区画される。環形流路51内には半径方向に延び、中空でエアーフ ォイル状の複数のカフス部材55がプロペラ羽根31の根部33を緩く囲繞する よう配設される。A ring is provided between the conical inner wall portion 52 and the outer wall portion 53 in alignment with the moment conversion chamber 45. A shaped channel 51 is defined. Inside the annular channel 51 is a hollow air space extending in the radial direction. A plurality of foil-shaped cuff members 55 loosely surround the root portion 33 of the propeller blade 31. It is arranged like this.

第4図に詳示するように、環形流路51はカフス部材により保護されたプロペラ 羽根31の後方の大気に解放されている。スピナ隔壁56はプロペラ装置30を 含むスピナの内部を外部から保護するように設けることが好ましい。As shown in detail in FIG. 4, the annular channel 51 is connected to a propeller protected by cuff members It is released to the atmosphere behind the blade 31. The spinner bulkhead 56 connects the propeller device 30 to Preferably, the inside of the spinner including the spinner is provided so as to be protected from the outside.

第1図に示すようなプロペラ装置30は当業者に周知であり、概してハブ部32 及び半径方向に延びる3〜6個のプロペラ羽根31を包有する。各プロペラ羽根 31はその根部33においてハブ部32に付設され、円錐状の内壁部52の開口 部を通り半径方向に延び、更にスピナの外壁部53の開口部54内を通り延出し ている。Propeller devices 30 as shown in FIG. 1 are well known to those skilled in the art and generally include a hub portion 32. and three to six propeller blades 31 extending in the radial direction. each propeller blade 31 is attached to the hub part 32 at its root part 33, and has an opening in the conical inner wall part 52. and further extends radially through the opening 54 in the outer wall 53 of the spinner. ing.

このターボプロップエンジンは後述する空気流及び排気流の処理方法が異なるこ とを除き、周知のエンジンと多くの点で類似している。基本的には、タービンエ ンジンlOは空気と燃料をガス発生部14内に導入しくこの詳細は後述する)、 高温高速度の排気噴流でプロペラを機械的に駆動することになる。This turboprop engine has a different way of processing the airflow and exhaust flow, which will be explained later. It is similar in many respects to known engines, with the exception of . Basically, the turbine engine The engine IO introduces air and fuel into the gas generating section 14 (details of which will be described later), The propeller is mechanically driven by a high-temperature, high-velocity exhaust jet.

従来のトラクタ・ターボプロペラ装置では、プロペラ及び減速装置はエンジンの 前方部に取り付けられ(このため空気導入の設計上で大きく制限を受ける)、こ れにより得られるエンジンの全動力の一部(約10〜15%)が巡航中プロペラ を推進するジェットスラスト力として使用される。一方周知の推進ターボプロペ ラ装置では、排気ホーンがプロペラの前方ノハウジングの側部から突出して設け られ、ジェットスラスト力の殆どが利用されず(約5%以下)、エンジン動力の 殆どがプロペラ推進に使用される。これに対し本発明によれば、ジェット推進力 またはプロペラ推進力として使用される全体のエンジン動力の量が調整され、他 の設計条件を満足させる、即ち全体の効率が最大となるようにされる。現在通常 の内部損失を考慮しない場合ジェットスラスト力とプロペラ推進力との比が10 〜15%対85〜90%になるようにすることが好ましタービンの排気ガスは排 気出口部13から排気中間ダクト42を経て減速歯車装置20の周囲を流動しモ ーメント変換室45内の近接配置されたハウジング空気噴入部46.47から暖 かい空気を吸引して後方へのジェット流として環形流路51から放出される。In conventional tractor turbopropeller equipment, the propeller and reduction gear are attached to the engine. It is mounted at the front (which places major restrictions on air intake design). A portion (approximately 10-15%) of the total power of the engine obtained by this is used by the propeller during cruising. It is used as a jet thrust force to propel the On the other hand, the well-known propulsion turboprope In the propeller device, the exhaust horn is installed protruding from the side of the housing in front of the propeller. Most of the jet thrust force is not used (approximately 5% or less), and the engine power is Most are used for propeller propulsion. On the other hand, according to the present invention, jet propulsion or the amount of overall engine power used as propeller thrust is adjusted and other design conditions, that is, the overall efficiency is maximized. Currently normal If the internal loss is not considered, the ratio of jet thrust force to propeller propulsion force is 10 It is preferable to set the ratio between ~15% and 85-90%, and the exhaust gas of the turbine is The air flows from the air outlet part 13 through the exhaust intermediate duct 42 and around the reduction gear device 20, and the motor Heating is supplied from the housing air inlets 46, 47 located close to each other in the heating conversion chamber 45. The air is sucked in and released from the annular channel 51 as a rearward jet stream.

オイルクーラ25から導入されると共にエネルギを吸収した空気が冷却空気噴入 部47から放出され、一方エンジン及びその付加部材を内蔵するハウジング空洞 部17からの暖気を/1ウジング空気噴入部46から導入する。大量の冷却空気 がタービンエンジン10を通過しモーメント変換室45内に導入されるので、通 常の飛行動作中十分な冷却力を有する空気が容易に得られる。一方地上でのアイ ドリング若しくは停止中のような低速動作中においては、通常エンジンには十分 な量の空気が流れず冷却用空気を十分に吸収することができない。このような場 合回転しているスピナの環形流路51がカフス部材55が羽根形状に形成されて いてファンのように機能しモーメント変換室45内に空気が導入される。The air introduced from the oil cooler 25 and absorbed energy is injected into the cooling air. a housing cavity which emerges from part 47 and which houses the engine and its additional parts; Warm air from the section 17 is introduced from the /1 Uging air injection section 46. large amount of cooling air passes through the turbine engine 10 and is introduced into the moment conversion chamber 45, so that the Air with sufficient cooling power is readily available during normal flight operations. Meanwhile, Ai on the ground During low-speed operation, such as when idling or stopping, the engine usually has sufficient A sufficient amount of air cannot flow and sufficient cooling air cannot be absorbed. A place like this The annular flow path 51 of the spinner that rotates together has a cuff member 55 formed in the shape of a vane. It functions like a fan and introduces air into the moment conversion chamber 45.

各プロペラ羽根の根部33の周囲に少なくとも1個のカフス部材55が設けられ ているが、特にプロペラの数が少ない、例えば3枚でロータリスピナ装置50の 最小設計速度が小さくなるような場合環形流路51内に更に羽根形状の部材を付 加して十分な冷却空気を得ることが好ましい。At least one cuff member 55 is provided around the root portion 33 of each propeller blade. However, the number of propellers is small, for example, the rotary spinner device 50 has only a small number of propellers. If the minimum design speed becomes small, a vane-shaped member may be added inside the annular flow path 51. In addition, it is preferable to obtain sufficient cooling air.

上述の説明から、プロペラ装置をタービンエンジンの後部に取り付けた推進エン ジン構成を採用することによって、エンジンが周知のようにプロペラ若しくは減 速装置により空気吸入が阻止され、同時にエンジンの排気ガスが、ジェット推進 力の過度の損失あるいは後方に取り付けられたプロペラとの干渉を生ずることな く好適に案内する構成が提供されることが理解されよう。From the above explanation, it can be seen that the propulsion engine in which the propeller device is attached to the rear of the turbine engine By adopting a gin configuration, the engine is propelled or propelled as is well known. Air intake is blocked by the speed device, and at the same time engine exhaust gas is used for jet propulsion. without excessive loss of power or interference with rear-mounted propellers. It will be appreciated that a suitable guiding arrangement is provided.

説明上本発明を幾分特定した好ましい−の実施例に沿って説明したが、各種の設 計変更が考えられることは当業者には明らかであろう。即ち、本発明は図面に沿 って上述したこの特定の実施例に限定されるものではな(、添付の特許請求の範 囲に含まれる設計変更を包有することが理解されよう。For the purpose of explanation, the present invention has been described along with a somewhat specific preferred embodiment, but various configurations may be used. It will be obvious to those skilled in the art that changes in the schedule are possible. That is, the present invention and is not limited to this particular embodiment described above (as claimed in the appended claims). It will be understood that the design changes included in the

国際調査報告 国際調査報告international search report international search report

Claims (8)

【特許請求の範囲】[Claims] (1)燃焼タービンエンジンと、回転可能なプロペラ装置と、タービンエンジン を保護するハウジング装置と、全体として後方へ収束するように延びた円錐上の スピナ装置と、中間ダクト装置とを備え、タービンエンジンには、外気を導入す る導入部を形成した前後に長手方向に延びるハウジングと、導入した空気を導入 し圧縮した空気を放出するコンプレッサと、圧縮した空気を燃料と共に導入し燃 焼して圧縮した高温の燃焼生成ガスを発生する燃焼器と、燃焼生成ガス内におい て回転され機械的動力を得その後方に延出するロータリ出力シヤフトが駆動され るタービンと、タービンエンジンから比較的低温で低圧力の燃焼生成ガスを外気 に放出する放出部とが包有され、出力シヤフトはタービンエンジンのみを支承し 、プロペラ装置のハプ部がタービンエンジンの後方の出力シヤフトに支承され、 機械的動力を出力シヤフトを介しハプ部に支承され半径方向に延びる複数のプロ ペラ羽根部材へ伝達され、各プロペラ羽根部材がハプ部に隣接する根部と根部の 半径方向外側へ延びる流体力学的なエアフオイル部とを有し、プロペラ装置は外 気と回転可能に連係して推進力を発生しタービンエンジンを介し飛行装置に与え 、ハウジング装置は流体力学的に好ましい外部形状を有し、ハウジング装置はタ ービンエンジンの導入部を介し外気に対し開口する空気導入部を有し、ハウジン グ装置はその内部のタービンエンジンのハウジングと協働して内部にハウジング 空間を区画し、ハウジング装置の後方端部はプロペラ装置のプロペラ羽根部材の 前方且つ近接する横断平面で終端し、プロペラ羽根部材はハウジング装置のハウ ジング空間内に外気の冷却空気を導入させ、スピナ装置は横断平面から後方へ延 びてプロペラ装置を保護し且つ流体力学的な好ましい外部形状を有し、スピナ装 置内には半径方向に延びる複数のカフス部材が設けられ、各カフス部材はプロペ ラ羽根部材の根部に近接して各プロペラ羽根部材に対し各々1つ与えられ、中間 ダクト装置の前方端部はタービンエンジンの導入部と連通され燃焼生成ガスを導 入し、中間ダクト装置は後方に延び横断平面の前方において終端部が半円状出口 として設けられ環形のモーメント変換室を区画し、モーメント変換室は中間ダク ト装置の出口と前方において整合され後方へ延びて横断平面でスピナ装置の環形 排気流路と整合され、中間ダクト装置を介し燃焼生成ガスが後方へ更に付加ガス と共にモーメント変換室へ案内され、モーメント変換室から燃焼生成ガス及び付 加ガスがスピナ装置の前方の大気内へ放出される、前方に飛行する飛行装置。(1) Combustion turbine engine, rotatable propeller device, and turbine engine a housing device that protects the Equipped with a spinner device and an intermediate duct device, the turbine engine is equipped with a spinner device and an intermediate duct device to introduce outside air. A housing that extends longitudinally at the front and back and has an introduction section for introducing air into the housing. A compressor that releases compressed air, and a compressor that introduces the compressed air together with fuel and burns it. A combustor that generates high-temperature combustion gas that is sintered and compressed, and an odor inside the combustion gas. The rotary output shaft that extends behind it is rotated and receives mechanical power. The relatively low-temperature, low-pressure combustion gases from the turbine engine are transferred to outside air. The output shaft supports only the turbine engine. , the hub part of the propeller device is supported on the output shaft at the rear of the turbine engine, Mechanical power is transmitted via an output shaft to multiple prongs supported by the hub and extending in the radial direction. The transmission is transmitted to the propeller blade members, and each propeller blade member a radially outwardly extending hydrodynamic airfoil portion, the propeller device is It rotatably works with air to generate propulsive force, which is applied to flight equipment via a turbine engine. , the housing device has a hydrodynamically favorable external shape, and the housing device has a The housing has an air inlet that opens to the outside air through the inlet of the engine. The cooling device cooperates with the turbine engine housing within the housing. The space is divided, and the rear end of the housing device is used for the propeller blade member of the propeller device. terminating in a forward and adjacent transverse plane, the propeller blade member is connected to the housing of the housing device. Cooling air from outside is introduced into the cooling space, and the spinner device extends backward from the transverse plane. The spinner equipment has a hydrodynamically favorable external shape that protects the A plurality of radially extending cuff members are provided within the device, each cuff member being connected to a propeller. one for each propeller blade member adjacent to the root of the propeller blade member, and one for each propeller blade member in the middle. The front end of the duct device communicates with the inlet of the turbine engine to guide the combustion gases. The intermediate duct device extends rearward and terminates in a semicircular outlet in front of the transverse plane. The moment conversion chamber is provided as an annular moment conversion chamber, and the moment conversion chamber is connected to an intermediate duct. The annular shape of the spinner device is aligned in the front with the outlet of the spinner device and extends rearwardly in a transverse plane. Aligned with the exhaust flow path, the combustion product gas is further routed to the rear through an intermediate duct device It is guided to the moment conversion chamber together with combustion generated gas and accessories from the moment conversion chamber. A forward-flying flight device in which additive gas is released into the atmosphere in front of the spinner device. (2)モーメント変換室の入口部はハウジング空間と連通され、エゼクタとして の燃焼生成ガスとの運動量交換及びフアンとしてのスピナ装置の回転の混合作用 によりハウジング空間を流動されるように設けられてなる特許請求の範囲第1項 記載の飛行装置。(2) The entrance of the moment conversion chamber is communicated with the housing space and serves as an ejector. The mixing action of momentum exchange with the combustion generated gas and rotation of the spinner device as a fan Claim 1, which is provided so as to be able to flow through the housing space by Flight equipment described. (3)ハウジング装置には、飛行装置の前方への移動中外気を導入する入口開口 部と、後方へ延びる入口開口部と連通且つモーメント変換室の入口部と後方端部 で連通する冷却用ダクトと、冷却用ダクト内に配設され内部を流れる空気流に熱 を与える熱交換装置とが包有され、冷却用外気がモーメント変換室の入口部から 後方へ冷却用ダクトを経てエゼクタとしての燃焼生成ガスとの運動量交換及び飛 行装置を前進させる必要なくフアンとしてのスピナ装置の回転混合作用を経て流 動され、冷却用空気は更に飛行装置の前進移動中外気により流動されてなる特許 請求の範囲第1項記載の飛行装置。(3) The housing device has an inlet opening for introducing outside air during forward movement of the flight device. and an inlet opening extending rearward and communicating with the inlet opening and the rear end of the moment conversion chamber. The cooling duct communicates with the The external cooling air is supplied from the inlet of the moment conversion chamber. Momentum exchange with the combustion generated gas as an ejector and flight through the cooling duct to the rear. Flow through the rotating mixing action of the spinner device as a fan without the need to advance the flow device. The cooling air is further flown by outside air during the forward movement of the flight device. A flight device according to claim 1. (4)タービンエンジンのハウジングは直径方向に実質的に対向して配置される 一対の出口部と一対の出口部と夫々連通する一対の中間ダクト構造体とを有し、 各中間ダクト構造体は実質的に180度の円弧状の半円形の出口部をなし、一対 の中間ダクト構造体はその出口部の前方部で連結されてスピナ装置の環形流路と 整合される環形に連続する一体の出口部が形成されてなる特許請求の範囲第1項 記載の飛行装置。(4) The turbine engine housings are arranged substantially diametrically opposite each other. It has a pair of outlet parts and a pair of intermediate duct structures each communicating with the pair of outlet parts, Each intermediate duct structure has a substantially 180 degree arcuate semicircular exit section, with a pair of The intermediate duct structure is connected at the front of its outlet to the annular flow channel of the spinner device. Claim 1, wherein an integral outlet portion is formed that is continuous with the aligned annular shape. Flight equipment described. (5)スピナ装置には、横断平面から後方へ向かつて半径方向の幅が次第に収束 しスピナ装置の後方端部で終端する全体的として円錐形の円錐部と、円錐部の半 径方向に外側へ離間され横断平面から後方端部へ延びる半径方向に外側の環形部 とが包有され、円錐部及び環形部により環形排気流路が区画され、環形排気流路 の前方端部は横断平面で開口され且つ後方端部はスピナ装置の環形部の後方端部 で開口されてなる特許請求の範囲第1項記載の飛行装置。(5) The spinner device has a radial width that gradually converges from the transverse plane toward the rear. a generally conical cone and a half cone terminating at the rear end of the spinner device; a radially outer annulus spaced radially outwardly and extending from the transverse plane to the aft end; and an annular exhaust passage is defined by the conical part and the annular part, and the annular exhaust passage is the forward end of which is open in the transverse plane and the rear end of which is open at the rear end of the annulus of the spinner device. A flight device according to claim 1, which has an opening. (6)各カフス部材にはプロペラの羽根部材の対応する1を可動に受容し、プロ ペラ装置がスピナ装置と干渉を引き起こすことなくハプ部でプロペラの羽根部材 と旋回してピッチ変化するように設けられてなる特許請求の範囲第1項記載の飛 行装置。(6) Each cuff member movably receives a corresponding one of the propeller blade members, and The propeller device can be attached to the propeller blade member at the hap without causing interference with the spinner device. The flight according to claim 1, which is provided so as to rotate and change the pitch. Row device. (7)前方に配置された空気入口部と、後方に配置された排気出口部と、空気出 口部及び排気出口部と連通しタービンエンジンの後方で支承される可変ピッチの プロペラを駆動し起動力を飛行装置に与える燃焼タービンエンジンと、タービン エンジンを囲むエンジン空間とを有する胴部を備えた飛行装置において、プロペ ラのハプ部を囲むハプ部からピッチ変更可能に且つ旋回可能に複数のプロペラ羽 根が延び、少なくとも数がプロペラの羽根の数と一致する複数の中空羽根部材を 有し、プロペラ羽根の半径方向に内側を通り中空の羽根部材を経てハプ部と連結 されるよう環形ダクト付フアンを形成する工程と、燃焼タービンエンジンから排 気を導入する環形ノズル部材を形成する工程と、排気をノズル部材から導入する 入口部を有する環形モーメント変換室を形成する工程と、モーメント変換室の入 口部をエンジンを囲むエンジン空間とも連通させる工程と、モーメント変換室内 の排気流を用いてエンジン空間から空気を放出し新鮮な冷却用空気をエンジン空 間に導入する工程と、モーメント変換室を環形ダクト付フアンと整合させる工程 と、ダクト付フアン及びプロペラ装置を一体的に回転させ排気と新鮮な空気の流 れを促進させる工程と、モーメント変換室及びダクト付フアンの吸入作用により 冷却空気をエンジン空間内で移動させる工程とを包有してなる冷却空気をタービ ンエンジンを囲む空間を経て飛行装置の比較的低速度で流動させる方法。(7) An air inlet located at the front, an exhaust outlet located at the rear, and an air outlet located at the rear. A variable pitch valve communicating with the mouth and exhaust outlet and supported at the rear of the turbine engine. A combustion turbine engine that drives a propeller and provides motive power to a flight device, and a turbine In a flight device having a fuselage having an engine space surrounding an engine, Multiple propeller blades that can change the pitch and rotate from the hap part surrounding the hap part of the a plurality of hollow blade members whose roots extend and whose number at least corresponds to the number of blades of the propeller; It passes through the inside of the propeller blade in the radial direction and is connected to the hap through the hollow blade member. The process of forming an annular ducted fan to A step of forming an annular nozzle member for introducing air, and introducing exhaust air from the nozzle member. A step of forming an annular moment conversion chamber having an inlet portion, and an inlet of the moment conversion chamber. The process of communicating the mouth with the engine space surrounding the engine and the moment conversion chamber The exhaust flow is used to remove air from the engine space and provide fresh cooling air to the engine space. A process of introducing the moment conversion chamber between the two and a process of aligning the moment conversion chamber with the annular ducted fan. , a ducted fan and a propeller unit are rotated integrally to generate exhaust air and fresh air flow. Through the process of accelerating the flow and the suction action of the moment conversion chamber and ducted fan, Turbine the cooling air, which includes the process of moving the cooling air within the engine space. A method of flowing air at relatively low speeds through the space surrounding the engine of the flight device. (8)エンジンハウジングと、エンジンハウジング内に配置されるフリータービ ンエンジンと、フリータービンエンジンのフリータービンにより駆動される出力 シヤフトと、フリータービン駆動用の燃焼生成ガスをタービンエンジンのガス発 生部から放出する排気部と、広範囲の回転速度を有し出力シヤフトに回転駆動可 能に支承される可変ピツチエアスクリユウとを備え、飛行装置が少なくとも2個 の第1及び第2の動作モードを有し、第1の動作モードでは、飛行装置の空気速 度が低く又は零であり、ガス発生器の速度は地上アイドリング速度で燃焼生成ガ スの流速も小さなまたは零のプロペラピツチでは比較的小さくプロペラ回転速度 が低い範囲内にある地上動作であり、第2の動作モードでは飛行速度が比較的高 い飛行動作である飛行装置において、ノズル部で燃焼生成ガスを導入しハウジン グ装置内のエゼクタの入口部で排気を導入して燃焼生成ガスと運動量交換して第 2の動作モードで冷却空気の流れを強く助け第1のモードでは冷却空気流に対し 比較的小さく且つ十分な効果を与えるエゼクタを形成する工程と、エアスクリユ ウのハプ部と同軸に且つ一体回転可能に構成した環形ダクト付フアンを形成し、 エアスクリユウの半径方向に延びる羽根の根部を可動に受容する厚いエアフオイ ル形の中空フアン羽根を有し、飛行装置の前進動作中エアスクリユウのエアフオ イル部と同じ方向のピッチ位置にフアン羽根を配置する工程と、燃焼生成ガス及 び排気をエゼクタからダクト付フアンの羽根を経て後方へ移動させ第2の動作モ ードでダクト付フアンの羽根を介し補助トルクを羽根に与え第1の動作モードで は低い範囲の速度で回転するダクト付フアンの羽根を用いて燃焼生成ガス及び排 気がエゼクタから放出されることを助ける工程と、第1の動作モードで冷却空気 によりエゼクタによる流れとダクト付フアンによる流れの混合効果を与える工程 とを包有することを特徴とする第1及び第2の動作モードでもタービンエンジン の周囲及びハウジング装置内に冷却空気を確実に送る方法。(8) Engine housing and free turbine located inside the engine housing power driven by the engine and the free turbine of the free turbine engine The shaft and the combustion generated gas for driving the free turbine are transferred to the gas generator of the turbine engine. It has an exhaust part that discharges from the raw part and a wide range of rotation speeds, and can be rotated by the output shaft. a variable pitch air screw supported by the aircraft, and at least two flight devices. and in the first mode of operation, the air velocity of the flight device is low or zero gas generator speed at ground idling speed When the propeller pitch is small or zero, the propeller rotation speed is relatively small. ground operation in a low range, and a second mode of operation at relatively high flight speeds. In flight equipment that performs difficult flight operations, the combustion gas is introduced into the housing through the nozzle. Exhaust gas is introduced at the inlet of the ejector in the combustion device, and momentum is exchanged with the combustion gas to generate the Two operating modes strongly support the cooling air flow and the first mode strongly increases the cooling air flow. A process for forming a relatively small yet effective ejector and an air screw Forming a fan with an annular duct configured to be coaxial with and rotatable integrally with the hub portion of (c), Thick air hood that movably receives the roots of the air screw's radially extending blades. It has a hollow fan blade in the shape of an air screw, and the air screw of the air screw is operated during the forward movement of the flight device. The process of arranging the fan blades at the pitch position in the same direction as the coil part, and The second operation mode moves the air and exhaust air from the ejector to the rear through the blades of the ducted fan. In the first operation mode, an auxiliary torque is applied to the blades through the blades of the ducted fan. uses ducted fan blades rotating at low speeds to remove combustion gases and exhaust gases. cooling air in the first mode of operation; A process that creates a mixing effect between the flow from the ejector and the flow from the ducted fan. The turbine engine also has a first and a second operating mode characterized in that it comprises: method to ensure cooling air is delivered around the area and into the housing device.
JP1506454A 1988-04-28 1989-03-31 Spinner duct exhaust for propulsion type turboprop engine Pending JPH03500157A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US187,619 1988-04-28
US07/187,619 US4892269A (en) 1988-04-28 1988-04-28 Spinner ducted exhaust for pusher turboprop engines
US285,822 1988-12-16
US07/285,822 US4930725A (en) 1988-12-16 1988-12-16 Pusher propeller installation for turboprop engines

Publications (1)

Publication Number Publication Date
JPH03500157A true JPH03500157A (en) 1991-01-17

Family

ID=26883216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1506454A Pending JPH03500157A (en) 1988-04-28 1989-03-31 Spinner duct exhaust for propulsion type turboprop engine

Country Status (4)

Country Link
EP (1) EP0440640A1 (en)
JP (1) JPH03500157A (en)
BR (1) BR8907238A (en)
WO (1) WO1989010300A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388964A (en) * 1993-09-14 1995-02-14 General Electric Company Hybrid rotor blade
DE102005043615B4 (en) * 2005-09-09 2009-11-19 König, Christian Propeller drive unit
DE102008060488A1 (en) * 2008-12-05 2010-06-10 Rolls-Royce Deutschland Ltd & Co Kg Method and apparatus for operating a turboprop aircraft engine equipped with thrust propellers
US10267191B2 (en) 2015-08-07 2019-04-23 Pratt & Whitney Canada Corp. Turboprop engine assembly with combined engine and cooling exhaust
US10253726B2 (en) 2015-08-07 2019-04-09 Pratt & Whitney Canada Corp. Engine assembly with combined engine and cooling exhaust
US10240522B2 (en) 2015-08-07 2019-03-26 Pratt & Whitney Canada Corp. Auxiliary power unit with combined cooling of generator
US11772784B2 (en) * 2020-07-20 2023-10-03 Lockheed Martin Corporation Multi-purpose prop-rotor spinner arrangement
US11719248B2 (en) 2020-10-14 2023-08-08 Pratt & Whitney Canada Corp. Aircraft propulsion system with propeller and cooling fan

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR860037A (en) * 1939-09-02 1941-01-04 Fouga & Cie Ets Propeller-fan hub cover
GB564117A (en) * 1943-03-09 1944-09-13 Thomas Shelley Improvements in or relating to spinners for airscrews
GB621607A (en) * 1946-02-05 1949-04-12 Sncaso Improvements in or relating to aircraft propulsion units
GB622768A (en) * 1947-04-03 1949-05-06 Napier & Son Ltd Improvements in or relating to cooling apparatus for use with aero or other engines

Also Published As

Publication number Publication date
EP0440640A1 (en) 1991-08-14
WO1989010300A1 (en) 1989-11-02
BR8907238A (en) 1991-03-05

Similar Documents

Publication Publication Date Title
US4892269A (en) Spinner ducted exhaust for pusher turboprop engines
US4930725A (en) Pusher propeller installation for turboprop engines
US8256709B2 (en) Aircraft with tail propeller-engine layout
US4488399A (en) Propfan aircraft propulsion engine
US7891163B2 (en) Engine
CA2576696C (en) Double bypass turbofan
US4936748A (en) Auxiliary power source in an unducted fan gas turbine engine
US20170369179A1 (en) Gas turbine engine
EP2098714B1 (en) High bypass-ratio turbofan jet engine
US5079916A (en) Counter rotation power turbine
CN104968893B (en) Unducted thrust producing system architecture
US3729934A (en) Gas turbine engines
US8876465B2 (en) Gas turbine engine
US6786036B2 (en) Bimodal fan, heat exchanger and bypass air supercharging for piston or rotary driven turbine
JPS5812899A (en) Composite propeller
CA1262409A (en) Counter rotation power turbine
JPS59103947A (en) Reversely rotating power turbine
JPS61241448A (en) Thrust intensifier generated by propulsion gas jet
US10875654B2 (en) Drive device for an aircraft
JPH03500157A (en) Spinner duct exhaust for propulsion type turboprop engine
JPS61197724A (en) Gas turbine engine for turbo propella airplane
CN112483275B (en) Propeller and aircraft
US11383848B2 (en) Supersonic aircraft propulsion installation
GB2379483A (en) Augmented gas turbine propulsion system
RU2815564C1 (en) Aircraft power plant