JPH0349869A - Frozen grain injecting device - Google Patents

Frozen grain injecting device

Info

Publication number
JPH0349869A
JPH0349869A JP18323289A JP18323289A JPH0349869A JP H0349869 A JPH0349869 A JP H0349869A JP 18323289 A JP18323289 A JP 18323289A JP 18323289 A JP18323289 A JP 18323289A JP H0349869 A JPH0349869 A JP H0349869A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
frozen
compressor
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18323289A
Other languages
Japanese (ja)
Inventor
Kazuo Kashiwamura
和生 柏村
Yoshio Kazumoto
数本 芳男
Yoshio Furuishi
古石 喜郎
Takuya Suganami
菅波 拓也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18323289A priority Critical patent/JPH0349869A/en
Publication of JPH0349869A publication Critical patent/JPH0349869A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture frozen grains without supplying a refrigerant from the outside by providing a refrigerant generating means in which cooled gas is boosted by a compressor thereafter cooled through an expander to generate cooling gas. CONSTITUTION:A refrigerant generating means 100, in which cooled gas is boosted by a compressor 31 thereafter cooled through an expander 40 to generate a refrigerant 15, is provided, and one part of the cooled gas, boosted by this compressor 31, is atomized in a heat insulating vessel 6 by an atomizer 8 with a frozen material from a supply pipe 9. Then a frozen grain 16b, manufactured by heat-exchanging an atomized grain 6a with the refrigerant 15, is injected by an injecting equipment 19 with the one part of the cooled gas boosted by the compressor 31. The refrigerant 15, thus generated, is not supplied from the outside, further the frozen grain 16b can be manufactured at the low cost.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、一般にアイスクリーニングと呼はれる凍結粒
噴射装置に関するものであり、半導体等の被処理物体の
表面に不着した、異物、油脂等の不純物を、氷粒等の微
細な凍結粒を噴射することによって除去することを目的
とするものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a frozen particle injection device generally referred to as ice cleaning, which removes foreign matter, oil, etc. that has adhered to the surface of an object to be processed such as a semiconductor. The purpose is to remove impurities by spraying fine frozen particles such as ice particles.

[従来の技術] 第5図は例えば特開昭63−93566号公報に示され
た、従来の凍結粒噴射装置を示す構成図であり、図にお
いて、 (1)は凍結粒製造手段、(2)は、凍結粒移
送手段、 (3)は凍結粒噴射手段、 (4)は凍結粒
冷却手段、 (6)は冷却温度制御手段である。凍結粒
製造手段(1)は、断熱性密閉容器(6)の上部に排気
管(7)を連通接続すると共に、被凍結原料供給管(9
)、及び噴霧ガス供給管(10)を接続した噴霧器(8
)を設け、また容器(6)の下部に金網等からなる網状
体(11)を傾斜状に張設して、容器(6)内を上下2
室(6a)、 (6b)に区画し、更にその下室つまり
冷媒蒸発部(6b)に、冷媒供給管(13)及び冷媒蒸
発促進ガス注入管(14)を接続した上面開放の冷媒収
容タンク(12)を配置してなる。噴霧器(8)は供給
管(9)から供給し・た水等の被凍結原料を導入管(1
0)から導入した窒素ガス、空気等の噴霧ガスによって
容器(6)内に下方向に霧状に噴出させるさせるように
構成しである。
[Prior Art] Fig. 5 is a block diagram showing a conventional frozen grain injection device, as disclosed in, for example, Japanese Patent Application Laid-Open No. 63-93566. ) is a frozen particle transfer means, (3) is a frozen particle injection means, (4) is a frozen particle cooling means, and (6) is a cooling temperature control means. The frozen grain manufacturing means (1) has an exhaust pipe (7) connected to the upper part of a heat-insulating closed container (6), and a raw material supply pipe (9) to be frozen.
), and a sprayer (8) connected to the spray gas supply pipe (10).
), and a net-like body (11) made of wire mesh or the like is stretched in an inclined manner at the bottom of the container (6), so that the inside of the container (6) is
A refrigerant storage tank with an open top, which is divided into chambers (6a) and (6b), and further has a refrigerant supply pipe (13) and a refrigerant evaporation promoting gas injection pipe (14) connected to the lower chamber, that is, the refrigerant evaporation section (6b). (12) is arranged. The sprayer (8) supplies the raw material to be frozen such as water supplied from the supply pipe (9) to the introduction pipe (1).
The atomizing gas such as nitrogen gas or air introduced from 0) is configured to spray a mist downward into the container (6).

次に動作について説明する。Next, the operation will be explained.

この凍結粒製造手段(1)によれば、冷媒供給管(13
)からタンク(12)に液体窒素等の冷媒(15)を所
定量供給した上、タンク(12)に収容した冷媒(15
)中に乾燥空気、窒素ガス、アルゴンガス等の冷媒蒸発
促進ガスを注入することによって、冷媒蒸発部(6b)
において冷媒蒸発ガス(15a)を発生させることがで
き、冷媒蒸発ガス(15a)の発生後に、噴霧器(8)
から被凍結原料を噴霧すると、断熱性容器(6)の上室
(6a)内において、被凍結原料の噴霧粒子(16a)
が冷媒蒸発ガス(15a)と熱交換して凍結し、微細な
凍結粒(16b)を得ることができるようになっている
。  すなわち、冷媒蒸発ガス(15a)は、冷媒蒸発
部(6b)から網状体(11)を通過して上室(6a)
に至り、上室(6a)内を噴霧粒子(16a)と逐次熱
交換することにより生じる密度差によって、徐々に上昇
する。そして噴霧粒子(16a)との熱交換を終えた冷
媒蒸発ガス(15a)(以下「排出冷気」という。)は
、排気管(7)から容器(6)外に排出される。一方、
噴霧粒子(16a)は、王室(6a)内を自然落下し、
この間において、上昇してくる冷媒蒸発ガス(15a)
と熱交換して凍結し、その凍結粒(16b)は網状体(
11)上に落下到達する。そして、網状体(11)上に
到達落下した凍結粒(16b)は網状体(11)が下り
傾斜していることと冷媒蒸発ガス(15a)が網状体(
11)を上方に通過することとから、網状体(11)上
をその傾斜に沿って流動、もしくは滑動して網状体(1
1)の最下部に集合し、後述する回収ホッパー(17)
に回収される。
According to this frozen grain manufacturing means (1), the refrigerant supply pipe (13
) to the tank (12), a predetermined amount of refrigerant (15) such as liquid nitrogen is supplied, and then the refrigerant (15) contained in the tank (12) is
) by injecting a refrigerant evaporation promoting gas such as dry air, nitrogen gas, or argon gas into the refrigerant evaporation section (6b).
After generating the refrigerant vapor (15a), the atomizer (8)
When the raw material to be frozen is sprayed, spray particles (16a) of the raw material to be frozen are formed in the upper chamber (6a) of the insulating container (6).
is frozen by exchanging heat with the refrigerant evaporated gas (15a), making it possible to obtain fine frozen particles (16b). That is, the refrigerant evaporation gas (15a) passes through the reticulation body (11) from the refrigerant evaporation part (6b) to the upper chamber (6a).
The temperature gradually increases due to the density difference caused by successive heat exchange with the spray particles (16a) in the upper chamber (6a). The evaporated refrigerant gas (15a) (hereinafter referred to as "exhausted cold air") that has completed heat exchange with the spray particles (16a) is discharged to the outside of the container (6) from the exhaust pipe (7). on the other hand,
The spray particles (16a) naturally fall inside the royal room (6a),
During this period, the refrigerant evaporation gas (15a) rising
The frozen particles (16b) are frozen by exchanging heat with the reticular body (
11) Fall and reach above. The frozen particles (16b) that have reached and fallen onto the net-like body (11) are caused by the fact that the net-like body (11) is sloped downward and the refrigerant evaporated gas (15a)
11), the net-like body (11) flows or slides along the slope of the net-like body (11).
Collection hopper (17), which will be described later, gathers at the bottom of 1).
will be collected.

凍結粒移送手段(2)は、網状体(11)上を流動、も
しくは滑動して集合する凍結粒(16b)を回収するた
めの凍結粒回収部たる回収ホッパー(17)を、網状体
(11)の最下部に垂下状に連設すると共に、この回収
ホッパー(17)に、凍結粒(16a)を容器(6)外
に導き、移送する移送管(18)を接続し、前記移送管
(18)は、凍結粒噴射手段(3)に接続している。両
手段(2)(3)によれば、適宜に加圧した空気、窒素
等のドライブガスを導入管(20)から噴射機器く19
)に導入すると、これにより噴出機器(19)内が負圧
状態となることによって、つまり一種のベンチュリ効果
によって、回収ホッパー(17)内の凍結粒(16b)
が移送管(18)内を吸引移送されて噴射機器(19)
の凍結粒供給部(19a)に供給され、噴射機器(19
)からドライブガスと共に被処理物体(21)に噴射せ
しめられるようになっている。
The frozen particle transfer means (2) connects a collection hopper (17), which is a frozen particle collection unit, to collect frozen particles (16b) that flow or slide on the net-like body (11) and collect them. ), and a transfer pipe (18) that guides and transfers the frozen grains (16a) to the outside of the container (6) is connected to this recovery hopper (17). 18) is connected to the frozen particle injection means (3). According to both means (2) and (3), a suitably pressurized drive gas such as air or nitrogen is injected into the injection device 19 from the introduction pipe (20).
), the frozen particles (16b) in the recovery hopper (17) are introduced into the collection hopper (17) by creating a negative pressure state inside the ejection device (19), that is, by a kind of Venturi effect.
is suctioned and transferred inside the transfer pipe (18) to the injection device (19).
The frozen particles are supplied to the frozen particle supply section (19a) of the injection device (19
) is injected together with the drive gas onto the object to be processed (21).

凍結粒冷却手段(4)は、前記排気管(7)を冷気排出
管(22)と排出冷気導入管(23)とに分岐し、この
導入管(23)の中間部分である冷却作用部(23a)
を、前記移送管(18)の容器外部分に巻き付けてなる
。この凍結粒冷却手段(4)によれば、容器(6)から
排気管(7)に排出された排出冷気を、排出冷気導入管
(23)を介して移送管(18)の外面に位置する冷却
作用部(23a)に導いて、移送管(18)内の凍結粒
(16b)を冷却、ないし保冷するようになっている。
The frozen grain cooling means (4) branches the exhaust pipe (7) into a cold air discharge pipe (22) and an exhaust cold air introduction pipe (23), and has a cooling action section ( 23a)
is wound around the outer part of the transfer tube (18). According to this frozen grain cooling means (4), the discharged cold air discharged from the container (6) to the exhaust pipe (7) is placed on the outer surface of the transfer pipe (18) via the discharged cold air introduction pipe (23). The frozen grains (16b) in the transfer pipe (18) are guided to the cooling action section (23a) to be cooled or kept cold.

冷却温度制御手段(5)は、冷気排出管(22)、及び
排出冷気導入管(23)にそれぞれ第1及び第2流量調
節弁(24)、 (25)を介設すると共に、前記移送
管(18)内における移送始端部での温度、又は噴射機
器(19)における凍結粒供給部(19a)での温度を
検出する温度検出器(26)、及びその検出温度に基づ
いて前記両弁(24)(25)を開閉制御する制御器(
27)を設けてなる。この冷却温度制御手段(5)によ
れば、温度検出器(26)による検出温度が予め設定し
た設定温度よりも高い場合には、第1流量調節弁(24
)を閉側にし、かつ第2流量調節弁(25)を開側に制
御して、導入管(23)の冷却作用部(23&)への排
出冷気の導入量を増加し、また逆に前記検出温度が設定
温度よりも低い場合には、第1流量調節弁(24)を開
側にし、かつ第2流量調節弁(25)を閉側に制御して
、排出冷気の導入量を制限することによって、移送管(
18)内温度を前記設定温度に維持し、移送管(18)
内を移送される凍結粒(16b)の温度を一定温度に保
つようになっている。なお、前記設定温度は、必要とす
る凍結粒冷却温度が得られるように決定されるものであ
り、被凍結原料の種類、凍結粒の粒径、当該表面処理に
おいて必要とする凍結粒(16b)の硬度等の諸条件に
応じて適宜に設定しておく。
The cooling temperature control means (5) includes first and second flow control valves (24) and (25) interposed in the cold air discharge pipe (22) and the discharge cold air introduction pipe (23), respectively, and the transfer pipe (18), or a temperature detector (26) that detects the temperature at the frozen grain supply section (19a) in the injection device (19), and a temperature detector (26) that detects the temperature at the transfer start end in the injection device (19), and a temperature detector (26) that detects the temperature at the transfer start end in the injection device (19), and 24) A controller that controls opening and closing of (25) (
27). According to the cooling temperature control means (5), when the temperature detected by the temperature detector (26) is higher than the preset temperature, the first flow rate control valve (24)
) to the closed side and the second flow rate control valve (25) to the open side to increase the amount of discharged cold air introduced into the cooling action section (23 &) of the introduction pipe (23), and conversely to When the detected temperature is lower than the set temperature, the first flow rate control valve (24) is opened and the second flow rate control valve (25) is controlled to be closed to limit the amount of discharged cold air introduced. By this, the transfer tube (
18) Maintain the internal temperature at the set temperature and transfer the pipe (18)
The temperature of the frozen grains (16b) being transferred inside is maintained at a constant temperature. The set temperature is determined so as to obtain the required frozen grain cooling temperature, and depends on the type of raw material to be frozen, the particle size of the frozen grains, and the frozen grains (16b) required for the surface treatment. It is set appropriately according to various conditions such as the hardness of the material.

[発明が解決しようとする課題] 従来の凍結粒噴射装置は以上のように構成されており、
冷気相源として用いている冷媒(液体窒素等)の発生機
構を持たないために、冷媒(液体窒素等)の蒸発分を外
部から補給してやる必要があり、液体窒素が寛易に供給
できる地域、場所でないとこの装置を動作させることが
不可能である等の問題点があった。
[Problem to be solved by the invention] The conventional frozen particle injection device is configured as described above.
Because it does not have a generation mechanism for the refrigerant (liquid nitrogen, etc.) used as a cold gas phase source, it is necessary to replenish the evaporated portion of the refrigerant (liquid nitrogen, etc.) from outside. There were problems such as the fact that it was impossible to operate this device unless the location was correct.

本発明は上記のような問題点を解消するためになされた
もので、冷媒(液体窒素等)を外部から供給せずに凍結
粒を製造し、噴射することができる装置を低コストかつ
簡素な構成で得ることを目的とする。
The present invention was made in order to solve the above problems, and it is a low-cost and simple device that can produce and inject frozen particles without externally supplying a refrigerant (liquid nitrogen, etc.). The purpose is to obtain the composition.

[!!題を解決するための手段] 本発明に係わる凍結粒噴射装置は、被冷却ガスを圧縮機
にて昇圧した後、膨張機を介して冷却し、冷却ガスを発
生させる冷媒発生手段を有し、かつ上記圧縮機にて昇圧
した被冷却ガスの一部を被凍結原料と共に上記断熱性容
器内に噴霧すると共に、噴霧粒子と上記冷却ガスとを熱
交換することによって製造された凍結粒を、上記圧縮機
によって昇圧した被冷却ガスの一部と共に噴射させるよ
うにしたものである。
[! ! Means for Solving the Problem] The frozen particle injection device according to the present invention has a refrigerant generating means that increases the pressure of the gas to be cooled using a compressor, cools it via an expander, and generates a cooling gas, A part of the gas to be cooled that has been pressurized by the compressor is sprayed together with the raw material to be frozen into the insulating container, and the frozen particles produced by exchanging heat between the sprayed particles and the cooling gas are It is designed to be injected together with a part of the gas to be cooled whose pressure has been increased by a compressor.

さらに本発明の他の発明による凍結粒噴射装置は、被冷
却ガスを圧縮機にて昇圧した後、膨張機を介して冷却液
化し、液化された冷媒を発生させる冷媒発生手段を有し
、かつ上記圧縮機にて昇圧した被冷却ガスの一部を被凍
結原料と共に上記断熱性容器内に噴霧すると共に、噴霧
粒子と上記液化された冷媒とを熱交換することによって
製造された凍結粒を、上記圧縮機によって昇圧した被冷
却ガスの一部と共に噴射させるようにしたものである。
Furthermore, a frozen particle injection device according to another aspect of the present invention has a refrigerant generating means for boosting the pressure of the gas to be cooled in a compressor and then cooling and liquefying it through an expander to generate a liquefied refrigerant, and Frozen particles produced by spraying a part of the gas to be cooled pressurized by the compressor into the insulating container together with the raw material to be frozen, and exchanging heat between the sprayed particles and the liquefied refrigerant, The gas is injected together with a portion of the gas to be cooled whose pressure has been increased by the compressor.

[作用] 本発明における凍結粒噴射装置は、被冷却ガスを圧縮機
にて昇圧した後、膨張機を介して冷却し、冷媒を発生さ
せる冷媒発生手段を有し、かつ上記圧縮機にて昇圧した
被冷却ガスの一部を被凍結原料と共に上記断熱性容器内
に噴霧すると共に、噴霧粒子と上記冷媒とを熱交換する
ことによって製造された凍結粒を、上記圧縮機によって
昇圧した被冷却ガスの一部と共に噴射させるようにして
いるので、冷媒を外部から供給する必要がなく、かつ低
コストで簡素な構成の凍結粒噴射装置が得られる。また
、冷媒発生手段において形成される冷媒がガス状であれ
ば、低エネルギーで冷媒を得ることが出来る。
[Function] The frozen particle injection device according to the present invention has a refrigerant generation means for generating refrigerant by increasing the pressure of the gas to be cooled with a compressor and then cooling it through an expander, and pressurizing the gas with the compressor. A part of the cooled gas is sprayed into the heat insulating container together with the raw material to be frozen, and the frozen particles are produced by exchanging heat between the sprayed particles and the refrigerant, and the pressure of the cooled gas is increased by the compressor. Since the refrigerant is injected together with a part of the refrigerant, there is no need to supply refrigerant from the outside, and a frozen particle injection device having a simple configuration at low cost can be obtained. Further, if the refrigerant formed in the refrigerant generating means is gaseous, the refrigerant can be obtained with low energy.

〔実施例] 以下、本発明の一実施例を図について説明する。〔Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による凍結粒噴射装置を示す
構成図であり、図において、 (100)は冷媒発生手
段である。冷媒発生手段(100)は以下のように構成
される。即ち、圧縮機(31)は冷却水パイプ(32)
を備えた圧縮機であり、冷却水バイブ(32)に流す冷
却水の作用で等温圧縮を行わせることができる。 (3
3)はこの圧縮機(31)の吸入側に、純粋な乾燥空気
を供給するために設けた、水分および炭酸ガス除去用の
フィルター (34)は前記圧縮機(31)の吐出側に
設けた、ゴミ等の不純物を取り除くためのフィルター 
(42a)は空気取り入れ用配管、(42b)は前記フ
ィルター(33)と前記圧縮II(31)とを接続する
配管、 (42c)は前記圧縮1fp1(31)と前記
フィルター(34)を接続する配管、 (39)は熱交
換器、 (42d)は前記フィルター(34)と前記熱
交換器(39)を接続する配管、 (40)はジュール
・トムソン膨張弁、 (42e)は前記熱交換器(39
)と前記ジュール・トムソン膨張弁(40)を接続する
配管、 (42f)は前記ジュール・トムソン膨張弁(
40)と冷媒収容タンク(12)を接続する配管、 (
15)は冷媒であり、冷却ガス、即ち、低温空気である
。  (42g)は前記冷媒収容タンク(12〉と前記
熱交換器(39)を接続する配管、(42h)は、前記
熱交換器(39)と前記配管(42b)を接続する配管
である。
FIG. 1 is a block diagram showing a frozen particle injection device according to an embodiment of the present invention, and in the figure, (100) is a refrigerant generating means. The refrigerant generating means (100) is configured as follows. That is, the compressor (31) is a cooling water pipe (32)
It is a compressor equipped with a cooling water vibrator (32), and can perform isothermal compression by the action of cooling water flowing through a cooling water vibrator (32). (3
3) is provided on the suction side of the compressor (31) to supply pure dry air, and a filter (34) for removing moisture and carbon dioxide is provided on the discharge side of the compressor (31). , filter to remove impurities such as dust
(42a) is an air intake pipe, (42b) is a pipe that connects the filter (33) and the compression II (31), and (42c) is a pipe that connects the compression 1fp1 (31) and the filter (34). Piping, (39) is the heat exchanger, (42d) is the piping connecting the filter (34) and the heat exchanger (39), (40) is the Joule-Thomson expansion valve, (42e) is the heat exchanger (39
) and the Joule-Thompson expansion valve (40); (42f) is the Joule-Thompson expansion valve (40);
40) and the refrigerant storage tank (12), (
15) is a refrigerant, which is a cooling gas, that is, low-temperature air. (42g) is a pipe connecting the refrigerant storage tank (12> and the heat exchanger (39)), and (42h) is a pipe connecting the heat exchanger (39) and the pipe (42b).

次に、この冷媒発生手段(100)の動作原理を第2図
に示す。これは、大気温度付近の状態の乾燥空気を、そ
の圧力に対応する液相に近い低温空気の状態にするサイ
クルを示すT−S線図である。
Next, the principle of operation of this refrigerant generating means (100) is shown in FIG. This is a T-S diagram showing a cycle in which dry air at a state near atmospheric temperature is brought into a state of low-temperature air close to a liquid phase corresponding to the pressure thereof.

ここで、Tは温度、Sはエントロピ、lはエンタルピを
示し、1は一定である。大気状態であるAからBまで圧
縮機(31)で等温圧縮を行った後、熱交換器(39)
によってBよりCまで等圧冷却を行って温度を下げ、点
Cよりジュール・トムソン膨張弁(40)でもとの圧力
plまで断熱膨張を行わせて温度を降下させ、低温空気
の状態とし点りに到らせ、そこで低温空気の一部を冷媒
(低温ガス)として取り出し、残りのガスは状態りより
、前記熱交換器に戻して、もとの状態に近いAに帰還さ
せ、新しいガスを補給して、もとの状態Aに戻り、再び
サイクルを繰り返す。このようにして、空気の温度を降
下させることができる。
Here, T is temperature, S is entropy, l is enthalpy, and 1 is constant. After performing isothermal compression in the compressor (31) from atmospheric state A to B, the heat exchanger (39)
The temperature is lowered by isobaric cooling from B to C, and the temperature is lowered by adiabatic expansion from point C to the original pressure pl using the Joule-Thomson expansion valve (40), making it a state of low-temperature air. A part of the low-temperature air is taken out as a refrigerant (low-temperature gas), and the remaining gas is returned to the heat exchanger depending on the condition, returning to A close to the original state, and new gas is added. Replenish it, return to the original state A, and repeat the cycle again. In this way, the temperature of the air can be lowered.

なお、第2図において、Eは熱交換を表わし、曲線Fは
飽和線を表わす。
In addition, in FIG. 2, E represents heat exchange, and curve F represents a saturation line.

温度降下した低温空気の一部は冷媒(15)として、冷
媒供給管(13a)を介して、流量調節弁(43)に導
入され、流量調節を行った後、冷媒供給管(13b)を
介して断熱性容器(6)の下部に設けた冷媒供給口(4
4)より噴射する。残りの冷媒(低温空気)は、前記熱
交換器(39)に入り、前記圧縮機(31)の吐出ガス
と熱交換した後、フィルター(33)を介して供給され
る純粋な乾燥空気と混合されて、配管(42b)を介し
て圧縮機(31)に入り、再びサイクルを繰り返す。な
お、圧縮機(31)で昇圧された乾燥空気の一部は、配
管(42i)を介して、噴霧ガス流量を調節するための
バルブ(37)、および配管(42j)を通過した後、
ゴミ等の不純物を除去するためのフィルター(35)を
通過し、噴霧ガス導入管(10)を介して、噴霧器(8
)に供給し、被凍結原料である純水を噴霧するために用
いる。さらに、圧縮機で昇圧された乾燥空気の一部は、
配管(42k)を介して、ガス流量を調節するバルブ(
38)、および配管(421)を通過した後、ゴミ等の
不純物を除去するフィルタ(36)、ドライブガス導入
管(20)を通過し、噴射機器(19)にドライブガス
として供給し、凍結粒(16b)を被処理物体表面に噴
射する。
A part of the low-temperature air whose temperature has decreased is introduced as a refrigerant (15) to the flow rate adjustment valve (43) via the refrigerant supply pipe (13a), and after adjusting the flow rate, it is passed through the refrigerant supply pipe (13b). The refrigerant supply port (4) provided at the bottom of the insulating container (6)
4) Inject more. The remaining refrigerant (cold air) enters the heat exchanger (39), exchanges heat with the discharge gas of the compressor (31), and then mixes with pure dry air supplied through the filter (33). and enters the compressor (31) via pipe (42b) to repeat the cycle again. A part of the dry air pressurized by the compressor (31) passes through the pipe (42i), the valve (37) for adjusting the spray gas flow rate, and the pipe (42j), and then passes through the pipe (42j).
It passes through a filter (35) for removing impurities such as dust, and then enters the atomizer (8) via an atomizing gas introduction pipe (10).
) and used to spray pure water, which is the raw material to be frozen. Furthermore, some of the dry air pressurized by the compressor is
A valve (
38) and piping (421), passes through a filter (36) for removing impurities such as dust, and a drive gas introduction pipe (20), and is supplied as a drive gas to the injection device (19), and the frozen particles are (16b) is sprayed onto the surface of the object to be treated.

このように、上記実施例の凍結粒噴射装置においては、
外部から冷媒(液体窒素等)を供給することなく、装置
自体で冷媒(低温空気)を発生させることができ、従来
例と同様の作用により、凍結粒を製造し、その凍結粒を
被処理物体の表面に噴射することにより、被処理物体の
表面に付着した異物、油脂等の不純物を除去することが
できる。
In this way, in the frozen particle injection device of the above embodiment,
The device itself can generate the refrigerant (low-temperature air) without supplying refrigerant (liquid nitrogen, etc.) from the outside, and by the same action as the conventional example, it can produce frozen particles and transfer the frozen particles to the object to be treated. By spraying onto the surface of the object to be treated, impurities such as foreign matter and oils and fats adhering to the surface of the object to be treated can be removed.

また、圧縮機にて昇圧した被冷却ガスの一部を、被凍結
原料、あるいは凍結粒の一部と共に噴射させるようにし
たので、従来は別途設けていた、被凍結原料用の噴霧ガ
ス及び凍結粒噴射用のドライブガスの供給装置を無くす
ことができ、装置の構成が簡素になると共に、低コスト
で構成できる。
In addition, a part of the gas to be cooled that has been pressurized by the compressor is injected together with the raw material to be frozen or part of the frozen particles, so that the atomizing gas for the raw material to be frozen and the freezing It is possible to eliminate the supply device of the drive gas for particle injection, and the structure of the device becomes simple and can be constructed at low cost.

なお、上記実施例では被冷却ガスに空気を用いた場合を
示したが、窒素ガスを用いてもよく、また、被凍結原料
に純水を用いた場合について説明したが、これと同等の
機能を有する他の被凍結原料であってもよく、上記実施
例と同様の効果を奏する。
In addition, although the above example shows the case where air is used as the gas to be cooled, nitrogen gas may also be used.Also, although the case where pure water is used as the raw material to be frozen is explained, it is possible to use the same function as this. Other materials to be frozen may be used, and the same effects as in the above embodiments can be achieved.

また、上記実施例ではジュール・トムソン膨張弁を用い
て冷却を行なったが、ガスを膨張させるものであれば、
タービン等の他の膨張機であってもよい。
In addition, in the above embodiment, cooling was performed using a Joule-Thomson expansion valve, but if it expands the gas,
Other expanders such as a turbine may also be used.

さらに上記実施例では冷媒発生手段(100)において
冷却ガスを発生させたが、ガス状でなくとも、液化状態
にまで冷却してもよい。第3図は本発明の他の実施例に
よる凍結粒噴射装置を示す構成図、第4図は本発明の他
の実施例に係わる冷媒発生手段の動作を説明する特性図
である。図において、 (41)は気液分離槽、 (4
2f)はジュール・トムソン膨張弁(40)と前記気液
分離槽(41)を接続する配管、 (15)は冷媒であ
り、この場合、液化空気である。 (42g)は気液分
離槽(41)と熱交換器(39)を接続する配管である
。第4図は、大気温度付近の状態の乾燥空気を、その圧
力に対応する液相の状態にするサイクルを示すT−5線
図であり、第2図と同様、AからBまで圧縮機(31)
で等温圧縮を行った後、熱交換器(39)によってBよ
りCまで等圧冷却を行って温度を下げる0点Cよりジュ
ール・トムソン膨張弁(40)でもとの圧力ptまで断
熱膨張を行わせて、湿り蒸気線上の点りに到らせ、そこ
で気液分離を行って湿り分だけを状態Hの液化ガスとし
て取り出し、残りのガスは状態Gより、前記熱交換器に
戻して、もとの状態に近いA′に帰還させ、新しいガス
を補給して、もとの状態Aに戻り、再びサイクルを繰り
返す。このようにして、空気を液化し、液化された冷媒
(15)は、冷媒供給管(13)を介して断熱性容器(
6)の下部に設けたタンク(12)に供給する。残りの
ガス(低温空気)は熱交換器(39)に戻し、第1図に
示した凍結粒噴射装置と同様に動作する。
Further, in the above embodiment, the cooling gas is generated in the refrigerant generating means (100), but the cooling gas does not need to be in a gaseous state and may be cooled to a liquefied state. FIG. 3 is a configuration diagram showing a frozen particle injection device according to another embodiment of the present invention, and FIG. 4 is a characteristic diagram illustrating the operation of a refrigerant generating means according to another embodiment of the present invention. In the figure, (41) is a gas-liquid separation tank, (4
2f) is a pipe connecting the Joule-Thomson expansion valve (40) and the gas-liquid separation tank (41), and (15) is a refrigerant, which in this case is liquefied air. (42g) is a pipe connecting the gas-liquid separation tank (41) and the heat exchanger (39). Figure 4 is a T-5 diagram showing a cycle in which dry air at around atmospheric temperature is brought into a liquid phase corresponding to the pressure. 31)
After performing isothermal compression at , the heat exchanger (39) performs isobaric cooling from B to C to lower the temperature.From 0 point C, adiabatic expansion is performed to the original pressure pt using the Joule-Thomson expansion valve (40). At the same time, a point on the wet steam line is reached, where gas-liquid separation is performed to extract only the wet part as liquefied gas in state H, and the remaining gas is returned to the heat exchanger from state G. The gas is returned to A', which is close to the previous state, and new gas is supplied, returning to the original state A, and the cycle is repeated again. In this way, the air is liquefied, and the liquefied refrigerant (15) is passed through the refrigerant supply pipe (13) to the insulating container (
6) is supplied to the tank (12) provided at the bottom of the tank. The remaining gas (cold air) is returned to the heat exchanger (39) and operates similarly to the frozen particle injector shown in FIG.

また、タンク(12)内の冷媒(15)は従来例と同様
の作用で凍結粒を製造し、その凍結粒を被処理物体の表
面に噴射することにより、被処理物体の表面に付着した
異物、油脂等の不純物を除去することができる。
In addition, the refrigerant (15) in the tank (12) produces frozen particles in the same manner as in the conventional example, and by spraying the frozen particles onto the surface of the object to be treated, foreign substances attached to the surface of the object to be treated can be removed. , impurities such as oil and fat can be removed.

[発明の効果コ 以上のように、本発明によれば被冷却ガスを圧縮機にて
昇圧した後、膨張機を介して冷却し、冷却ガスを発生さ
せる冷媒発生手段を有し、かつ上記圧縮機にて昇圧した
被冷却ガスの一部を被凍結原料と共に上記断熱性容器内
に噴霧すると共に、噴霧粒子と上記冷却ガスとを熱交換
することによって製造された凍結粒を、上記圧縮機によ
って昇圧した被冷却ガスの一部と共に噴射させるように
したので、外部から冷媒を供給することなく、簡素な装
置によって、凍結粒を得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, the gas to be cooled is pressurized by a compressor, and then cooled by an expander to generate a cooling gas. A part of the gas to be cooled, which has been pressurized by the compressor, is sprayed into the heat insulating container together with the raw material to be frozen, and the frozen particles produced by exchanging heat between the sprayed particles and the cooling gas are heated by the compressor. Since it is injected together with a part of the pressurized gas to be cooled, it is possible to obtain frozen particles using a simple device without supplying refrigerant from the outside.

また、従来は別途設けていた、被凍結原料用の噴霧ガス
及び凍結粒噴射用のドライブガスの供給装置を無くすこ
とができ、装置の構成が簡素になると共に、低コストで
構成できる効果がある。さらに、発生する冷媒は冷却ガ
スであるため、冷媒が低エネルギーで得られる。
In addition, it is possible to eliminate the supply devices for the atomizing gas for the raw material to be frozen and the drive gas for the injection of frozen particles, which were conventionally provided separately, which has the effect of simplifying the structure of the device and allowing it to be constructed at low cost. . Furthermore, since the generated refrigerant is a cooling gas, the refrigerant can be obtained with low energy.

また、本発明の他の発明によれば、冷媒発生手段におい
て、液化された冷媒を発生させ、この液化された冷媒を
断熱性容器に供給すると共に、前記発明と同様、圧縮機
にて昇圧した被冷却ガスの一部を、被凍結原料、あるい
は凍結粒と共に噴射させるようにしたので、外部から冷
媒を供給することなく、簡素な装置によって、凍結粒が
得られ、さらに、被凍結原料用の噴霧ガス及び凍結粒噴
射用のドライブガスの供給装置を無くすことができ、装
置の構成が簡素になると共に、低コストで構成できる効
果がある。
According to another aspect of the present invention, the refrigerant generating means generates liquefied refrigerant, supplies the liquefied refrigerant to the heat insulating container, and, as in the above invention, increases the pressure in the compressor. Since a part of the gas to be cooled is injected together with the raw material to be frozen or frozen grains, frozen grains can be obtained with a simple device without supplying refrigerant from the outside. It is possible to eliminate a supply device for drive gas for atomizing gas and frozen particle injection, which simplifies the structure of the device and has the advantage of being able to be constructed at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による凍結粒製造装置を示す
構成図、第2図は本発明の一実施例に係わる冷媒発生手
段の動作を説明する特性図、第3図は本発明の他の実施
例による凍結粒噴射装置を示す構成図、第4図は本発明
の他の実施例に係わる冷媒発生手段の動作を説明する特
性図、及び第5図は従来の凍結粒製造装置を示す構成図
である。 図において、 (1)は凍結粒製造手段、 (3)は凍
結粒噴射手段、 (6)は断熱性容器、 (8)は噴霧
器、(9)は被凍結原料供給管、(13a)及び(13
b)は冷媒供給管、 (15)は冷媒、(16a)は噴
霧粒子、 (16b)は凍結粒、(19)は噴射機器、
 (20)はドライブガス導入管、 (31)は圧縮機
、 (40)はジュール・トムソン膨張弁、 (41)
は気液分離槽、並びに(100)は冷媒発生手段である
。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a configuration diagram showing a frozen grain manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is a characteristic diagram illustrating the operation of a refrigerant generating means according to an embodiment of the present invention, and FIG. FIG. 4 is a configuration diagram showing a frozen particle injection device according to another embodiment, FIG. 4 is a characteristic diagram illustrating the operation of a refrigerant generating means according to another embodiment of the present invention, and FIG. 5 is a diagram showing a conventional frozen particle production device. FIG. In the figure, (1) is a frozen grain manufacturing means, (3) is a frozen grain injection means, (6) is an insulating container, (8) is a sprayer, (9) is a frozen raw material supply pipe, (13a) and ( 13
b) is a refrigerant supply pipe, (15) is a refrigerant, (16a) is a spray particle, (16b) is a frozen particle, (19) is an injection device,
(20) is the drive gas introduction pipe, (31) is the compressor, (40) is the Joule-Thomson expansion valve, (41)
is a gas-liquid separation tank, and (100) is a refrigerant generating means. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)断熱性容器、被冷却ガスを圧縮機にて昇圧した後
、膨張機を介して冷却し、冷却ガスを発生させる冷媒発
生手段、上記冷却ガスを上記断熱性容器内に供給する供
給手段、上記圧縮機にて昇圧した被冷却ガスの一部を被
凍結原料と共に上記断熱性容器内に噴霧する噴霧手段、
及びこの噴霧手段により形成された噴霧粒子と上記冷却
ガスとを熱交換することによって製造された凍結粒を、
上記圧縮機によって昇圧した被冷却ガスの一部と共に噴
射させる噴射手段を備えた凍結粒噴射装置。
(1) A heat insulating container, a refrigerant generating means for increasing the pressure of the cooled gas using a compressor and then cooling it through an expander to generate cooling gas, and a supply means for supplying the cooling gas into the heat insulating container. , a spraying means for spraying a part of the gas to be cooled whose pressure has been increased by the compressor into the insulating container together with the raw material to be frozen;
and frozen particles produced by heat exchange between the atomized particles formed by this atomizing means and the cooling gas,
A frozen particle injection device comprising an injection means for injecting a part of the cooled gas pressurized by the compressor.
(2)断熱性容器、被冷却ガスを圧縮機にて昇圧した後
、膨張機を介して冷却液化し、液化された冷媒を発生さ
せる冷媒発生手段、液化された上記冷媒を上記断熱性容
器内に供給する供給手段、上記圧縮機にて昇圧した被冷
却ガスの一部を被凍結原料と共に上記断熱性容器内に噴
霧する噴霧手段、及びこの噴霧手段により形成された噴
霧粒子と液化された上記冷媒とを熱交換することによっ
て製造された凍結粒を、上記圧縮機によって昇圧した被
冷却ガスの一部と共に噴射させる噴射手段を備えた凍結
粒噴射装置。
(2) an insulating container, a refrigerant generating means for pressurizing the gas to be cooled by a compressor and then cooling and liquefying it through an expander to generate a liquefied refrigerant; and a refrigerant generating means for generating a liquefied refrigerant; a spraying means for spraying a part of the gas to be cooled pressurized by the compressor into the insulating container together with the raw material to be frozen, and the spray particles formed by the spraying means and the liquefied above. A frozen particle injection device comprising an injection means for injecting frozen particles produced by exchanging heat with a refrigerant together with a part of the gas to be cooled that is pressurized by the compressor.
JP18323289A 1989-07-14 1989-07-14 Frozen grain injecting device Pending JPH0349869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18323289A JPH0349869A (en) 1989-07-14 1989-07-14 Frozen grain injecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18323289A JPH0349869A (en) 1989-07-14 1989-07-14 Frozen grain injecting device

Publications (1)

Publication Number Publication Date
JPH0349869A true JPH0349869A (en) 1991-03-04

Family

ID=16132093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18323289A Pending JPH0349869A (en) 1989-07-14 1989-07-14 Frozen grain injecting device

Country Status (1)

Country Link
JP (1) JPH0349869A (en)

Similar Documents

Publication Publication Date Title
JP5761895B2 (en) Apparatus for liquefying natural gas and method associated therewith
EP0302285A1 (en) Process and apparatus for cryogenic cooling using liquid carbon dioxide as a refrigerating agent
US3672181A (en) Method and apparatus for carbon dioxide cooling
JPH0814681A (en) Refrigerator using high-pressure primary closed refrigeration loop and secondary refrigeration loop
RU2001113736A (en) METHOD FOR TRANSPORTING LIQUEFIED NATURAL GAS
JP3428642B2 (en) Method and apparatus for automatically producing a block of solid CO2 at low pressure
CN101391156A (en) Fine particle preparation device using supercritical fluid quick expansion
JPH0349869A (en) Frozen grain injecting device
US1317688A (en) Balanced process of extracting and desiccating sulfur dioxid from
JP3609009B2 (en) Air separation device
KR102609998B1 (en) Unit cooler for both humidifier
CN108526141A (en) A kind of carbon dioxide snowflake cleaning system for ground spraying pre-treatment
US2951346A (en) Liquid nitrogen generator
CN210718189U (en) High-efficient refrigeration plant of carbon dioxide
US6668581B1 (en) Cryogenic system for providing industrial gas to a use point
CN110530044A (en) A kind of high-efficiency carbon dioxide refrigeration equipment
JPH1026469A (en) Air liquefying device
US1157959A (en) Art or process of liquefying air and separating the same into oxygen and nitrogen.
KR100357140B1 (en) An air-conditioner
JP6879343B2 (en) Extractor and extraction method
JPH04110577A (en) Ice making device
JP3801232B2 (en) Intake air cooling system for gas turbine
JP4417142B2 (en) Air separation method and apparatus used therefor
SU1441139A1 (en) Installation for producing heat, refrigerant and carbon dioxide
JP2589157B2 (en) Frozen dessert production equipment