JPH034985A - Extraction and aggregation of inclusion in water - Google Patents

Extraction and aggregation of inclusion in water

Info

Publication number
JPH034985A
JPH034985A JP13689889A JP13689889A JPH034985A JP H034985 A JPH034985 A JP H034985A JP 13689889 A JP13689889 A JP 13689889A JP 13689889 A JP13689889 A JP 13689889A JP H034985 A JPH034985 A JP H034985A
Authority
JP
Japan
Prior art keywords
silica
water
soluble
alumina
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13689889A
Other languages
Japanese (ja)
Inventor
Tsutomu Nishimura
西村 勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13689889A priority Critical patent/JPH034985A/en
Publication of JPH034985A publication Critical patent/JPH034985A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To cause the union of dissolved ions and silica to take place and remove suspended substances due to adsorption on the silica by a method wherein the polymerization and gelation of the monomer silica contained in an aqueous solution is accelerated in the presence of Al<3+> or Fe<3+> ion. CONSTITUTION:The polymerization and gelation of monomer silica contained in an aqueous solution is accelerated in the presence of Al<3+> and/or Fe<3+> ion. During these processes, the dissolved ions are combined with the silica and suspended substances are adsorbed by the settling silica to extract and aggregate the inclusion in the water. As an alternative, the polymerization and gelation of the monomer silica contained in an aqueous acid solution is accelerated by adding OH<-> to make it weakly acidic and, during such processes, the dissolved ions or suspended substances are combined with or adsorbed by the silica to extract and aggregate the inclusion in the water.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、各種の汚水・排水、閉鎖系水域水等の浄化、
硬水の軟化等、水中混在vA質を水と分離して除去する
方法に係り、特に水中に熔解したモノマーシリカの重合
・ゲル化現象を利用して、陽イオンや一部の陰イオン等
の熔解物、有機や無機の微粒子、バクテリアその他の浮
M懸濁物(SS)をシリカと結合させ或いは吸着させつ
つシリカをゲル化する仁とにより除去する新規な水中混
在物の抽出・凝集方法に関する。
[Detailed Description of the Invention] [Industrial Application Fields] The present invention is applicable to the purification of various types of sewage, wastewater, closed system water, etc.
It relates to a method of separating and removing vA substances mixed in water, such as softening of hard water, and in particular utilizes the polymerization and gelation phenomenon of monomer silica dissolved in water to dissolve cations and some anions. The present invention relates to a novel method for extracting and aggregating pollutants in water, in which particles, organic and inorganic particles, bacteria, and other suspended solids (SS) are removed by binding or adsorbing them to silica and using particles that gel the silica.

[従来の技術] 各種の化学工場や鉱業施設等から排出される排水にはか
なりの量の重金属イオンや溶解塩類が含まれている。従
来、これらの汚染物質は薬品を使ってのPH調整や沈澱
生成、晶析、更にはイオン交換や曝気、吸着等様々な方
法で分離除去されている。汚水処理場でも同様な処理が
行なわれることがある。また、硬水の軟水化については
汲み置き沈澱や煮沸沈澱、蒸溜、イオン交換等により行
われている。
[Prior Art] Wastewater discharged from various chemical factories, mining facilities, etc. contains a considerable amount of heavy metal ions and dissolved salts. Conventionally, these pollutants have been separated and removed by various methods such as pH adjustment using chemicals, precipitation, crystallization, ion exchange, aeration, and adsorption. Similar treatment may also be carried out at sewage treatment plants. In addition, hard water is softened by pumping sedimentation, boiling sedimentation, distillation, ion exchange, etc.

一方、生活排水や農業排水、養魚池排水中等に含まれる
リンは富栄養化の原因となるためその除去が急務である
が、一部都市型排水処理施設で薬品で除去される以外は
放置されているのが現状である。また、これらの排水や
湖沼等の閉鎖系水系においては藻やバクテリア、その他
有機、無機の微粒子等が浮遊懸濁している。これらも汚
染源となるがリン同様殆ど放置されている。
On the other hand, there is an urgent need to remove phosphorus contained in domestic wastewater, agricultural wastewater, fishpond wastewater, etc. as it causes eutrophication. The current situation is that Furthermore, in closed water systems such as wastewater and lakes, algae, bacteria, and other organic and inorganic particles are suspended in suspension. These are also sources of pollution, but like phosphorus, they are largely ignored.

[発明が解決しようとする課題] しかし、上記従来の排水処理技術において吸着剤、凝集
剤、中和剤、酸化剤、還元剤等を使用する場合には、二
次的汚染物質の混入と大量のスラッジの発注があり、こ
れらの処理に要する手間や費用、薬剤費は莫大なものに
なる。
[Problems to be Solved by the Invention] However, when adsorbents, flocculants, neutralizing agents, oxidizing agents, reducing agents, etc. are used in the conventional wastewater treatment technology described above, secondary pollutants may be mixed in and a large amount may be introduced. There are many orders for sludge, and the effort, cost, and drug costs required for processing these sludges are enormous.

また、水中に混在する極微粒子の抽出凝集は困難を極め
、大量の凝集剤や高分子凝集剤の添加とアルカリ処理が
加えられるが、残留する高分子凝集剤による汚染等も危
惧されている。
In addition, extracting and coagulating ultrafine particles mixed in water is extremely difficult, and a large amount of flocculant or polymer flocculant and alkali treatment are added, but there are concerns about contamination due to the residual polymer flocculant.

しかも、従来凝集剤として用いられている電解物質(主
としてAn◆3)は、熔解イオン類に対してはA/当量
以下(通常その1/2〜1/3程度)L7か凝集させず
、効率が悪い。更に、従来の方法では処理対象毎に薬品
や装置、処理操作の異なるものも多い。また、他の技術
の場合も巨額の設備費やランニングコストを必要とする
。軟水化の場合、蒸溜やイオン交換、煮沸はコスト高に
なるし、長時間沈澱法は低コストではあるが処理が不安
定で時間がかかるうえに、溶解度上限以下での除去はで
きない等の欠点がある。
Moreover, the electrolytic substance (mainly An◆3) conventionally used as a flocculant does not coagulate the dissolved ions at less than A/equivalent (usually about 1/2 to 1/3) L7, and is efficient. It's bad. Furthermore, in many conventional methods, chemicals, equipment, and processing operations are often different depending on the processing target. Other technologies also require huge equipment costs and running costs. In the case of water softening, distillation, ion exchange, and boiling are expensive, and long-term precipitation methods are low cost, but the process is unstable and takes time, and it is not possible to remove substances below the upper limit of solubility. There is.

尚、都市以外での家庭雑排水の処理水や合併処理水及び
農業排水の場合、リンについては低濃度であるし有効な
処理手段もないところから、殆どがそのまま河川や湖沼
に放流されている。しかし、特に農業排水は量が膨大で
あり、リンの全体量は莫大なものとなる。これらの排水
や閉鎖系水系に含まれる有機、無機の微粒子等について
も、同様に殆ど放置されている。都市型汚水排水処理場
でも、生物処理と沈澱分離ではリンは除去できず、コス
トの関係から殆どがそのまま放流されている。
In addition, in the case of treated domestic wastewater, combined treated water, and agricultural wastewater outside of cities, most of the phosphorus is discharged directly into rivers and lakes because the concentration of phosphorus is low and there are no effective treatment methods. . However, the amount of agricultural wastewater in particular is enormous, and the total amount of phosphorus is enormous. Organic and inorganic fine particles contained in these wastewaters and closed water systems are also largely left unattended. Even at urban wastewater treatment plants, phosphorus cannot be removed through biological treatment and sedimentation, and most of it is discharged as is due to cost considerations.

[課題を解決するための手段] そこで、本発明者はこのような欠点を改良すべく鋭意研
究した結果、熔解シリカが水溶液中でイオン反応により
重合しゲル化する過程において、熔解イオン類や浮遊物
質とシリカが結合或いは吸着する現象に着目して本発明
を完成させたものである。
[Means for Solving the Problems] Therefore, as a result of intensive research in order to improve these drawbacks, the present inventors found that in the process of polymerizing and gelling fused silica by ionic reaction in an aqueous solution, dissolved ions and suspended silica The present invention was completed by focusing on the phenomenon of binding or adsorption of substances and silica.

そして本発明は、熔解シリカがこれら溶解イオン類や浮
遊物質と結合或いは吸着してゲル化することにより汚水
浄化や硬水の軟水化等水中混在物を抽出・凝集して水と
分離させるに際し、多価金属イオンの共存或いはPH調
整により反応を促進させることを要旨とする。また、可
溶性シリカと可溶性アルミナ或いは可溶性鉄を含有する
資材からこれらを強制的に溶出させ、溶出した熔解シリ
力により水中混在物の抽出や凝集をなさしめることを要
旨とする。
In addition, the present invention is useful for extracting and coagulating contaminants in water, such as purifying sewage water and softening hard water, by binding or adsorbing these dissolved ions and suspended substances and gelling them. The gist is to promote the reaction by the coexistence of valent metal ions or by adjusting the pH. The gist of this method is to forcibly elute soluble silica, soluble alumina, or soluble iron from materials containing them, and to extract and coagulate contaminants in water using the eluted silicate power.

シリカ(Si02)は、水中に溶解するとOH−と結合
(SiOH)しているのが常と考えられており、特に熔
解シリカが1100ppを越えるとSi  (OH) 
4の生成が促進されると言われている(The Che
mistry of 5ilicon : Ra1pf
 K、IIer)。
It is generally believed that when silica (Si02) is dissolved in water, it is bonded with OH- (SiOH), and especially when the dissolved silica exceeds 1100 pp, Si (OH) is formed.
It is said that the production of 4 is promoted (The Che
mistry of 5ilicon: Ra1pf
K, IIer).

これらの溶解シリカは、ヒドロシルの形で水中に存在し
、他のイオン類と異なる特殊な挙動やイオン反応をする
ことが知られている。即ち、5i(OH)、s  (モ
ノマーシリカ、モノ珪酸、珪酸単量体)は極めて不安定
で縮合し易い性質を持っており、濃度や温度、P Hに
もよるが、順次重合(縮合)して二量体、二量体とポリ
マー化が進み、シロキサン結合によりポリマーシリカ(
ポリシリカ)を形成する。
These dissolved silicas exist in water in the form of hydrosils, and are known to exhibit special behavior and ionic reactions that differ from other ions. In other words, 5i(OH), s (monomer silica, monosilicic acid, silicic acid monomer) has the property of being extremely unstable and prone to condensation, and depending on the concentration, temperature, and PH, polymerization (condensation) occurs sequentially. Then, polymerization progresses to dimer and dimer, and polymer silica (
polysilica).

この反応はイオン反応であり、反応速度はp112〜7
の範囲においてはOH−イオン濃度に比例し、p(12
以下では水素イオン濃度に比例して無水化が進行すると
言われている。更に、一連の珪酸反応はp114〜6近
辺の微酸性域で急速に進行して粒子成長をとげ、粒子集
合とゲル化が同時進行的な形で急速に進行する。そして
、モノマーシリカの濃度が高い場合には全体が寒天のよ
うに固まり、比較的低濃度の場合にはコロイド状に沈澱
する。但し、アルカリ側特にpH9以上では解重合が起
こり、濃度が低いとモノマーシリカに戻るとも言われて
いる。これらのポリマー化やゲル化は、他のイオン、特
に多価金属イオンの存在で促進されることも知られてい
る。
This reaction is an ionic reaction, and the reaction rate is p112-7
In the range of p(12
It is said that dehydration progresses in proportion to the hydrogen ion concentration. Further, a series of silicic acid reactions proceed rapidly in the slightly acidic region around p114-6, resulting in particle growth, and particle aggregation and gelation proceed rapidly in a simultaneous manner. When the concentration of monomer silica is high, the whole silica solidifies like agar, and when the concentration is relatively low, it precipitates into a colloidal state. However, it is said that depolymerization occurs on the alkaline side, particularly at pH 9 or higher, and that when the concentration is low, it reverts to monomer silica. It is also known that these polymerizations and gelations are promoted by the presence of other ions, especially polyvalent metal ions.

しかし、従来シリカのこのような性質を利用した汚水浄
化等は知られていない。そこで本発明者は、シリカのこ
のような性質を水中混在物の抽出や凝集に利用出来ない
かを、シリカの溶出(熔解)及び重合−ゲル化の面から
様々な実験を行って検討したところ、以下に述べる如く
極めて良好な結果を得た。
However, conventionally, there is no known method of purifying sewage using such properties of silica. Therefore, the present inventor conducted various experiments from the aspects of elution (melting) and polymerization/gelation of silica to examine whether such properties of silica could be utilized for the extraction and coagulation of contaminants in water. , very good results were obtained as described below.

まず、高濃度の溶解シリカ含有水について、重合−ゲル
化反応が実際にどの程度のスピードで行なわれるかにつ
いて実験した(実験1)。その結果、重合−ゲル化反応
が急速に進行するとされるPH域(pH4〜6)でさえ
も反応が極めて遅く、実用には供し得ないことが判明し
た。このことは、溶解シリカ含有水中にAI!+3やF
’e″″3以外の金属イオンやリン酸イオンが共存して
いても同じであった(実M3)。但し、熔解シリカ水溶
液がもともと酸性(pH2〜6)の場合は、OH−を添
加することにより重合−ゲル化反応が大きく促進された
(実験2)。
First, an experiment was conducted to determine how fast the polymerization-gelation reaction actually takes place in water containing a high concentration of dissolved silica (Experiment 1). As a result, it was found that even in the pH range (pH 4 to 6) where the polymerization-gelation reaction is said to proceed rapidly, the reaction is extremely slow and cannot be put to practical use. This indicates that AI in dissolved silica-containing water! +3 or F
The same result was obtained even when metal ions other than 'e''''3 and phosphate ions coexisted (actual M3). However, when the fused silica aqueous solution was originally acidic (pH 2 to 6), the addition of OH- greatly promoted the polymerization-gelation reaction (Experiment 2).

また、熔解シリカ含有水中にAJ+3或いはFe+3を
微量(数ppm程度)でも共存させれば、重合−ゲル化
反応は速やかに進行し、同時に熔解イオン類その他の混
在物の濃度が大きく減少した(実験3)。これは、水中
に熔解したシリカが重合するのと併せてA1+3やF 
e +3と結合したためと考えられる。この場合、5i
OHの生成とH+の生成が行なわれる。即ち、次式■、
■により/l”3やFe+3はシリカと結合してH”を
生成させる。
Furthermore, if even a trace amount (several ppm) of AJ+3 or Fe+3 was allowed to coexist in water containing dissolved silica, the polymerization-gelation reaction proceeded rapidly, and at the same time, the concentration of dissolved ions and other contaminants was greatly reduced (experimental results). 3). This is due to the polymerization of silica dissolved in water as well as A1+3 and F.
This is thought to be due to the combination with e +3. In this case, 5i
OH and H+ are generated. That is, the following formula ■,
Due to (2), /l''3 and Fe+3 combine with silica to generate H''.

■(−3tOH)m +Al’= (−3iOH)m−n  ・ (−51O)nA/÷3
+nH”■ (−5iOH)m  +Fe”= (−5i OH) m−n  ・(−5i 0)yIF
 e’ +n H”この反応は、熔解シリカ含有水にA
 J +3或いははFeりが加わることにより急激なP
H低下を来すことからも是認される。これらの反応の内
、熔解シリカ合有水中にへ1″3或いはFe+3が加わ
った場合には、八/+3、Fe”が単純に水酸化物とな
るばかりではなく、シリカと結合した複合沈澱物となる
。この事実は、他の金属イオンとの間にもシリカ結合が
行なわれることを示している。
■(-3tOH)m +Al'= (-3iOH)m-n ・ (-51O)nA/÷3
+nH"■ (-5iOH)m +Fe"= (-5i OH) m-n ・(-5i 0)yIF
e' +n H"This reaction involves the addition of A to water containing dissolved silica.
A sudden increase in P due to addition of J+3 or Fe
This is also approved because it causes a decrease in H. In these reactions, when 1"3 or Fe+3 is added to the dissolved silica-containing water, 8/+3, Fe" not only becomes a hydroxide, but also forms a composite precipitate combined with silica. becomes. This fact indicates that silica bonds are also formed with other metal ions.

この放出されたH+は、熔解シリカの重合−ゲル化を急
速に促進する方向(pH4〜6近辺)にPHを動かして
シリカのゲル化を促進させる。その際、水中に含有する
浮遊物質のみならず、水中にある金属陽イオン、P−3
等の陰イオン、Ca*2等のアルカリ土類金属イオンに
ついても抽出・凝集が行なわれる。この場合、PHが下
がり過ぎればOH−を加えて微酸性(pH4〜6近辺)
にすれば、反応がさらに促進されることも判明した(実
験3)しかして、 1、熔解シリカ−金属イオン共存下5、特にAN″″3
或いはFe+3の共存下でのシリカ重合−ゲル化促進P
H域へのコントロールにより、抽出・凝集効果の発現を
高める。
This released H+ moves the pH in a direction (around pH 4 to 6) that rapidly promotes polymerization and gelation of fused silica, thereby promoting gelation of silica. At that time, not only suspended substances contained in water but also metal cations and P-3
Extraction and aggregation are also performed on anions such as ions and alkaline earth metal ions such as Ca*2. In this case, if the pH drops too much, add OH- to make it slightly acidic (around pH 4-6).
It was also found that the reaction was further promoted by using (Experiment 3)
Alternatively, silica polymerization in the coexistence of Fe+3 - gelation promotion P
By controlling the H range, the expression of extraction and aggregation effects is enhanced.

2、更に、上記1.に加えて、熔解シリカ含有の酸性水
(pH2以上)へのOH−供給によるモノマーシリカー
ポリマーシリカーゲル化反応の促進と、それに伴う溶解
イオン類の抽出と水中浮遊物質の凝集効果の発現を高め
る。
2. Furthermore, the above 1. In addition, it promotes the monomer silica polymer silica gelation reaction by supplying OH to acidic water (pH 2 or higher) containing dissolved silica, and thereby enhances the extraction of dissolved ions and the aggregation effect of suspended substances in water. .

ことが可能であり、本発明は金属イオン類、一部陰イオ
ン、アルカリ土類金属イオン特にカルシウムイオン等の
抽出や、浮遊物質(SS)の凝集方法として極めて有効
なものと言える。しかも、従来用いられてきた種々の凝
集剤や吸着剤に無い優れた特性があり、将来の技術とし
て高い評価が与えられる。
Therefore, the present invention can be said to be extremely effective as a method for extracting metal ions, some anions, alkaline earth metal ions, especially calcium ions, and aggregating suspended solids (SS). Moreover, it has excellent properties not found in the various flocculants and adsorbents that have been used in the past, and is highly valued as a future technology.

次に、上記実験各実験を踏まえ、可溶性シリカの溶出に
関する実験を行なった。これは、可溶性シリカと可溶性
アルミナ(又は可溶性鉄或いはその両者)を共有する資
材を汚水中に浸漬し、物理的に強制溶出を行い、溶出す
るシリカ及びアルミナ(又は鉄或いはその両者)によっ
て、モノマコシリカー重合−粒子成長一集合一ゲル化反
応を起こさせて、汚水中の汚濁物質の抽出・凝集を行わ
せる実験を行ない、その有効性を確認した(実験4、実
験5)。
Next, based on the above experiments, an experiment regarding the elution of soluble silica was conducted. This method involves immersing materials that share soluble silica and soluble alumina (or soluble iron, or both) in waste water and physically forcing them to elute. An experiment was conducted in which the polymerization, particle growth, aggregation, and gelation reactions were caused to extract and coagulate pollutants in wastewater, and the effectiveness of this method was confirmed (Experiments 4 and 5).

更に、可溶性シリカ及び可溶性アルミナを共有する資材
を用い化学的に強制溶出して、極めて高濃度の熔解性シ
リカ−溶解性アルミナを含有する溶液を作成した。そし
て、この溶液の少量(比)を汚水中に拡散して、微酸性
領域(特に、p115〜6近辺が好ましい)でシリカ重
合−ゲル化反応を進行させて、汚水中の汚濁物質の抽出
・凝集を行わせる実験を行ない、その有効性を確認した
(実験6)。
Furthermore, a solution containing extremely high concentrations of soluble silica and soluble alumina was created by chemically forcibly dissolving soluble silica and soluble alumina using a material that shared them. Then, a small amount (ratio) of this solution is diffused into the wastewater to allow the silica polymerization-gelation reaction to proceed in a slightly acidic region (particularly preferably around p115 to 6), thereby extracting and extracting pollutants from the wastewater. An experiment was conducted to cause aggregation, and its effectiveness was confirmed (Experiment 6).

尚、本発明において水中混在物とは、Zn、Pb、、A
s等の金属陽イオン、Ca +2等のアルカリ土類金属
イオン、p−3等一部の陰イオン等の溶解イオン類や、
有機、無機の微粒子、バクテリア、藻等の浮遊物質(S
S)を言う。
In addition, in the present invention, inclusions in water include Zn, Pb, A
Dissolved ions such as metal cations such as s, alkaline earth metal ions such as Ca +2, and some anions such as p-3,
Suspended substances such as organic and inorganic particles, bacteria, and algae (S
S).

また、抽出とは熔解イオン類をシリカと結合させて一体
的に重合−ゲル化させることを言い、凝集とは水中の浮
遊物質をシリカに吸着させて一体的に重合−ゲル化させ
ることを言い、これらの結果これらの水中混在物が水と
分離される。
In addition, extraction refers to combining dissolved ions with silica and polymerizing and gelling them together, and flocculation refers to adsorbing suspended substances in water to silica and polymerizing and gelling them integrally. , as a result of which these aqueous contaminants are separated from the water.

可溶性シリカや可溶性アルミナを共有する資材からこれ
らを強制溶出させる物理的手段とは、機械的衝撃(攪拌
、曝気、水流等)、超音波、磁気或いはこれらの複合を
言い、化学的手段とは塩酸、硫酸等の強酸による溶出を
言う。
Physical means for forcibly eluting soluble silica and soluble alumina from materials that share them include mechanical impact (stirring, aeration, water flow, etc.), ultrasonic waves, magnetism, or a combination of these, and chemical means include hydrochloric acid, etc. , refers to elution with strong acids such as sulfuric acid.

本発明において重合−ゲル化反応を促進させる好ましい
P Hの範囲は、3.5〜665、特に反応が急速に起
こる範囲は、/l約添加の場合4〜6、Fe+3添加の
場合はそれより幾分低く3.5〜6程度である。反応液
がこの範囲から逸脱すれば、OH−又はH十を与えて調
整することが好ましい。
In the present invention, the preferable pH range for promoting the polymerization-gelation reaction is 3.5 to 665, and the range in which the reaction occurs particularly rapidly is 4 to 6 in the case of addition of about /l, and more than that in the case of addition of Fe+3. It is somewhat low, about 3.5 to 6. If the reaction solution deviates from this range, it is preferable to adjust it by adding OH- or H+.

また、A 、1 +3やFe+3は熔解シリカ含有水中
に極微量存在しても反応をそれなりに促進させる。
Furthermore, even if A 1 +3 and Fe+3 are present in extremely small amounts in the water containing fused silica, they promote the reaction to a certain extent.

被処理水中の熔解シリカ濃度や溶解イオン類・夾雑物の
濃度、水中混在物の除去の程度等によっては、0.5〜
1 ppm程度でも十分な目的を達する。
0.5 to 0.5 depending on the concentration of dissolved silica in the water to be treated, the concentration of dissolved ions and impurities, the degree of removal of water inclusions, etc.
Even around 1 ppm is sufficient to achieve the purpose.

。一方、シリカ(Si02)は岩石中に無尽蔵に存在し
、また鉱滓中にも多量に含まれている。しかし、本発明
において用いうるシリカは可溶性のもの、即ちクリスト
バライトやトリジマイトに限られる。石英は、難溶であ
り利用出来ない。これは、石英が極めて安定な構造であ
るのに対し、クリストバライトやトリジマイトが準安定
状態にあることによる。
. On the other hand, silica (Si02) exists in inexhaustible quantities in rocks, and is also contained in large amounts in slag. However, the silica that can be used in the present invention is limited to soluble ones, ie, cristobalite and tridymite. Quartz is poorly soluble and cannot be used. This is because quartz has an extremely stable structure, whereas cristobalite and tridymite are in a metastable state.

クリストバライトやトリジマイトを多く含有する岩石(
鉱物)としては、ホウケイ石(クリストバル石)、オパ
ール石、珪石、等がある。また、ゼオライトも幾分クリ
ストバライトを含有している。これらクリストバライト
、トリジマイトやアルミナ珪酸含水塩を主成分とする鉱
物は、その中に可溶性アルミナも含んでおり、そのまま
本発明に用いることができる。これらの鉱物は、水との
接触面積を広くするため破砕して用いるとよい。
Rocks containing a lot of cristobalite and tridymite (
Minerals include borosilicate (cristobalite), opalite, silica stone, etc. Zeolites also contain some cristobalite. These minerals whose main components are cristobalite, tridymite, and alumina silicate hydrate also contain soluble alumina, and can be used as they are in the present invention. These minerals are preferably used after being crushed in order to increase the contact area with water.

また、鉱滓特に肥料用水滓粉(高炉水滓)には、かなり
の量のシリカ(クリストバライト型)やアルミナ(AI
!203)が含まれている。従って、これを強酸で処理
すれば、可溶性シリカ及び可溶性アルミナが極めて高濃
度で溶出する。
In addition, mining slag, especially water slag powder for fertilizer (blast furnace water slag), contains a considerable amount of silica (cristobalite type) and alumina (AI).
! 203) is included. Therefore, if this is treated with a strong acid, soluble silica and soluble alumina will be eluted at extremely high concentrations.

尚、本発明で可溶性シリカとは、鉱物等に含まれている
水系で溶出可能なシリカ(Si02)即ちクリストバラ
イトやトリジマイトを言い、溶解シリカとは水中でOH
−と結合したものを言う。
In the present invention, soluble silica refers to silica (Si02) that is contained in minerals and can be eluted in water, such as cristobalite and tridymite.
It refers to something combined with -.

但し、後述する実験結果中での溶解シリカの濃度は、S
iとして測定したものを5i02換算で示したものであ
る。
However, the concentration of dissolved silica in the experimental results described later is
The value measured as i is shown in terms of 5i02.

[作用] 汚水・排水その他熔解イオン頬や浮遊物質を水から分離
除去したい水系中に、モノマーシリカ(熔解シリカ・溶
解珪酸)と、Aβ13、Fe+3又はその両方のイオン
を共存させてモノマーシリカの重合及びゲル化を促進さ
せ、その過程中において熔解イオン類や浮遊物質をシリ
カと結合或いは吸着させて水中混在物の抽出・凝集を行
わせる。OH−を加えて最適PH(pH4〜6程度)に
調整すると、更に反応が良好に促進される。
[Action] Monomer silica (fused silica/dissolved silicic acid) and ions of Aβ13, Fe+3, or both are allowed to coexist in a water system in which sewage, wastewater, and other dissolved ions and suspended solids are to be separated and removed from the water to polymerize monomer silica. and promotes gelation, and during this process, dissolved ions and suspended solids are combined with or adsorbed on silica to extract and coagulate contaminants in water. When OH- is added to adjust the pH to an optimum level (about pH 4 to 6), the reaction is further promoted.

被処理水中に、可溶性シリカと可溶性アルミナ(又は可
溶性鉄、或いは両者)を含有する資材を浸漬し、物理的
手段を用いて可溶性シリカと可溶性アルミナ(又は可溶
性鉄、或いは両者)を強制溶出させ、該溶出させたモノ
マーシリカの重合及びゲル化を促進させ、その過程中に
おいて熔解イオン類や浮遊物質を熔解シリカと結合或い
は吸着させて水中混在物の抽出・凝集を行わせる。或い
は、該資材から化学的手段(強酸処理)を用いて極めて
高濃度の熔解シリカ−アルミナ(又は鉄、或いは両者)
溶液を作り、これを被処理水中に添加分散させ、該添加
したモノマーシリカの重合及びゲル化を促進させ、その
過程中において熔解イオン類や浮遊物質をシリカと結合
或いは吸着させて水中混在物の抽出・凝集を行わせる。
A material containing soluble silica and soluble alumina (or soluble iron, or both) is immersed in the water to be treated, and soluble silica and soluble alumina (or soluble iron, or both) are forcibly eluted using physical means, Polymerization and gelation of the eluted monomer silica is promoted, and during the process, dissolved ions and suspended substances are bound or adsorbed to the dissolved silica, thereby extracting and coagulating contaminants in water. Alternatively, extremely high concentration of fused silica-alumina (or iron, or both) can be obtained from the material using chemical means (strong acid treatment).
A solution is prepared, and this solution is added and dispersed in the water to be treated to promote polymerization and gelation of the added monomer silica, and during this process, dissolved ions and suspended substances are combined with or adsorbed to the silica to remove contaminants in the water. Perform extraction and aggregation.

[実験] 次に、本発明の拠所となる実験の方法及び結果について
詳細に説明する。
[Experiment] Next, the method and results of the experiment on which the present invention is based will be explained in detail.

実験1    シ1カ 執 の 高濃度の熔解シリカ含有水(Sol、 S i O2と
して1100pp以上)中では、経時的にシリカの重合
−ゲル化が進行する。特に、80℃以上の高温、常圧下
では、この反応が急速に進行する。
Experiment 1 In water containing a high concentration of dissolved silica (Sol, 1100 pp or more as SiO2), polymerization and gelation of silica progresses over time. In particular, this reaction proceeds rapidly at a high temperature of 80° C. or higher and under normal pressure.

本実験では、2つの試料(A、B)について地下(高圧
下)より汲上げた直後、24時間経過後、及び30日経
過後の熔解シリカ濃度(ppm )を測定(原子吸光光
度法)してその挙動を調査した。
In this experiment, the dissolved silica concentration (ppm) of two samples (A and B) was measured (atomic absorption spectrophotometry) immediately after pumping them up from underground (under high pressure), 24 hours later, and 30 days later. We investigated its behavior.

測定結果を表−1に示す。また、第1図fatにPHの
変化、第1図(blに熔解シリカ(Sol、S i 0
2 )の変化を夫々示す。
The measurement results are shown in Table-1. In addition, PH change is shown in figure 1 (fat), and fused silica (Sol, S i 0
2) The changes in each are shown below.

表−1 実験lから明らかなように、経時的に常温下でも・モノ
マーシリカの正合−ゲル化が進行する。但しその速度は
極めて緩慢で、この程度の反応速度ではこれを水処理に
応用することは困難である。
Table 1 As is clear from Experiment 1, the formation and gelation of monomer silica progresses over time even at room temperature. However, the reaction rate is extremely slow, and it is difficult to apply this reaction rate to water treatment.

溶解シリカはPH2以上でOH−量に比例する動きをす
ると言われている。ここでは、種類の異なる地熱水のO
H−をHc7!とN a OHを用いてコントロールし
、熔解シリカの動きを調査した(測定は原子吸光光度法
による)。
It is said that dissolved silica moves in proportion to the amount of OH at pH 2 or above. Here, different types of geothermal water O
H- to Hc7! and NaOH to investigate the movement of the fused silica (measured by atomic absorption spectrophotometry).

その結果、第2図に示す如く汲上時のPHが6以下(A
 #1.pH3,9)の場合にはPHの上昇(OH−の
増加)に伴って熔解シリカの量が減少する(即ち重合−
ゲル化が進行する)のに対し、汲上時のP Hが7以上
(B液p87.7 )の場合には逆にPHの上昇に伴っ
て熔解シリカの量が増大している。
As a result, as shown in Figure 2, the pH at the time of pumping was 6 or less (A
#1. pH 3,9), the amount of fused silica decreases (i.e. polymerization increases) as the pH increases (OH increases).
On the other hand, when the pH at the time of pumping is 7 or more (solution B p87.7), the amount of dissolved silica increases as the pH increases.

このことから、PHが低い即ち酸性水の場合には、OH
−を添加することによりシリカの重合−ゲル化現象を利
用して水中混在物を抽出・凝集することが出来る。しか
し、もともとのPHが高い(7以上)場合にはOH−を
添加しても熔解シリカの量は減少せず、本発明に利用で
きない。
From this, in the case of acidic water with low pH, OH
By adding -, it is possible to extract and coagulate substances in water by utilizing the polymerization-gelation phenomenon of silica. However, if the original pH is high (7 or more), the amount of fused silica will not decrease even if OH- is added, and it cannot be used in the present invention.

(3−1) 地下熱水中には、シリカ分が大量に熔解していることが
多い。そこで、汲み上げた地下熱水に種々なイオン等を
添加し、熔解シリカの重合−ゲル化に伴って熔解イオン
等が如何なる挙動を示すかを調査した。尚、測定は全て
JIS−に−n法によった。
(3-1) A large amount of silica is often dissolved in underground hot water. Therefore, various ions were added to pumped underground hot water, and the behavior of the dissolved ions was investigated as the fused silica polymerized and gelled. Incidentally, all measurements were performed according to the JIS-N method.

まず、シリカ濃度830ppmの地下熱水(A)とシリ
カ濃度590ppmの地下熱水(B)を汲み上げ、夫々
にP (50ppm ) 、Zn (10ppm )、
pb(10ppm)及びAs  (toρρIII)相
当量を添加し、供試料(試料液A及び試料液B)とした
First, underground hot water (A) with a silica concentration of 830 ppm and underground hot water (B) with a silica concentration of 590 ppm were pumped up, and P (50 ppm), Zn (10 ppm),
Equivalent amounts of pb (10 ppm) and As (toρρIII) were added to prepare test samples (sample liquid A and sample liquid B).

尚、各試料液とも、Aj2”3及びFe’は不検出(<
0.1 ppm )であった。また、試料液Aには溶解
カルシウムが271 ppmとSS分(重合5i02微
粒子)が35ppm含まれており、試料液Bには熔解カ
ルシウム16ppmとSS分(重合S i 02微粒子
)が微fM (< ippm )含まれていた。これら
の値は、表−2及び第3図中■の欄に示す。
In addition, Aj2''3 and Fe' were not detected (<
0.1 ppm). In addition, sample solution A contains 271 ppm of dissolved calcium and 35 ppm of SS component (polymerized S i 02 fine particles), and sample solution B contains 16 ppm of dissolved calcium and SS component (polymerized S i 02 fine particles) with a fine fM (< ippm) included. These values are shown in the column marked ■ in Table 2 and Figure 3.

この試料液を24時間静置したもの(無処理)について
の各測定値(■)は、前記■のものと殆ど変わらなかっ
た。
The measured values (■) of this sample solution left standing for 24 hours (untreated) were almost the same as those of the above-mentioned (■).

一方、得られた試料液AにA/’2ppm相当量、試料
液BにFe+32ppm相当量を夫々添加攪拌し、その
まま60分間静置して沈澱の生成と熟成・沈降を行い、
熔解イオン及び浮遊物質の動きを調査した。驚いたこと
に、各試料液はA7!”3或いはFe*3添加後、沈澱
の生成とともに著しいPH低下を示した(測定値■)。
On the other hand, an amount equivalent to A/'2 ppm was added to the obtained sample solution A, and an amount equivalent to Fe + 32 ppm was added to the sample solution B, and the mixture was stirred and left to stand for 60 minutes to form a precipitate and ripen/sediment.
The movement of dissolved ions and suspended solids was investigated. To my surprise, each sample solution was A7! After adding ``3'' or Fe*3, a significant PH decrease was observed along with the formation of a precipitate (measured value ■).

続いて、これらの液にlN−NaOHを滴下してpl+
6.5付近に調整して沈澱生成を行い、60分静置後、
水中イオンの動きを調査した。沈澱はさらに進行した(
測定値■)。また、■に沈澱物中表 −2+al  (
1!”3添)10表 2(bl  (Fe”添加) の各項目の測定値、■に除去率(■に対する■の平均値
の割合)を示す。
Next, 1N-NaOH was added dropwise to these solutions to make pl+
Adjust the temperature to around 6.5 to generate a precipitate, and after leaving it for 60 minutes,
We investigated the movement of ions in water. Precipitation progressed further (
Measured value ■). In addition, in ■, the precipitate -2+al (
1! Measured values for each item in Table 2 (bl (Fe) added), removal rate (ratio of average value of ■ to ■) are shown in ■.

以上の実験結果を、表−2(a) (A I!”3添加
の場合)及び表−2(b)(Fe+3添加の場合)、及
び第3図(al〜(C)に示す。第3図(a)は熔解シ
リカと↑・Pの濃度変化、同図fb)はPHと熔解カル
シウム及びZnの濃度の変化、同図(C)はPbとAs
及びSSの濃度変化をそれぞれ示す。
The above experimental results are shown in Table 2(a) (in the case of A I!''3 addition), Table 2(b) (in the case of Fe+3 addition), and Figures 3 (al to (C)). Figure 3 (a) shows the change in the concentration of fused silica and ↑・P, fb) in the same figure shows the change in PH and the concentration of dissolved calcium and Zn, and (C) shows the change in the concentration of Pb and As.
and SS concentration changes are shown, respectively.

尚、熔解カルシウムは地下熱水中に元々存在したもので
あり、これが熔解シリカの重合−ゲル化に伴って減少し
ていることが判る。通常カルシウムは高いPH領領域し
か沈澱除去されないことから見て、本発明の特異性がよ
く示れている。また本実験によるSSは、重合S i 
O2の微粒子であり、元々地下熱水中に含まれていたも
のが、24時間放置により増加したものである。このS
Sが、A / +3添加により大幅に減少したことが判
る。
Note that dissolved calcium originally existed in underground hot water, and it is understood that this is reduced as the dissolved silica polymerizes and gels. The specificity of the present invention is clearly demonstrated by the fact that normally calcium is precipitated and removed only in the high pH range. In addition, SS in this experiment was polymerized S i
These are fine particles of O2, which were originally contained in the underground hot water, but increased after being left for 24 hours. This S
It can be seen that S was significantly reduced by the addition of A/+3.

上記データの通り、極めて高い抽出・凝集効果を確認し
た。また、A I +3、Feりを添加することにより
、烈しいPH低下を示した。尚、Al”3としてPAC
,、Fe12としてポリ鉄を使用したが、それらにより
供給されるH+zを遥かに越えるP11低下を示した。
As shown in the above data, extremely high extraction and flocculation effects were confirmed. Furthermore, addition of A I +3 and Fe showed a severe PH decrease. In addition, as Al”3, PAC
, polyiron was used as Fe12, but showed P11 reductions far exceeding the H+z provided by them.

更に、大量のシリカゲル沈澱を生成するとともに、水中
陽イオンやp−3を抽出・凝集した。また、OH−供給
により、−層この反応が促進されることを確認した。
Furthermore, a large amount of silica gel precipitate was generated, and cations and p-3 in the water were extracted and aggregated. Furthermore, it was confirmed that this reaction in the -layer was promoted by supplying OH-.

(4−1)ホウケイ石溶出処理による直接処理実験(物
理的強制溶出利用)。
(4-1) Direct treatment experiment using borosilicate elution treatment (using physically forced elution).

品位の異なるホウケイ石を8〜20mm粒程度に整粒し
て実験に供した。
Borosilicate of different grades was sized to about 8 to 20 mm grains and used for experiments.

品位の異なる各ホウケイ石を50g秤量して200mt
平型ポリビーカーに入れ、水を加えて十分に吸水させ、
攪拌しても濁りを生じなくなるまで十分に洗浄する。こ
れに、試験水(雑排水4I!+水道水16 l+P−3
10ppm相当量添加)100mlを加えて超音波槽(
50〜25KHz)に入れ、超音波振動を与えて溶出を
行わせた。尚、この試験水の当初のPHは7.37、熔
解シリカ濃度は1゜35ppm、溶解アルミナ濃度は<
0.lppm  (不検出)、T−PJ度はl 1.7
5ppm 、溶解Caは22.2ppm 、 S S成
分としてのバクテリア(大腸菌群)は27 + 000
 n / mlであった。
Weighed 50g of borosilicate of different grades to produce 200mt.
Place it in a flat plastic beaker and add water to absorb enough water.
Wash thoroughly until no turbidity occurs when stirred. Add to this the test water (4 I of gray water! + 16 l of tap water + P-3
Add 100 ml of 10 ppm equivalent amount added) and place in an ultrasonic bath (
50 to 25 KHz), and elution was performed by applying ultrasonic vibration. The initial pH of this test water was 7.37, the dissolved silica concentration was 1°35 ppm, and the dissolved alumina concentration was <
0. lppm (not detected), T-PJ degree is l 1.7
5ppm, dissolved Ca is 22.2ppm, and bacteria (coliform group) as SS component is 27+000
n/ml.

振動開始・から経時的(30分後、60分後、120分
後及び180分後)に浸漬水をサンプリングし、乾燥N
 o 2濾紙で沈澱を濾別した濾過水について測定を行
い、溶出挙動、脱P、脱Ca、脱SSの挙動を調査した
The immersion water was sampled over time (30 minutes, 60 minutes, 120 minutes, and 180 minutes) from the start of vibration, and dried N
Measurements were performed on the filtered water obtained by filtering the precipitate with o2 filter paper, and the elution behavior, P removal, Ca removal, and SS removal behavior were investigated.

この比較として、上記各ホウケイ石の内シリカとアルミ
ナの溶出が多い品種(1,4,7,8)について、上記
試験水に16時間浸漬して静置しておいた浸漬水の濾過
水についても同様に溶出挙動、脱P、脱Caの挙動を調
査した。測定結果を夫々表−3(a)及び第4図(a)
〜(C1に示す。尚、第4図(a)は熔解シリカ、同図
(blは熔解アルミナ、同図(C1はT−Pの濃度変化
を示す。また、測定は全てJ I S−に法によった。
As a comparison, for each of the above borosilicate varieties (1, 4, 7, 8) that have a high elution of silica and alumina, the filtrated water of the immersion water that was immersed in the above test water for 16 hours and left to stand was compared. Similarly, the elution behavior, P removal, and Ca removal behavior were investigated. The measurement results are shown in Table 3 (a) and Figure 4 (a), respectively.
~ (shown in C1. Figure 4 (a) shows the concentration change of fused silica, the same figure (bl) shows the concentration change of fused alumina, and the same figure (C1 shows the concentration change of T-P. All measurements were carried out by JIS- According to the law.

実験結果から、超音波溶出によってホウケイ石表 −3
(a)  低時的溶出) から可溶性シリカ、可溶性アルミナの溶出が行なわれ、
経時的にシリカ重合−ゲル化の進行があったことが認め
られる。それと共に、p−3、SS成分が共沈したごと
も認められた。これらの効果は、シリカとアルミナの溶
出量の多いホウケイ石はど高いことも判明した。
From the experimental results, it was found that borosilicate table-3 was produced by ultrasonic elution.
(a) Low temporal elution) Soluble silica and soluble alumina are eluted from
It was observed that silica polymerization and gelation progressed over time. At the same time, coprecipitation of p-3 and SS components was also observed. It was also found that these effects were even greater for borosilicate, which has a large amount of eluted silica and alumina.

また、超音波により溶出が大きく促進されることも併せ
て確認された。
It was also confirmed that elution was greatly promoted by ultrasound.

(4−2) 上記各ホウケイ石の内シリカとアルミナの溶出が多いホ
ウケイ石(Nol、4.7.8)について、別途それぞ
れの50gを200gの蒸留水に入れて60分超音波溶
出を行い、全溶解量(熔解量+沈澱量)及び残留熔解量
(5B濾紙で濾過した濾液中の濃度)をそれぞれ分析し
た。
(4-2) Among the borosilicate types mentioned above, for borosilicate (Nol, 4.7.8), which has a large amount of eluted silica and alumina, separately 50 g of each borosilicate was placed in 200 g of distilled water and subjected to ultrasonic elution for 60 minutes. The total dissolved amount (dissolved amount + precipitated amount) and residual dissolved amount (concentration in the filtrate filtered through 5B filter paper) were analyzed.

測定結果を、表−3(b)及び第4図(a)〜(C)に
示すが、この場合数に溶出したモノマーシリカが大量に
沈澱物となることを示す。また、ホ゛ウケイ石から溶出
したC a ’もシリカの沈澱に吸着され、大量に水中
より抽出分離されることが判明した。
The measurement results are shown in Table 3(b) and FIGS. 4(a) to (C), which show that a large amount of the monomer silica eluted in this case becomes a precipitate. It was also found that Ca' eluted from borosilicate was also adsorbed to the silica precipitate and extracted and separated from water in large quantities.

表 4(b) (再現性:60分溶出) (全溶出量の調布 (再現性:30分溶出) 表−4の試験水は、表、 3−餉ンのものと同し く再現性:120分溶出) (4−3) 超音波溶出を行なった場合の溶出挙動と脱リン挙動を調
査するために、Nol、4.7及び8のホウケイ石と実
験4−1で用いた試験水を同じ割合で用いて、ホウケイ
石毎の脱リン挙動に安定性が見られるまで継続して繰り
返し処理を行なった。
Table 4 (b) (Reproducibility: 60 minute elution) (Adjustment of total elution amount (Reproducibility: 30 minute elution) (4-3) In order to investigate the elution behavior and dephosphorization behavior when ultrasonic elution is performed, the same test water used in Experiment 4-1 as No. 4.7 and 8 borosilicate was used. The treatment was continued and repeated until stability was observed in the dephosphorization behavior of each borosilicate.

実験結果を、表−4(a) 〜(C1及び第5図fat
 〜(C)に示ず。尚、本実験では繰り返し6回まで行
なったが、4回目以降でその挙動に安定(頃向が見られ
た。
The experimental results are shown in Tables 4(a) to (C1 and Figure 5 fat
- Not shown in (C). In this experiment, the experiment was repeated up to 6 times, but after the 4th time, the behavior stabilized (a change was observed).

また、本実験では30分(表−4(a)、第5図(a)
)、60分(表−4(b)、第5図(b))及び120
分く表4(C)、第5図(C))の処理時間毎に調査し
たが、何れの水準においても同様の安定1頃向が見られ
た。
In addition, in this experiment, 30 minutes (Table 4 (a), Figure 5 (a))
), 60 minutes (Table 4 (b), Figure 5 (b)) and 120 minutes
Investigations were conducted for each processing time shown in Table 4 (C) and Figure 5 (C)), and a similar stable trend around 1 was observed at all levels.

試験方法は前記と同様で、濾過水中の熔解シリカ熔解ア
ルミナ、熔解カルシウム(60分溶出と120分溶出の
3回目のみ)、T−P及びPHを測定した。但し30分
溶出ではT−Pのみ測定した。
The test method was the same as above, and dissolved silica, dissolved alumina, dissolved calcium (only the third time of 60-minute elution and 120-minute elution), TP, and PH in the filtered water were measured. However, in the 30 minute elution, only T-P was measured.

このように溶出挙動及び抽出・凝集能が安定的に行なわ
れるのは、用いる鉱物が多孔質であり、主成分がクリス
トバライトやトリジマイト、副成分が可溶性アルミナで
あることによる。また、物理的強制溶出手段は、超音波
振動の他磁気共振、機械的攪拌等如何なる方法であって
も可能である。
The reason why the elution behavior and extraction/coagulation ability are stable in this way is that the mineral used is porous, the main component is cristobalite or tridymite, and the subcomponent is soluble alumina. Further, as the physical forced elution means, any method such as ultrasonic vibration, magnetic resonance, mechanical stirring, etc. can be used.

実験5 その白の     °〜 について(5−1)
  磁気共振を利用した溶出実験1βのビーカーにホウ
ケイ石400g及び蒸溜水400mLLを入れ、これを
330ガウス、150ガウスの強度を持つマクネチソク
スクーラー上に置き、モーターを回転させて水平方向に
平均した磁場を与え、経時的にサンプリングを行い、P
Hを測定した。また、これと並行して磁場を与えない空
実験を行い、磁場共振による強制溶出が有効なことを確
認した。(ホウケイ石粒度は5〜15mm粒を使用した
。) (5−2)  機械的溶出実験 ステンレス金網で作ったドラム(90mmφ×250m
mL)に、ホウケイ石500g(8〜2mm粒)を入れ
、これを100mmφの半円筒状水槽に浸して、I R
/ m i nでゆっくり回転させ、表 5  囲気・機械的溶出) 表 6  @溶出) 経時的にPHを測定して機械的強制溶出の有効性を確認
した。
Experiment 5 About the white °~ (5-1)
Elution Experiment Using Magnetic Resonance 1 Put 400 g of borosilicate and 400 mL of distilled water into a β beaker, place it on a magnetic cooler with an intensity of 330 Gauss and 150 Gauss, and rotate the motor to average it horizontally. A magnetic field is applied, sampling is performed over time, and P
H was measured. In parallel, we conducted an empty experiment without applying a magnetic field, and confirmed that forced elution using magnetic field resonance was effective. (The borosilicate grain size used was 5 to 15 mm.) (5-2) Mechanical elution experiment A drum made of stainless wire mesh (90 mmφ x 250 m
mL), put 500 g of borosilicate (8 to 2 mm grains), immerse it in a semi-cylindrical water tank with a diameter of 100 mm, and
/min, and the effectiveness of forced mechanical elution was confirmed by measuring the pH over time.

両実験結果を、表−5及び第6図に示す。本実験におい
て、PHの動きを指標としたのは、以下の理由による。
The results of both experiments are shown in Table 5 and Figure 6. The reason why the movement of PH was used as an index in this experiment is as follows.

即ち、ホウケイ石はS i O2を主成分とし、副成分
としてAj!203を持つ。そしてこれらの溶出が起き
ると、先に述べた通り、 (S iOH)m +Ae+3= (−3i OH) m−n  ・(−3i O)r、A
I!+3+n H”の反応によりH+が生成する。よっ
て、溶出−反応の程度に比例して、PHが低下する。
That is, borosilicate has S i O2 as a main component and Aj! as a subcomponent. It has 203. When these elutions occur, as mentioned earlier, (S iOH)m +Ae+3= (-3i OH) m-n ・(-3i O)r, A
I! H+ is generated by the reaction of ``+3+n H''. Therefore, the pH decreases in proportion to the extent of the elution reaction.

簾 肥料用水滓粉(高炉水滓)を酸溶解して高濃度の熔解シ
リカ−アルミナ溶液を作成し、この少量を生活雑排水に
混合して抽出・凝集効果を確認した。
A highly concentrated fused silica-alumina solution was prepared by dissolving water slag powder for bamboo fertilizer (blast furnace water slag) in acid, and a small amount of this solution was mixed with gray water to confirm the extraction and flocculation effects.

水滓粉2gを秤取し、20 o mlポリビーカーに移
し入れ、これにH25O4(1: 9) 10011)
化を加えて超音波槽に入れ、熔解する。この場合、若干
の不熔解残渣(石英)があるが、実験にはその上澄液を
用いた。この上澄液成分はpH1,3で、溶解シリカ6
200ppm、熔解アルミナ2550ppm 、熔解カ
ルシウム7300ppmをそれぞれ含有している。
Weigh out 2 g of water starch powder, transfer it to a 20 o ml poly beaker, and add H25O4 (1:9) 10011) to it.
Add chlorine and place in an ultrasonic bath to melt. In this case, there was some unmelted residue (quartz), but the supernatant liquid was used in the experiment. This supernatant liquid component has a pH of 1.3 and contains dissolved silica 6.
200 ppm, 2,550 ppm of molten alumina, and 7,300 ppm of molten calcium.

生活排水11をビーカーに取り、上記上澄液(熔解シリ
カ−アルミナ液)2Iルを加え(500倍希釈)、10
分間、60R/分で攪拌し、60分静置して沈澱の熟成
と沈澱を行わせて、水中汚濁物質の抽出・凝集を行わせ
た。また、比較例としてPAC50ppmに相当(上澄
液2m1Ae2Q3に相当)を添加して並行テストした
。実験結果を、表−6及び第7図fan(PH及びT−
P)及び第7図(b) (COD、 T −N及びN 
H4)に示す。
Take domestic wastewater 11 into a beaker, add 2 Il of the above supernatant liquid (melted silica-alumina liquid) (500 times dilution),
The mixture was stirred at 60 R/min for 60 minutes and allowed to stand for 60 minutes to ripen and settle the precipitate, thereby extracting and flocculating the pollutants in the water. Further, as a comparative example, a parallel test was carried out by adding PAC equivalent to 50 ppm (corresponding to 2 ml of supernatant liquid Ae2Q3). The experimental results are shown in Table 6 and Figure 7 fan (PH and T-
P) and Figure 7(b) (COD, T -N and N
Shown in H4).

その結果、Al2O3単味(PAC)添加に比較して、
熔解シリカ−アルミナ液添加は、極めて有効であった。
As a result, compared to the addition of Al2O3 alone (PAC),
Addition of fused silica-alumina liquid was extremely effective.

これは、熔解シリカの特殊なイオン反応や七ノマーー重
合−集合−ゲル化と進行するシリカ挙動が、溶解物質の
抽出・凝集に大きく関与することを示している。
This indicates that the silica behavior, which progresses through special ionic reactions of fused silica and heptanomer polymerization, aggregation, and gelation, is greatly involved in the extraction and aggregation of dissolved substances.

但し、熔解シリカ−熔解アルミナ系水溶液は、熔解シリ
カのH+、OH−供与による重合進行の平衡点と見られ
るpH2,0に維持しても、シリカ重合−ゲル化は進行
して凝固に到る。また、pH1,1に調整した場合は無
水シリカの沈降が進行した。
However, even if the fused silica-fused alumina aqueous solution is maintained at a pH of 2.0, which is considered to be the equilibrium point for the progress of polymerization due to H+ and OH- donation of fused silica, silica polymerization and gelation will proceed and solidify. . Further, when the pH was adjusted to 1.1, precipitation of anhydrous silica progressed.

よって、本溶液の長期保存は困難であった。Therefore, long-term storage of this solution was difficult.

[発明の効果] 以上詳述したように、本発明は溶解シリカを含む水系中
にAI+3、又はFe+3或いはその両者を共存させて
溶解シリカの重合及びゲル化を促進させ、その過程中に
おいて熔解イオン類をシリカと結合させるとともに浮遊
物質をシリカ沈澱に吸着させることにより水と分離する
ものである。また、可溶性シリカや可溶性アルミナ等を
含む資材から物理的或いは化学的手段を用いて溶出させ
た熔解シリカと溶解アルミナ或いは溶解鉄を用いて熔解
シリカの重合−ゲル化をなさしめるものである。
[Effects of the Invention] As detailed above, the present invention promotes polymerization and gelation of dissolved silica by allowing AI+3 or Fe+3 or both to coexist in an aqueous system containing dissolved silica, and in the process, dissolves dissolved ions. This method separates suspended solids from water by combining them with silica and adsorbing suspended solids to silica precipitates. Further, the method involves polymerizing and gelling the fused silica using fused silica eluted from a material containing soluble silica, soluble alumina, etc. using physical or chemical means, and molten alumina or molten iron.

従って、 1、熔解イオン類や浮遊物質を直接結合或いは吸着させ
つつゲル化させるので、−次、二次或いは三次処理の工
程が不要であり、装置や操作が簡単になり、設備費、管
理の手間やコストが大幅に減少する。
Therefore, 1. Since dissolved ions and suspended solids are gelled while being directly bound or adsorbed, there is no need for secondary, secondary, or tertiary treatment steps, which simplifies equipment and operation, and reduces equipment costs and management. Labor and costs are significantly reduced.

2 特に、従来処理困難とされていたリンの除去が確実
に行なわれる。
2. In particular, phosphorus, which was conventionally considered to be difficult to treat, is reliably removed.

3、処理可能な対象水は、重金属イオンや溶解塩類を含
む化学工場や鉱業施設からの排水、生活排水や農業排水
、養魚池排水等各種の排水、更には硬水など極めて広範
囲であり、しかも略同様の方法で対処しうるため応用範
囲が広い。
3. The target water that can be treated is an extremely wide range, including wastewater from chemical factories and mining facilities containing heavy metal ions and dissolved salts, various types of wastewater such as domestic wastewater, agricultural wastewater, and fish pond wastewater, as well as hard water. It has a wide range of applications because it can be handled using similar methods.

4、用いる資材は、ホウケイ石等の鉱物や高炉水滓等安
価でしかも大量入手可能なものであり、且つ必要成分は
物理的或いは化学的手段で容易確実に溶出できるため、
極めて低コストである。
4. The materials used are inexpensive and available in large quantities, such as minerals such as borosilicate and blast furnace slag, and the necessary components can be easily and reliably eluted by physical or chemical means.
Extremely low cost.

また、農業排水等大量な被処理水の処理も容易に行える
Additionally, large amounts of water such as agricultural wastewater can be easily treated.

5、吸着剤、凝集剤、中和剤等を用いる化学処理、、や
生物処理をする必要がないため、二次的汚濁物質が水系
中に混入しない。また、スラッジの発生も少量であり、
これらに要する費用や手間が大幅に削減できる。
5. Since there is no need for chemical treatment using adsorbents, flocculants, neutralizers, etc. or biological treatment, secondary pollutants will not be mixed into the water system. In addition, the amount of sludge generated is small;
The cost and effort required for these can be significantly reduced.

6、従来のPAC,ばん上等アルミナ系や鉄系等の凝集
剤の場合と比較して、AI当量、Fe当量をはるかに越
える脱リン現象を生じ、またアルカリ処理では沈澱分離
できない微量の金属イオンを除去したり、微酸性水溶液
中では沈澱しにくいCa+2を沈澱除去したりすること
が可能である。
6. Compared to conventional PAC, alumina-based or iron-based flocculants, it causes a dephosphorization phenomenon that far exceeds the AI equivalent and Fe equivalent, and also removes trace amounts of metals that cannot be precipitated and separated by alkaline treatment. It is possible to remove ions and to precipitate and remove Ca+2, which is difficult to precipitate in a slightly acidic aqueous solution.

7、ゲル化したものは、沈澱分離或いは砂濾過等で容易
に水と分離でき、後処理が極めて簡単である。ゲル化物
は二次公害源にならず、場合によってはそのまま土壌改
良剤として用いられるし埋め立ててもよく、後処理の手
間やコストがかからない。
7. The gelled product can be easily separated from water by sedimentation, sand filtration, etc., and post-treatment is extremely simple. The gelled product does not become a source of secondary pollution, and in some cases can be used as a soil conditioner as is or even be buried in a landfill, eliminating the hassle and cost of post-treatment.

など、優れた利点を多々有する極めて有意義なものであ
る。
It is extremely meaningful and has many excellent advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は高濃度シリカ含有地熱水のPHの経時変
化を示すグラフ、同図(b)は同じく熔解シリカ濃度の
変化を示すグラフ、第2図は地熱水のPHと熔解シリカ
の溶解度との関係を示すグラフ、第3図(alは地下熱
水にA1°3或いはFeすを加えた場合の熔解シリカと
T−Pの濃度変化、同図fillは同じ<PHとカルシ
ウム及びZnの濃度の変化、同図(C1は同じ<pbと
As及びSSの濃度変化をそれぞれ示すグラフ、第4図
(a)はホウケイ石を浸漬して静置及び超音波振動を賦
与して溶出した熔解シリカの濃度変化、同図fb)は同
じく熔解アルミナの濃度変化、′同図(C1は同じ<T
−Pの濃度変化をそれぞれ示すグラフ、第5図は超音波
で成分を溶出したホウケイ石浸漬水の脱リン挙動の繰り
返し処理のグラフで同図(a)は30分処理、同図(b
lは60分、同図(C)は120分の繰り返し処理を示
し、第6図は磁石共振と機械的衝撃で成分を溶出させた
ホウケイ石浸漬水のPH変化を示すグラフ、第7図Ta
lは高濃度シリカ−アルミナ溶液を被処理水中に拡散し
た場合のp rr及び熔解シリカ濃度の変化を示すグラ
フ、同図山)は同じ<COD、T−N及びNH41度の
変化を示すグラフである。 第1回 (a) (b) 蒸2回 3 4 5 6 7 8 9 10  I+  12n 523− 88 ε 0 α  2 第6回 叢7回
Figure 1 (a) is a graph showing the change in PH of geothermal water containing high concentration silica over time, Figure 1 (b) is a graph showing the change in dissolved silica concentration, and Figure 2 is a graph showing the change in PH of geothermal water containing high concentration of silica. Graph showing the relationship between the solubility of silica, Figure 3 (al is the change in the concentration of dissolved silica and T-P when A1°3 or Fe is added to underground hot water, and the fill in the figure is the same <PH and calcium The same figure (C1 is a graph showing the same < pb and the concentration change of As and SS, respectively. Figure 4 (a) is a graph of borosilicate immersed, left standing, and subjected to ultrasonic vibration. The concentration change of eluted fused silica (fb in the same figure) is the same as the concentration change of fused alumina, '(C1 is the same < T
Figure 5 is a graph showing the dephosphorization behavior of borosilicate immersion water in which the components were eluted by ultrasonic waves. Figure 5 is a graph showing the repeated treatment of the dephosphorization behavior of borosilicate soaked water in which the components were eluted with ultrasonic waves.
l is 60 minutes, Figure (C) shows repeated treatment for 120 minutes, Figure 6 is a graph showing the PH change of borosilicate soaked water with components eluted by magnetic resonance and mechanical impact, Figure 7 Ta
l is a graph showing the change in prr and dissolved silica concentration when a high concentration silica-alumina solution is diffused into the water to be treated; be. 1st (a) (b) Steaming 2 times 3 4 5 6 7 8 9 10 I+ 12n 523- 88 ε 0 α 2 6th series 7 times

Claims (1)

【特許請求の範囲】 1、モノマーシリカを含む水系中にAl^+^3及び/
又はFe^+^3のイオンを共存させてモノマーシリカ
の重合及びゲル化を促進させ、その過程中において溶解
イオン類をシリカと結合させるとともに浮遊物質をシリ
カ沈澱に吸着させることを特徴とする水中混在物の抽出
・凝集方法。 2、PHが低下した段階で、OH^−を添加して近中性
微酸性にして更に重合を促進するものである請求項1記
載の水中混在物の抽出・凝集方法。 3、モノマーシリカを含む酸性水系中にOH^−を添加
して微酸性にすることによりモノマーシリカの重合及び
ゲル化を促進させ、その過程中において熔解イオン類や
浮遊物質をシリカと結合或いは吸着させることを特徴と
する水中混在物の抽出・凝集方法。 4、可溶性シリカと可溶性アルミナ及び/又は可溶性鉄
を含有する資材に水中で物理的手段を用いて可溶性シリ
カと可溶性アルミナ及び/又は可溶性鉄を強制溶出させ
、該溶出させたモノマーシリカの重合・ゲル化反応を進
行させる過程中において溶解イオン類や浮遊物質をシリ
カと結合或いは吸着させることを特徴とする水中混在物
の抽出・凝集方法。 5、可溶性シリカと可溶性アルミナ及び/又は可溶性鉄
を含有する資材から、化学的手段で可溶性シリカと可溶
性アルミナ及び/又は可溶性鉄を強制溶出させて極めて
高濃度の溶解シリカ−アルミナ及び/又は鉄含有溶液を
作成し、該溶液を比較的速やかに水中に拡散し微酸性下
でモノマーシリカの重合・ゲル化反応を行わせ、水中の
熔解イオン類や浮遊物質をシリカと結合或いは吸着させ
ることを特徴とする水中混在物の抽出・凝集方法。
[Claims] 1. Al^+^3 and/or in an aqueous system containing monomer silica
Or an underwater solution characterized by allowing Fe^+^3 ions to coexist to promote polymerization and gelation of monomer silica, and during the process, dissolve ions are combined with the silica and suspended substances are adsorbed to the silica precipitate. Method for extracting and aggregating contaminants. 2. The method for extracting and coagulating contaminants in water according to claim 1, wherein OH^- is added to make it near-neutral and slightly acidic to further promote polymerization at the stage when the pH has decreased. 3. By adding OH^- to an acidic aqueous system containing monomer silica to make it slightly acidic, polymerization and gelation of monomer silica is promoted, and during this process, dissolved ions and suspended substances are combined with or adsorbed to the silica. A method for extracting and coagulating contaminants in water. 4. Forcibly eluting soluble silica, soluble alumina, and/or soluble iron from a material containing soluble silica, soluble alumina, and/or soluble iron in water using physical means, and polymerizing/gelling the eluted monomer silica. A method for extracting and coagulating contaminants in water, which is characterized by combining or adsorbing dissolved ions and suspended substances with silica during the process of proceeding with a chemical reaction. 5. From materials containing soluble silica, soluble alumina, and/or soluble iron, soluble silica, soluble alumina, and/or soluble iron are forcibly eluted by chemical means to obtain extremely high concentrations of soluble silica containing alumina and/or iron. A feature of this method is to create a solution, diffuse the solution into water relatively quickly, and perform a polymerization/gelation reaction of monomer silica under slightly acidic conditions, thereby binding or adsorbing dissolved ions and suspended substances in the water with the silica. A method for extracting and coagulating contaminants in water.
JP13689889A 1989-05-29 1989-05-29 Extraction and aggregation of inclusion in water Pending JPH034985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13689889A JPH034985A (en) 1989-05-29 1989-05-29 Extraction and aggregation of inclusion in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13689889A JPH034985A (en) 1989-05-29 1989-05-29 Extraction and aggregation of inclusion in water

Publications (1)

Publication Number Publication Date
JPH034985A true JPH034985A (en) 1991-01-10

Family

ID=15186142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13689889A Pending JPH034985A (en) 1989-05-29 1989-05-29 Extraction and aggregation of inclusion in water

Country Status (1)

Country Link
JP (1) JPH034985A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170061669A (en) * 2014-09-22 2017-06-05 에프티유 게엠베하 Process for purifying fluids

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170061669A (en) * 2014-09-22 2017-06-05 에프티유 게엠베하 Process for purifying fluids
JP2017530861A (en) * 2014-09-22 2017-10-19 エフテーウー ゲゼルシャフト ミット ベシュレンクテル ハフツング フォルシュンク ウント テヒニシェ エントビクルンク イム ウムベルトシュツ Fluid purification method

Similar Documents

Publication Publication Date Title
Prabhu et al. A review on removal of heavy metal ions from waste water using natural/modified bentonite
Bourgeois et al. Treatment of drinking water residuals: comparing sedimentation and dissolved air flotation performance with optimal cation ratios
JP4183741B1 (en) Adsorption / coagulation wastewater treatment agent
Niu et al. Preparation and coagulation efficiency of polyaluminium ferric silicate chloride composite coagulant from wastewater of high-purity graphite production
US9242878B2 (en) Heavy metal removal from waste streams
US4402833A (en) Waste water treatment system for elemental phosphorous removal
CN102153176A (en) Attapulgite carrier flocculation water treatment agent and production method
Altaher et al. An agricultural waste as a novel coagulant aid to treat high turbid water containing humic acids
EP2792645B1 (en) Process for removing fluorides from water
JP2005503922A (en) Composition of substances and their use as flocculants and flocculants
CN103253725A (en) Method for removing organic matters in reclaimed water by using in situ FeOxHy
Hassan et al. Removal of boron from industrial wastewater by chitosan via chemical precipitation
JPH034985A (en) Extraction and aggregation of inclusion in water
JPH091131A (en) Water treatment system
RU2137717C1 (en) Method of removing copper ions from waste waters
Polasek et al. Optimisation of reaction conditions of particle aggregation in water purification-back to basics
RU2250877C1 (en) Method of natural and industrial wastewater purification
JPS61161191A (en) Treatment of heavy metal ion-containing solution
JP2001340873A (en) Treatment material for water containing heavy metals and water treatment method using the same
King et al. Recovery and reuse of coagulants from treatment of water and wastewater
KR20020092619A (en) Method for the physical and chemical coagulation and flocculation treatment water and wastewater using a slag and a fly ash
RU2675866C1 (en) Method of obtaining composition sorbent
BG61968B1 (en) Device for waste materials treatment and method for its preparation
JPH1043770A (en) Treatment of waste water containing suspended particle
JP3232429B2 (en) How to purify raw water for tap water