JPH0349452Y2 - - Google Patents

Info

Publication number
JPH0349452Y2
JPH0349452Y2 JP19275886U JP19275886U JPH0349452Y2 JP H0349452 Y2 JPH0349452 Y2 JP H0349452Y2 JP 19275886 U JP19275886 U JP 19275886U JP 19275886 U JP19275886 U JP 19275886U JP H0349452 Y2 JPH0349452 Y2 JP H0349452Y2
Authority
JP
Japan
Prior art keywords
reflecting mirror
sub
focal point
antenna device
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19275886U
Other languages
Japanese (ja)
Other versions
JPS6397909U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19275886U priority Critical patent/JPH0349452Y2/ja
Publication of JPS6397909U publication Critical patent/JPS6397909U/ja
Application granted granted Critical
Publication of JPH0349452Y2 publication Critical patent/JPH0349452Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は主としてマイクロ波帯通信あるいは
レーダ等に用いられるアンテナ装置に関するもの
で、さらに詳しく言えば回転放物面鏡と回転だ円
面鏡を有するオフセツトグレゴリアンアンテナの
改良に関するものである。
[Detailed explanation of the invention] [Industrial field of application] This invention mainly relates to antenna devices used in microwave band communication or radar, etc. More specifically, it uses a rotating parabolic mirror and a rotating ellipsoidal mirror. The present invention relates to an improvement of an offset Gregorian antenna having an offset Gregorian antenna.

〔従来の技術〕[Conventional technology]

第10図は従来のアンテナ装置の構成を示す図
であり、図において、1はF2を焦点としA1A1a
回転軸とする回転放物面の主反射鏡、2はF1
F2を共やく焦点としA2A2aを回転軸とする回転だ
円面の一部の副反射鏡、3はたとえば円錐ホーン
の一次放射器で、この一次放射器3の放射電波位
相中心は副反射鏡2の焦点の1つF1と一致して
いる。4は電波放射方向、5は主反射鏡1を支え
る架台、6aは主反射鏡1に対する副反射鏡2の
相対位置を定める調整機構A、6bは副反射鏡2
に対する一次放射器3の相対位置を定める調整機
構Bである。
FIG. 10 is a diagram showing the configuration of a conventional antenna device. In the figure, 1 is a main reflecting mirror of a paraboloid of revolution with F 2 as the focal point and A 1 A 1a as the rotation axis, 2 as F 1 and
The sub-reflector 3 is a part of a rotating ellipsoid with F 2 as the focal point and A 2 A 2a as the rotation axis, and 3 is, for example, a primary radiator of a conical horn, and the phase center of the radiated radio wave of this primary radiator 3 is It coincides with one of the focal points F 1 of the sub-reflector 2. 4 is the radio wave emission direction, 5 is a mount that supports the main reflector 1, 6a is an adjustment mechanism A that determines the relative position of the sub-reflector 2 with respect to the main reflector 1, and 6b is the sub-reflector 2
This is an adjustment mechanism B that determines the relative position of the primary radiator 3 with respect to the primary radiator 3.

従来のアンテナ装置は上記のように構成され、
これを送信アンテナとして考えた場合、一次放射
器3より放射される電波は、この一次放射器の放
射電波位相中心、すなわち焦点F1を中心とする
球面波として投射され、副反射鏡2で反射され、
焦点F2を経由し、さらに主反射鏡1で反射され
て4の方向へ至る。この回転放物面鏡(主反射鏡
1)と回転だ円面鏡(副反射鏡2)を用いたアン
テナ形式(オフセツトグレゴリアン形式)は、一
次放射器3から電波放射方向4に至る間で電波が
ブロツクされることなく構成可能で、このブロツ
クによるサイドローブの劣化とアンテナ開口面積
の減少がないから本質的に高能率かつ低サイドロ
ーブであり、設計自由度の大きなアンテナとして
近年重要なものになつてきている。
The conventional antenna device is configured as above,
When this is considered as a transmitting antenna, the radio waves radiated from the primary radiator 3 are projected as a spherical wave centered on the phase center of the radiated radio waves of this primary radiator, that is, the focal point F1 , and are reflected by the sub-reflector 2. is,
The light passes through the focal point F2 , is further reflected by the main reflecting mirror 1, and reaches the direction 4. This antenna type (offset Gregorian type) using a rotating parabolic mirror (main reflector 1) and a rotating ellipsoidal mirror (sub-reflector 2) is used from the primary radiator 3 to the radio wave emission direction 4. It can be constructed without blocking radio waves, and since there is no sidelobe deterioration or reduction in antenna aperture area due to this blocking, it is essentially a high efficiency and low sidelobe antenna, and has become important in recent years as an antenna with a large degree of design freedom. I'm getting used to it.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかるに、上記従来のアンテナ装置において低
サイドローブを実現させる際には、副反射鏡2と
一次放射器3との関係に考慮すべき点がある。す
なわち、第11図は副反射鏡2と一次放射器3を
上方より見た図であるが、焦点F1を含み電波放
射方向4に平行な面内で、図中破線で挟まれる範
囲に放射される電波は副反射鏡2で反射し主反射
鏡1に向かうが、破線の外側の領域では一次放射
器3から放射される電波が直接空間に向かうの
で、いわゆるスピルオーバーによつてサイドロー
ブ特性が悪化する。第12図はこのスピルオーバ
ーによるサイドローブ特性悪化を示す一例であ
り、図中破線で示す希望の特性に対して、方位角
約24〜60度の範囲でこれを越える特性値となつて
いる。
However, when realizing low side lobes in the conventional antenna device described above, there are some points to be considered in the relationship between the sub-reflector 2 and the primary radiator 3. That is, FIG. 11 is a view of the sub-reflector 2 and the primary radiator 3 seen from above, and radiation is emitted in the range between the broken lines in the figure in a plane that includes the focal point F1 and is parallel to the radio wave emission direction 4. The radio waves emitted from the primary radiator 3 are reflected by the sub-reflector 2 and directed toward the main reflector 1, but in the region outside the broken line, the radio waves emitted from the primary radiator 3 go directly into space, resulting in sidelobe characteristics due to so-called spillover. Getting worse. FIG. 12 is an example showing the deterioration of sidelobe characteristics due to this spillover, and the characteristic values exceed the desired characteristics shown by the broken line in the figure in the azimuth range of about 24 to 60 degrees.

このため低サイドローブを実現する手段とし
て、一次放射器の利得を増し副反射鏡の周囲にお
ける電波放射レベルを下げる、スピルオーバーが
無視できる範囲まで副反射鏡の周囲を延長する、
などの改善策がある。しかし、これらはいずれも
一次放射器あるいは副反射鏡の形状寸法の増大を
招き、また製作費も高くなるなどの問題点があ
り、特にアンテナとして利得最大かつ低サイドロ
ーブとするための障害となつていた。
Therefore, as a means to achieve low sidelobes, the gain of the primary radiator is increased, the radio wave radiation level around the sub-reflector is lowered, and the circumference of the sub-reflector is extended to a range where spillover can be ignored.
There are improvement measures such as: However, all of these methods have problems such as increasing the size of the primary radiator or sub-reflector and increasing manufacturing costs, which is particularly an obstacle to achieving maximum gain and low side lobes as an antenna. was.

この考案はかかる問題点を解決するためになさ
れたもので、形状寸法の増大なくして上記スピル
オーバーによるサイドローブ特性悪化を抑止し、
経済的なアンテナ装置を得ることを目的としてい
る。
This invention was made to solve this problem, and suppresses the deterioration of sidelobe characteristics due to the spillover without increasing the shape and size.
The purpose is to obtain an economical antenna device.

〔問題点を解決するための手段〕[Means for solving problems]

この考案に係るアンテナ装置は、副反射鏡の2
つの共やく焦点のそれぞれの近傍を頂点とし、副
反射鏡の周囲を導線にもつ2つの錐体の外包絡体
を内面とする遮蔽体を、一次放射器から副反射鏡
を経て主反射鏡の開口面に至る電波を遮蔽するこ
となく、一次放射器と副反射鏡の間に備えるもの
である。
The antenna device according to this invention has two sub-reflectors.
A shield whose inner surface is the outer envelope of two pyramids with apexes near each of the two focal points and a conducting wire around the sub-reflector is passed from the primary radiator through the sub-reflector to the main reflector. It is installed between the primary radiator and the sub-reflector without blocking the radio waves reaching the aperture.

〔作用〕[Effect]

この考案においては、遮蔽体が一次放射器から
副反射鏡以外に放射される電波を遮断するから、
スピルオーバーによるサイドローブ特性の悪化を
抑止する。
In this design, the shield blocks radio waves emitted from the primary radiator to areas other than the sub-reflector, so
Prevents deterioration of sidelobe characteristics due to spillover.

〔実施図〕[Implementation diagram]

第1図はこの考案の一実施例を示す全体図、第
2図は部分図、第3図は遮蔽体斜視図であり、1
〜6は上記従来装置と全く同一のものである。7
は遮蔽体で、副反射鏡2の共やく焦点のうち一方
の焦点F1の近傍の点T1を頂点とし副反射鏡2の
周囲を導線とする錐体8と、もう一方の焦点F2
もしくはその近傍の点T2を頂点とし副反射鏡2
の周囲を導線とする錐体9とがなす外包絡体を内
面形状とし、一次放射器3から副反射鏡2を経て
主反射鏡1に至る電波を遮蔽することがないよう
に、錐体8の側には開口10、錐体9の側には開
口11を有するものである。第4図と第5図はこ
の遮蔽体7を構成する錐体8と錐体9を板金加工
で製造する場合の各々の展開図である。
Fig. 1 is an overall view showing one embodiment of this invention, Fig. 2 is a partial view, and Fig. 3 is a perspective view of a shield.
6 to 6 are completely the same as the above-mentioned conventional device. 7
is a shielding body, which consists of a cone 8 whose apex is a point T 1 near one of the focal points F 1 of the sub-reflector 2 and a conductor around the sub-reflector 2, and the other focal point F 2
Or the sub-reflector 2 with the point T 2 in the vicinity as the apex
The outer envelope formed by the cone 9 with the conductor around the cone 9 is an inner surface shape, and the cone 8 It has an opening 10 on the side thereof and an opening 11 on the side of the cone 9. FIGS. 4 and 5 are exploded views of the cone 8 and cone 9 constituting the shield 7 when they are manufactured by sheet metal processing.

上記のように構成されたアンテナ装置におい
て、一次放射器3から副反射鏡2へ放射される電
波は第2図中に矢印を付した線の通りに遮蔽体7
の内部を伝搬し、副反射鏡2で反射され焦点F2
を経て主反射鏡1に至る。しかし、一次放射器3
から副反射鏡2以外へ放射される電波、つまり従
来装置においてスピルオーバーとなつた電波は遮
蔽体7の錐体9あるいは錐体8で遮断され、第6
図に示すようにサイドローブ特性の悪化が抑止で
きる。これは主反射鏡1、副反射鏡2および一次
放射器3の設計自由度を大きくとれることにな
る。また、この遮蔽体7は上記実施例で示したよ
うに、板金加工など安価な方法で製造できるの
で、一次放射器あるいは副反射鏡の形状変更によ
る改善よりはるかに経済的である。
In the antenna device configured as described above, the radio waves radiated from the primary radiator 3 to the sub-reflector 2 are directed to the shield 7 along the line marked with an arrow in FIG.
It propagates through the inside of F 2 and is reflected by the sub-reflector 2 to the focal point F 2
and then reaches the main reflecting mirror 1. However, the primary radiator 3
The radio waves radiated from the auxiliary reflector 2 to other than the sub-reflector 2, that is, the radio waves that became a spillover in the conventional device, are blocked by the cone 9 or the cone 8 of the shielding body 7, and
As shown in the figure, deterioration of sidelobe characteristics can be suppressed. This allows a greater degree of freedom in designing the main reflecting mirror 1, the sub-reflecting mirror 2, and the primary radiator 3. Further, as shown in the above embodiments, this shielding body 7 can be manufactured by an inexpensive method such as sheet metal processing, so it is much more economical than an improvement by changing the shape of the primary radiator or the sub-reflector.

なお上記実施例では遮蔽体7でスピルオーバー
となる電波を遮断したが、第7図に示すように遮
蔽体7の内面に電波吸収体、たとえばNi−Zn系
フエライトの微粉末入ゴム板12を装着しても同
様の効果を期待できる。
In the above embodiment, the shielding body 7 blocked radio waves that would spill over, but as shown in FIG. Similar effects can be expected.

さらに、第8図は遮蔽体7の一方の錐体9の開
口11に副反射鏡2の一方の焦点F2を中心とす
る誘電体の中空球冠13を設け、この中空球冠1
3の厚さを放射する電波の誘電体内波長の1/2と
したものであり、放射特性に影響を与えることな
く一次放射器3の内面と副反射鏡2を雪や異物の
付着に対して保護することができる。同様に第9
図は開口11に波長と較べて十分薄い誘電体薄膜
14を設けたものである。
Furthermore, in FIG. 8, a dielectric hollow spherical crown 13 is provided in the opening 11 of one cone 9 of the shielding body 7, and the hollow spherical crown 13 of dielectric material is centered on one focal point F2 of the sub-reflector 2.
The thickness of 3 is set to 1/2 of the wavelength within the dielectric of the emitted radio waves, and the inner surface of the primary radiator 3 and the sub-reflector 2 are protected from snow and foreign matter adhesion without affecting the radiation characteristics. can be protected. Similarly the 9th
The figure shows an aperture 11 provided with a dielectric thin film 14 that is sufficiently thin compared to the wavelength.

〔考案の効果〕[Effect of idea]

この考案は以上説明したとおり、2つの錐体の
外包絡体を内面とする遮蔽体を一次放射器と副反
射鏡の間に取り付けるという簡単な構造により、
スピルオーバーによるサイドローブ特性の悪化を
抑止し、特性良好なアンテナ装置を安価に実現で
きるという効果がある。
As explained above, this idea has a simple structure in which a shield whose inner surface is the outer envelope of two pyramids is attached between the primary radiator and the sub-reflector.
This has the effect of suppressing deterioration of sidelobe characteristics due to spillover and realizing an antenna device with good characteristics at a low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の一実施例を示す全体図、第
2図は部分図、第3図は遮蔽体の斜視図、第4図
と第5図は遮蔽体の展開図、第6図は放射特性
図、第7図と第8図および第9図はこの考案のさ
らに他の実施例を示す部分図、第10図は従来の
アンテナ装置を示す全体図、第11図は部分上面
図、第12図は放射特性図である。 図において、1は主反射鏡、2は副反射鏡、3
は一次放射器、4は電波放射方向、5は架台、6
は調整機構、7は遮蔽体、8と9は錐体、10と
11は開口、12は電波吸収体、13は中空球
冠、14は誘電体薄膜である。なお、各図中同一
符号は同一または相当部分を示す。
Figure 1 is an overall view showing one embodiment of this invention, Figure 2 is a partial view, Figure 3 is a perspective view of the shield, Figures 4 and 5 are developed views of the shield, and Figure 6 is a partial view. A radiation characteristic diagram, FIGS. 7, 8, and 9 are partial views showing still other embodiments of this invention, FIG. 10 is an overall view showing a conventional antenna device, and FIG. 11 is a partial top view. FIG. 12 is a radiation characteristic diagram. In the figure, 1 is the main reflecting mirror, 2 is the sub-reflecting mirror, and 3 is the main reflecting mirror.
is the primary radiator, 4 is the radio wave emission direction, 5 is the mount, 6
1 is an adjustment mechanism, 7 is a shield, 8 and 9 are cones, 10 and 11 are openings, 12 is a radio wave absorber, 13 is a hollow spherical crown, and 14 is a dielectric thin film. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】 (1) 回転放物面の主反射鏡と、この主反射鏡の焦
点を共やく焦点の1つとする回転だ円面の一部
の副反射鏡と、上記副反射鏡の他方の共やく焦
点を電波位相中心とする一次放射器とを備えた
アンテナ装置において、上記副反射鏡の2つの
共やく焦点のそれぞれの近傍を頂点とし、上記
副反射鏡の周囲を導線にもつ2つの錐体の外包
絡体を内面とする遮蔽体を、上記一次放射器か
ら上記副反射鏡を経て上記主反射鏡の開口面に
至る電波を遮蔽することがないように備えたこ
とを特徴とするアンテナ装置。 (2) 上記遮蔽体の内面に電波吸収体を装着したこ
とを特徴とする実用新案登録請求の範囲第(1)項
記載のアンテナ装置。 (3) 上記遮蔽体に、上記副反射鏡の主反射鏡側の
共やく焦点を中心とする誘電体の中空球冠を装
着したことを特徴とする実用新案登録請求の範
囲第(1)項または第(2)項記載のアンテナ装置。 (4) 上記遮蔽体の上記副反射鏡の主反射鏡側の共
やく焦点の近傍に誘電体薄膜を装着したことを
特徴とする実用新案登録請求の範囲第(1)項また
は第(2)項記載のアンテナ装置。
[Claims for Utility Model Registration] (1) A main reflecting mirror of a paraboloid of revolution, a sub-reflecting mirror of a part of an ellipsoid of revolution whose focal point is the focal point of this main reflecting mirror, and the above-mentioned sub-reflecting mirror. In an antenna device including a primary radiator whose radio wave phase center is at the other focal point of the secondary reflecting mirror, the vertices are located near the two focal points of the secondary reflecting mirror, and the periphery of the secondary reflecting mirror is A shielding body whose inner surface is the outer envelope of two pyramids of the conductor is provided so as not to block radio waves from the primary radiator to the aperture of the main reflecting mirror via the sub-reflecting mirror. An antenna device characterized by: (2) The antenna device according to claim (1) as a utility model, characterized in that a radio wave absorber is attached to the inner surface of the shield. (3) Utility model registration claim (1) characterized in that the shielding body is equipped with a dielectric hollow spherical crown centered on the focal point of the main reflecting mirror of the sub-reflecting mirror. or the antenna device described in paragraph (2). (4) Claims (1) or (2) of the utility model registration claim characterized in that a dielectric thin film is attached to the main reflecting mirror side of the sub-reflecting mirror of the shielding body, both near the focal point. Antenna device as described in section.
JP19275886U 1986-12-15 1986-12-15 Expired JPH0349452Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19275886U JPH0349452Y2 (en) 1986-12-15 1986-12-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19275886U JPH0349452Y2 (en) 1986-12-15 1986-12-15

Publications (2)

Publication Number Publication Date
JPS6397909U JPS6397909U (en) 1988-06-24
JPH0349452Y2 true JPH0349452Y2 (en) 1991-10-22

Family

ID=31148144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19275886U Expired JPH0349452Y2 (en) 1986-12-15 1986-12-15

Country Status (1)

Country Link
JP (1) JPH0349452Y2 (en)

Also Published As

Publication number Publication date
JPS6397909U (en) 1988-06-24

Similar Documents

Publication Publication Date Title
US4626863A (en) Low side lobe Gregorian antenna
US3332083A (en) Cassegrain antenna with offset feed
JPS6035844B2 (en) antenna
GB1600163A (en) Antenna structures
JPH0349452Y2 (en)
JPH06204737A (en) Dual reflecting mirror antenna system
US4356494A (en) Dual reflector antenna
JP2560819B2 (en) Double reflector antenna
JPS6158043B2 (en)
JPH02101804A (en) Antenna comprising three reflecting mirrors
JPS60157302A (en) Double reflector antenna
JP2687413B2 (en) Reflector antenna
JP2710416B2 (en) Elliptical aperture double reflector antenna
JP2687412B2 (en) Reflector antenna
JPH0347764B2 (en)
JPS604605B2 (en) Reflector antenna device
JPS63106207U (en)
JPH02150102A (en) Offset antenna
JPS60157303A (en) Double reflector antenna
JP2580225Y2 (en) Primary radiator for Cassegrain antenna
JPS5951769B2 (en) Low sidelobe antenna device
JPS63169803A (en) Antenna system
JPH01305704A (en) Offset antenna
JP2687415B2 (en) Reflector antenna
JPS5936443B2 (en) Folded horn reflector antenna device