JPH0349404A - Microstrip antenna - Google Patents

Microstrip antenna

Info

Publication number
JPH0349404A
JPH0349404A JP18492189A JP18492189A JPH0349404A JP H0349404 A JPH0349404 A JP H0349404A JP 18492189 A JP18492189 A JP 18492189A JP 18492189 A JP18492189 A JP 18492189A JP H0349404 A JPH0349404 A JP H0349404A
Authority
JP
Japan
Prior art keywords
circumference
conductor plate
disk
straight line
microstrip antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18492189A
Other languages
Japanese (ja)
Other versions
JP2536163B2 (en
Inventor
Shintaro Nakahara
中原 新太郎
Makoto Matsunaga
誠 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1184921A priority Critical patent/JP2536163B2/en
Publication of JPH0349404A publication Critical patent/JPH0349404A/en
Application granted granted Critical
Publication of JP2536163B2 publication Critical patent/JP2536163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To obtain a microstrip antenna for circular polarization with a wide and satisfactory elliptical polarization rate by forming a radiation conductor board in a shape for which recessed and projecting parts are provided on the circumference of a disk. CONSTITUTION:For the shape of a radiation conductor board 2, recessed parts 5 are provided on the circumference of parts, where the first straight line A-A' passing through the center of the disk crosses the circumference on this disk and projecting parts 6 are provided on the circumference of parts, where the second straight line B-B' orthogonally crossing with the line A-A' and passing through the center of the disk crosses the circumference of this disk. Such a radiation conductor board 2 is insulated from a ground conductor board 3, faced each other and almost parallelly arranged and prescribed angles are respectively formed to the two straight lines. Then, a feeding circuit 4 is provided with feeding points on the straight lines passing through the center of the disk. Accordingly, displacement from a resonance frequency f0, which is provided before the recessed parts 5 and projecting parts 6 with respective resonance frequencies fa and fb in two modes to be spatially orthogonal, can be made equal and small and the deviation of a frequency characteristic can be reduced for the amplitude and phase of radiative electric fields in two modes. Thus, the microstrip antenna can be obtained with the wide-band elliptical polarization rate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は円偏波用マイクロストリップアンテナに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a microstrip antenna for circularly polarized waves.

〔従来の技術〕[Conventional technology]

従来、この種の装置として、第8図に示すようなものが
あった。この図は特開昭6l−281704r 8HF
帯平面アンテナJに示されたもので、同図(a)は正面
図、同図(b)はX −X’における断面図である。図
において、(1)は誘電体基板、(2)は誘電体基板(
1)の一方の面に形成された放射導体板、(3)は誘電
体基板(1)の他方の面に形成された地導体板。
Conventionally, there has been a device of this type as shown in FIG. This figure is JP-A-6L-281704R 8HF
This figure is shown in the band planar antenna J, and FIG. 11A is a front view, and FIG. In the figure, (1) is a dielectric substrate, (2) is a dielectric substrate (
(1) is a radiation conductor plate formed on one side of the dielectric substrate (1), and (3) is a ground conductor plate formed on the other side of the dielectric substrate (1).

(4)は給電用ストリップ導体、(5)は放射導体板(
2)に設けられた凹部である。ここで、放射導体板(2
)の凹部(5)は円板の中心0を通るこの円板上の直線
A+ A/と円周が交差する部分の周上に設けられたも
のである。また、給電用ストリップ導体(4)は、直線
A −A’と45°の角度をなし、0を通る上記放射導
体板(2)上の直線上の点Fから給電するように上記放
射導体板(2)と接続されている。なお、給電用ストリ
ップ導体(4)は地導体板(3)とともにマイクロスト
リップ線路を構成する。
(4) is the feed strip conductor, (5) is the radiation conductor plate (
2). Here, the radiation conductor plate (2
) is provided on the circumference of the portion where the circumference intersects the straight line A+A/ on this disk passing through the center 0 of the disk. Further, the power feeding strip conductor (4) forms an angle of 45° with the straight line A-A', and is arranged on the radiation conductor plate so that power is supplied from a point F on the straight line passing through 0 on the radiation conductor plate (2). (2) is connected. Note that the power feeding strip conductor (4) constitutes a microstrip line together with the ground conductor plate (3).

とこで9通常の直線偏波を励振するマイクロストリップ
アンテナの動作について説明する。
Now, the operation of a microstrip antenna that excites normal linearly polarized waves will be explained.

第9図はマイクロストリップアンテナの動作を絞明する
ための図であ!I、(21は方向性のない円板からなる
放射導体板、(4)は給電用ス) IJツブ導体である
。マイクロストリップ線路を伝搬してきた電波はマイク
ロストリップアンテナを励振する。
Figure 9 is a diagram to clarify the operation of the microstrip antenna! I, (21 is a radiating conductor plate made of a disc with no directionality, (4) is a power feeding space) IJ tube conductor. The radio waves propagating through the microstrip line excites the microstrip antenna.

同図(a)はマイクロストリップアンテナの放射導体板
(4)上を流れる主要な共振電流の方向を矢印で示して
おり、この時、マイクロストリップアンテナでは同図(
b)に示すような入力インピーダンス特性を持ち、同図
(C)に示すような等価回路で表わされる。これより、
同図(kl)に示すように共振周波数f。
Figure (a) shows the direction of the main resonant current flowing on the radiation conductor plate (4) of the microstrip antenna with arrows.
It has an input impedance characteristic as shown in b), and is represented by an equivalent circuit as shown in FIG. Than this,
As shown in the figure (kl), the resonance frequency f.

よりも低い周波数では誘導性、foよシも高い周波数で
は容量性インピーダンス特性を示す。また。
It exhibits inductive impedance characteristics at frequencies lower than , and capacitive impedance characteristics at frequencies higher than FO. Also.

同図(c)では放射抵抗Hに流れる電流は、共振周波数
よりも低い周波数ではインダクタンスLが並列に接続さ
れるた′め進み、共振周波数よシも高い周波数ではキャ
パシタンスCが並列に接続されるため遅れる。従って、
このマイクロストリップアンテナを周波数f0で励振す
れば放射導体板(2)から直線偏波を放射する。
In the same figure (c), the current flowing through the radiation resistor H advances because the inductance L is connected in parallel at frequencies lower than the resonant frequency, and the capacitance C is connected in parallel at frequencies higher than the resonant frequency. I'm late because of this. Therefore,
When this microstrip antenna is excited at frequency f0, linearly polarized waves are radiated from the radiation conductor plate (2).

次に第8図に示した円偏波用マイクロストリップアンテ
ナの円偏波発生に係る動作について説明する。
Next, the operation of the circularly polarized wave microstrip antenna shown in FIG. 8 related to circularly polarized wave generation will be explained.

第10図は第8図中の点Fから給電した時の放射導体板
(2)上を流れる電流の方向を示す図であり。
FIG. 10 is a diagram showing the direction of current flowing on the radiation conductor plate (2) when power is supplied from point F in FIG. 8.

(21、(4) 、 (51は第8図と同一のものを示
しており。
(21, (4), (51 indicates the same thing as in Figure 8.

電流の方向は矢印で示している。なお、直線B−ゾは中
心0を通り、直線A −A’と直交する直線である。同
図(a)は放射導体板(2)上を流れる主要な電流の方
向を示す。この1流は空間的に直交する二つのモードa
とbに分けて考えることができ、同図(b)(C)はそ
れぞれモードa、モードbの主要な電流の方向であシ、
モードaは直線A −A’方向、モードbは直線B −
B’力方向ある。上記のようにモードaとモードbに分
けて考えると、モードaの共振周波数faは放射導体板
(2)に凹部(5)が設けられているため、モードbの
共振周波数fbよシも高くなる。なお、モードbの共振
周波数は放射導体板(2)に凹部を設ける前の円板状の
場合と同じでおシ、ここではfb= f□ とする。
The direction of current flow is indicated by an arrow. Note that the straight line B-zo passes through the center 0 and is orthogonal to the straight line A-A'. Figure (a) shows the direction of the main current flowing on the radiation conductor plate (2). This first flow consists of two spatially orthogonal modes a
(b) and (c) in the same figure are the main current directions of mode a and mode b, respectively.
Mode a is in the straight line A-A' direction, mode b is in the straight line B-
B'There is a force direction. Considering mode a and mode b separately as above, the resonant frequency fa of mode a is higher than the resonant frequency fb of mode b because the recess (5) is provided in the radiation conductor plate (2). Become. Note that the resonance frequency of mode b is the same as in the case of the disc-shaped radiation conductor plate (2) before the recess is provided, and here it is assumed that fb=f□.

第11図に上記の共振周波数fa及び共振周波数fbで
共振する場合の円偏波用マイクロストリップアンテナの
入力インピーダンス特性を示す。
FIG. 11 shows the input impedance characteristics of the circularly polarized microstrip antenna when it resonates at the above-mentioned resonant frequency fa and resonant frequency fb.

図において、破線は共振周波数faのモードaの特性を
示し、実線は共振周波数f1)のモードbの特性を示す
。これよp 、  fl) < f < fa  なる
周波数fにおいてモードaの位相は進み、モードbの位
相は遅れる。ここで、放射導体板(2)に設ける凹部(
5)の面積を適当に設計することにより共振周波数fa
のfb (= fo)からの変位を調整することができ
、モードa及びモードbの放射電界の振幅が等しくなる
周波数fgにおけるモードa及びモードbの放射電界の
位相をそれぞれ+45°、−45°とすることができる
。すなわち、第11図においてモードa及びモードbの
実部が等しく、かつ、モードa及びモードbの虚部がそ
れぞれ+〒、−7となる周波数tlが得られる。このよ
うに設計されだ凹部(5)を備えたマイクロストリップ
アンテナではモードaとモードbの放射電界の振幅が等
しくなり、かつ、モードaとモードbの放射電界の間に
90°の位相差が生じるため、第8図に示した円偏波用
マイクロストリップアンテナにおいて、直線A −A’
と直線B−プと45°の角度をなし、中心0を通る直線
上の点Fから周波数fgで給電すると円偏波を放射する
In the figure, the broken line shows the characteristics of mode a of the resonant frequency fa, and the solid line shows the characteristics of the mode b of the resonant frequency f1). At a frequency f such that p, fl) < f < fa, the phase of mode a advances and the phase of mode b lags. Here, the recess (
5) By appropriately designing the area of
The displacement from fb (= fo) can be adjusted, and the phases of the radiated electric fields of mode a and mode b at frequency fg, where the amplitudes of the radiated electric fields of mode a and mode b are equal, are adjusted to +45° and -45°, respectively. It can be done. That is, in FIG. 11, a frequency tl is obtained in which the real parts of mode a and mode b are equal and the imaginary parts of mode a and mode b are +7 and -7, respectively. In the microstrip antenna with the recess (5) designed in this way, the amplitudes of the radiated electric fields of mode a and mode b are equal, and there is a phase difference of 90° between the radiated electric fields of mode a and mode b. Therefore, in the circularly polarized microstrip antenna shown in Fig. 8, the straight line A-A'
makes an angle of 45° with straight line B, and when power is supplied at frequency fg from point F on the straight line passing through center 0, it emits circularly polarized waves.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような円偏波用マイクロストリップアンテナでは
、入力インピーダンスの広帯域化をはかり、かつ、放射
効率を向上するため、誘電体基板(1)を厚くしたり、
低誘電率の誘電体基板を用いたシすると、モードaとモ
ードbの放射電界の振幅と位相の周波数特性が小さくな
る。すなわち、上記第11図に示した入力インピーダン
ス特性において、実部曲線の山はなだらかになり、虚部
曲線の傾斜は寝てくる。従って、上記のととく円偏波を
放射する周波数fo′を設定するためには、放射導体板
(2)に設ける凹部(5)の面積を大きクシ、モードa
の共振周波数で。のfb (=fo)からの変位を大き
くする必要がある。このため、モードaとモードbの放
射′1界の振幅と位相の周波数特性の対称性が大きくず
れ、楕円偏波率の周波数特性が狭帯域となシ、広帯域な
日偏波用マイクロストリップアンテナが得られないとい
う問題点があった。
In the circularly polarized microstrip antenna described above, in order to widen the input impedance band and improve radiation efficiency, the dielectric substrate (1) is made thicker,
When a dielectric substrate with a low dielectric constant is used, the frequency characteristics of the amplitude and phase of the radiated electric fields in mode a and mode b become small. That is, in the input impedance characteristic shown in FIG. 11 above, the peak of the real part curve becomes gentle, and the slope of the imaginary part curve becomes flat. Therefore, in order to set the frequency fo' for radiating the above-mentioned circularly polarized waves, the area of the recess (5) provided in the radiation conductor plate (2) should be made large, and the area of the recess (5) should be made large.
at the resonant frequency of. It is necessary to increase the displacement of fb (=fo). For this reason, the symmetry of the frequency characteristics of the amplitude and phase of the radiation '1 field of mode a and mode b is greatly shifted, and the frequency characteristics of the elliptical polarization are narrowband. There was a problem in that it was not possible to obtain

この発明は上記のような問題点を解決するためになされ
たもので、広帯域な楕円偏波率を有する円偏波用マイク
ロストリップアンテナを得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain a microstrip antenna for circularly polarized waves having a broadband elliptically polarized wave ratio.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係わるマイクロストリップアンテナは9円板
の中心を通るこの円板上の第1の直線と円周が交差する
部分の周上に凹部を設け、かつ。
The microstrip antenna according to the present invention has a recessed portion on the circumference of the portion where the circumference intersects the first straight line on the disk passing through the center of the nine disks.

上記第1の直線と直交し、上記円板の中心を通るこの円
板上の第2の直線と円周が交差する部分の周上に凸部を
設けた形状の放射導体板と地導体板とを絶縁して対向さ
せ、略平行に配置し、上記第1の直線と第2の直線に対
してそれぞれ所定の角度をなし、上記円板の中心を通る
直線上に給電点を有する給電回路を設けたものである。
A radiation conductor plate and a ground conductor plate each having a shape in which a convex portion is provided on the circumference of a portion where the circumference intersects with a second straight line on this disk that is orthogonal to the first straight line and passes through the center of the disk. a power feeding circuit which is insulated and opposed to each other and arranged substantially parallel, each forming a predetermined angle with respect to the first straight line and the second straight line, and having a feeding point on a straight line passing through the center of the disk; It has been established.

〔作用〕[Effect]

この発明においては、放射導体板に凹部を設けるととも
に、凸部を設けることによシ、空間的に直交する二つの
モードa、  bそれぞれの共振周波数fa+’l)の
放射導体板に凹部及び凸部を設ける前の共振周波数fo
からの変位を等しく、かつ。
In this invention, by providing a concave portion and a convex portion in the radiation conductor plate, the concave portion and the convex portion are provided in the radiation conductor plate for the resonance frequencies fa+'l) of the two spatially orthogonal modes a and b. The resonant frequency fo before the
Equal displacement from and.

小さくシ、モードaとモードbの放射電界の振幅と位相
の周波数特性の対称性のずれを小さくする。
This reduces the symmetry deviation of the frequency characteristics of the amplitude and phase of the radiated electric fields of mode a and mode b.

〔実施例〕〔Example〕

第1図はこの発明の一実施例の円偏波用マイクロストリ
ップアンテナの構成を示す図であ)、同図(a)は正面
図、同図(b)は同図(a)のX−X〆における断面図
である。図において、(1)〜(5)は第4図と同一で
あり、(6)は直線A −A’と直交し、Oを通る放射
導体板(2)上の直線B −B’と円周が交差する部分
の周上に設けられた凸部である。
FIG. 1 is a diagram showing the configuration of a circularly polarized microstrip antenna according to an embodiment of the present invention), FIG. 1(a) is a front view, and FIG. 1(b) is an X- It is a cross-sectional view at X〆. In the figure, (1) to (5) are the same as in FIG. This is a convex portion provided on the circumference of the portion where the circumferences intersect.

次に動作について説明する。Next, the operation will be explained.

第1図(a)中の点?から給電すると、第6図に示した
従来例の動作の場合と同様に考えることができ、放射導
体板(2)上を流れる#を流の方向は第2図に示すよう
Kなる。第2図(a)は放射導体板(2)上を流れる主
要な電流の方向を矢印で示す図であり。
The point in Figure 1(a)? When power is supplied from the radiating conductor plate (2), the operation can be considered in the same manner as the conventional example shown in FIG. 6, and the direction of the flow of # flowing on the radiation conductor plate (2) becomes K as shown in FIG. FIG. 2(a) is a diagram showing by arrows the direction of the main current flowing on the radiation conductor plate (2).

同図(b)(c)は空間的に直交するモードaとモード
bの主要な電流の方向を矢印で示す図である。ここで、
放射導体板(2)に凹部(5)及び凸部(6)を設ける
前の共振周波数をfo  とすると、モードaの共振周
波数faは放射導体板(2)に凹部(5)が設けられて
いるためfo  よりも高くなり、また、モードbの共
振周波数fbは放射導体板(2)に凸部(6)が設けら
れているためfo  よシも低くなる。そこで、放射導
体板(2)の凹部(5)と凸部(6)の面積を適当に設
計すると、従来の技術の項において第1図を用いて説明
したのと同様に、モードaとモードbの入力インビーダ
ンス特性において、  fl) (f (fa  とな
る周波数fにおけるモードaとモードbの実部を等しく
、かつ虚部をそれぞれ十−1−1とするようにでき、第
1図に示した円偏波用マイクロストリップアンテナでは
上記周波数fで給電すると円偏波を放射する。このよう
な状態における入力インピーダンス特性を第3図に示す
。上記の場合に。
Figures (b) and (c) are diagrams in which arrows indicate the main current directions of mode a and mode b, which are spatially orthogonal. here,
If the resonant frequency before the recess (5) and the protrusion (6) are provided on the radiation conductor plate (2) is fo, then the resonant frequency fa of mode a is The resonant frequency fb of mode b is also lower than fo because the projection (6) is provided on the radiation conductor plate (2). Therefore, if the areas of the concave portion (5) and convex portion (6) of the radiation conductor plate (2) are designed appropriately, mode a and mode In the input impedance characteristic of b, the real parts of mode a and mode b at the frequency f which becomes fl) The microstrip antenna for circularly polarized waves shown in Figure 3 radiates circularly polarized waves when fed at the above frequency f.The input impedance characteristics in such a state are shown in Figure 3.In the above case.

さらに、放射導体板(2)の凹部(5)と凸部(6)の
面積をほぼ等しく設定することにより、共振周波数fa
とfbのfoからの変位をほぼ等しくでき、第4図に示
す入力インピーダンス特性のように対称性の良い入力イ
ンピーダンス特性を実現できる。なお、放射導体板(2
)の元の形状が円形であシ、良好な対称性が得られる。
Furthermore, by setting the areas of the concave part (5) and the convex part (6) of the radiation conductor plate (2) to be approximately equal, the resonant frequency fa
The displacements of and fb from fo can be made almost equal, and a highly symmetrical input impedance characteristic as shown in FIG. 4 can be realized. In addition, the radiation conductor plate (2
) is circular, resulting in good symmetry.

従って、この円偏波用マイクロストリップアンテナでは
入力インピーダンスの広帯域化をはかシ、かつ、放射効
率を向上する場合にも、放射導体板(2)の凹部(5)
の面積のみならず凸部(6)の面積をも合わせて調整す
ることによシ自由度が増し、共振周波数faとfbのf
oからの変位を等しく、かつ、小さくでき、モードaと
モードbの放射電界の振幅と位相の周波数特性の対称性
のずれを小さくできるので、広い周波数帯域にわた)良
好な楕円偏波率を有する効果がある。
Therefore, in this circularly polarized wave microstrip antenna, when widening the input impedance band and improving radiation efficiency, the recess (5) of the radiation conductor plate (2)
By adjusting not only the area of the convex portion (6) but also the area of the convex portion (6), the degree of freedom is increased, and the f of the resonance frequencies fa and fb is adjusted.
Since the displacement from o can be made equal and small, and the deviation in the symmetry of the frequency characteristics of the amplitude and phase of the radiated electric fields of mode a and mode b can be reduced, it is possible to achieve a good elliptical polarization ratio over a wide frequency band. It has the effect of having

なお、上記実施例では給1を放射導体板(2)と同じ誘
電体基板(1)面上に給電用ス) IJツブ導体(4)
を設けて形成したマイクロストリップ線路から行なう構
成のものを示したが、給電のための構造はこれに限らず
、トリプレート形ストリップ線路からの給′1.同軸線
路からのピン接続による給電、または、マイクロストリ
ップ線路からのスロット結合による給電などの構造とし
ても良く、上記の動作説明と同様にして円偏波を放射す
る円偏波用マイクロストリップアンテナか実現でき、上
記と同様の効果を有する。以下に上記構造の実施例を図
について説明する。なお、それぞれの動作は重複するた
め省略する。
In the above embodiment, the power supply 1 is placed on the same surface of the dielectric substrate (1) as the radiation conductor plate (2).
Although a configuration is shown in which the power supply is performed from a microstrip line formed by providing a power supply, the structure for power supply is not limited to this, and the power supply from a triplate type strip line '1. It is also possible to have a structure in which power is fed by pin connection from a coaxial line or by slot coupling from a microstrip line, and a microstrip antenna for circularly polarized waves that emits circularly polarized waves can be realized in the same way as the operation explanation above. and has the same effect as above. Examples of the above structure will be described below with reference to the drawings. Note that each operation is redundant and will therefore be omitted.

第5図はこの発明の第2の実施例の円偏波用マイクロス
トリップアンテナの構成を示す図であり。
FIG. 5 is a diagram showing the configuration of a circularly polarized microstrip antenna according to a second embodiment of the present invention.

同図(a)は正面図、同図(1))はX−X’における
断面図である。図において、(2)及び(4)〜(6)
は第1図と同一のもの、 (Ia)は第1の薄膜基板、
(1b)は第1の発泡誘電体基板、 (1c)は第2の
薄膜基板* (1d)は第2の発泡誘電体基板* (”
)は第1の地導体板。
Figure (a) is a front view, and figure (1)) is a sectional view taken along line XX'. In the figure, (2) and (4) to (6)
is the same as in Fig. 1, (Ia) is the first thin film substrate,
(1b) is the first foam dielectric substrate, (1c) is the second thin film substrate* (1d) is the second foam dielectric substrate* (”
) is the first ground conductor plate.

(3b)は第2の地導体板、(7)は第1の地導体板(
3a)に放射導体板(2)からの放射電波を取シ出すよ
う設けられた放射用孔である。ここで、同図(b)に示
すように放射導体板(2)は第2の薄膜基板(1C)の
一方の面に設けられ、これと同一面上に給電用ストリッ
プ導体(4)も設けられている。また、第1の薄膜基板
(1a)には一方の面に放射用孔(7)をそなえた第1
の地導体板(3a)が設けられ、第1の薄膜基板(1a
)と第2の薄膜基板(1C)は第1の発泡誘電体基板(
1b)を挟んで同図(b)に示すように積層されている
。さらに、第2の発泡誘電体基板(1d)を介して第2
の薄膜基板(1c)と略平行に第2の地導体板(3b)
が設けられている。この実施例においては。
(3b) is the second ground conductor plate, (7) is the first ground conductor plate (
3a) is a radiation hole provided to take out radiated radio waves from the radiation conductor plate (2). Here, as shown in the same figure (b), the radiation conductor plate (2) is provided on one surface of the second thin film substrate (1C), and the power supply strip conductor (4) is also provided on the same surface. It is being Further, the first thin film substrate (1a) has a first thin film substrate (1a) provided with a radiation hole (7) on one surface.
A ground conductor plate (3a) is provided, and a first thin film substrate (1a) is provided.
) and the second thin film substrate (1C) are the first foam dielectric substrate (
1b), and are stacked as shown in FIG. 1(b). Furthermore, a second foamed dielectric substrate (1d) is
A second ground conductor plate (3b) is placed approximately parallel to the thin film substrate (1c).
is provided. In this example.

給電用ストリップ導体(4)は第1及び第2の地導体板
(3a)(3b)と組み合わさり、トリプレート形スト
リップ線路を構成する。このためマイクロストリップア
ンテナを平面的に構成でき、かつ、給電用ストリップ導
体(4)からの不要放射を抑制し、損失及び放射パター
ンの乱れを小さくできる効果がある。また、給電用スト
リップ導体と第1及び第2の地導体板(3a) (3b
)間を第1及び第2の発泡誘電体基板(1b)(1d)
としているため、低損失なトリプレート形ストリップ線
路を形成できる効果がある。
The feed strip conductor (4) is combined with the first and second ground conductor plates (3a) (3b) to form a triplate strip line. Therefore, the microstrip antenna can be configured in a planar manner, and there is an effect that unnecessary radiation from the power feeding strip conductor (4) can be suppressed, and loss and disturbance of the radiation pattern can be reduced. In addition, the power supply strip conductor and the first and second ground conductor plates (3a) (3b
) between the first and second foam dielectric substrates (1b) (1d)
Therefore, it is possible to form a low-loss triplate strip line.

さらに、誘′屯体として薄膜基板(1a)(1c)と発
泡誘電体基板(1b)(1a)を積層して用いるため、
きわめて安価にできる効果がある。なお9発泡誘電体基
板(1b)(1d)の代わシに空気層としても良い。
Furthermore, since thin film substrates (1a) (1c) and foamed dielectric substrates (1b) (1a) are used as dielectric bodies,
It has the effect of being extremely inexpensive. Note that an air layer may be used instead of the foamed dielectric substrates (1b) and (1d).

第6図はこの発明の第3の実施例の円偏波用マイクロス
トリップアンテナの構成を示す図であシ。
FIG. 6 is a diagram showing the configuration of a circularly polarized microstrip antenna according to a third embodiment of the present invention.

同図(a)は正面図、同図(b)はX−1’における断
面図である。図において、(1)〜(3)及び+51 
、 +61は第1図と同一のものであり、(8)は給電
用同軸線路、(9)は給電用同軸線路(8)の内導体、
α1は外導体である。
Figure (a) is a front view, and figure (b) is a sectional view taken along line X-1'. In the figure, (1) to (3) and +51
, +61 are the same as in Figure 1, (8) is the coaxial line for power feeding, (9) is the inner conductor of the coaxial line for power feeding (8),
α1 is an outer conductor.

ここで、給電用同軸線路(8)は地導体板(3)側から
誘電体基板(1)を貫通し、内導体(9)は放射導体板
(2)内部の点Fで放射導体板(2)に接続され、外導
体a〔は地導体板(3)に接続されている。なお2点F
は放射導体板(2)上の直線A −A’と直線B−B’
とそれぞれ45°をなし、中心0を通る直線上の点であ
る。この実施例においては、放射導体板(2)の内部の
点Pから給電できるので、給電回路とマイクロストリッ
プアンテナのインピーダンス整合が容易となる。
Here, the power feeding coaxial line (8) passes through the dielectric substrate (1) from the ground conductor plate (3) side, and the inner conductor (9) connects to the radiation conductor plate (2) at point F inside the radiation conductor plate (2). 2), and the outer conductor a is connected to the ground conductor plate (3). In addition, 2 points F
are the straight line A-A' and the straight line B-B' on the radiation conductor plate (2)
and 45 degrees, respectively, and are points on a straight line passing through the center 0. In this embodiment, since power can be fed from a point P inside the radiation conductor plate (2), impedance matching between the feed circuit and the microstrip antenna is facilitated.

第1図はこの発明の第4の実施例の円偏波用マイクロス
トリップアンテナの構成を示す図であり。
FIG. 1 is a diagram showing the configuration of a circularly polarized microstrip antenna according to a fourth embodiment of the present invention.

同図(a)は正面図、同図(1))はX −X’におけ
る断面図である。図において、(1)〜(3)及び(5
1、+61は第1図と同一のものであシ、αυは放射導
体板(2)上の直線ムーへ′及び直線B −B’とそれ
ぞれ45°をなす直線a −c’を対称軸とする地導体
板(3)上に設けられたスロツ)、Q3は地導体板(3
)の一方の面に設けられた第2の誘電体基板、αjは第
2の誘電体基板aa上に設けられたストリップ導体、α
番はストリップ導体0と第2の誘電体基板α擾と地導体
板(3)で形成されるマイクロストリップ線路である。
Figure (a) is a front view, and figure (1)) is a sectional view taken along line X-X'. In the figure, (1) to (3) and (5
1 and +61 are the same as in Fig. 1, and αυ is the axis of symmetry of the straight line a-c' which makes an angle of 45° with the straight line Mu' and the straight line B-B' on the radiation conductor plate (2). slot provided on the ground conductor plate (3), Q3 is the slot provided on the ground conductor plate (3)
), αj is a strip conductor provided on the second dielectric substrate aa, α
Number 1 is a microstrip line formed by a strip conductor 0, a second dielectric substrate α, and a ground conductor plate (3).

ここで、このマイクロストリップ線路Iはスロット0υ
と結合するように配置されており、マイクロストリップ
線路Iから給電された電波はスロットαυを介して放射
導体板(2)と地導体板(3)から成る放射素子を励振
し1円偏波を放射させる。この実施例においては、ス)
 IJツブ導体α違が地導体板(3)により放射導体板
(2)と遮へいされるため、ストリップ導体0からの不
要放射の影響を抑圧でき、かつ、平面構成にできる利点
がある。なお、上記マイクロス) IJツブ線路04に
かえて、トリプレート形ストリップ線路を用いた構造と
しても良いことは自明である。
Here, this microstrip line I has a slot 0υ
The radio wave fed from the microstrip line I excites the radiating element consisting of the radiating conductor plate (2) and the ground conductor plate (3) through the slot αυ to generate 1 circularly polarized wave. Let it radiate. In this example,
Since the IJ tube conductor α difference is shielded from the radiation conductor plate (2) by the ground conductor plate (3), there is an advantage that the influence of unnecessary radiation from the strip conductor 0 can be suppressed and a planar configuration can be achieved. Note that it is obvious that a structure using a triplate strip line may be used instead of the IJ tube line 04 (Micros).

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば1円偏波用マイクロス
トリップアンテナの放射導体板を5円板の中心を通るこ
の円板上の第1の直線と円周が交差する部分の周上に凹
部を設け、かつ、上記第1の直線と直交し、上記円板の
中心を通るこの円板上の第2の直線と円周が交差する部
分の周上に凸部を設けた形状とすることによシ、上記第
1の直線に沿う方向と上記第2の直線に沿う方向に対応
する空間的に直交する二つのモードa、  bの入力イ
ンピーダンス特性を対称的なものにでき、また。
As described above, according to the present invention, the radiation conductor plate of the microstrip antenna for circularly polarized waves is placed on the circumference of the part where the circumference intersects the first straight line on this disk passing through the center of the disk. A concave portion is provided, and a convex portion is provided on the circumference of a portion where the circumference intersects with a second straight line on this disk that is orthogonal to the first straight line and passes through the center of the disk. In particular, the input impedance characteristics of the two spatially orthogonal modes a and b corresponding to the direction along the first straight line and the direction along the second straight line can be made symmetrical.

モードa、  bの共振周波数’aeft)の1日偏波
を得るために必要な、放射導体板に凹部及び凸部を設け
る前の共振周波数fOからの変位を等しく。
Equal the displacement from the resonant frequency fO before providing the recesses and protrusions on the radiation conductor plate, which is necessary to obtain the one-day polarization of the resonant frequency 'aeft) of modes a and b.

かつ、小さくでき、広帯域で良好な楕円偏波率を有する
円偏波用マイクロストリップアンテナを得られるという
効果がある。
In addition, there is an effect that it is possible to obtain a circularly polarized microstrip antenna that can be made small and has a wide band and a good elliptically polarized wave ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す円偏波用マイクロス
トリップアンテナの構成図、第2図は円偏波用マイクロ
ストリップアンテナの放射導体板上を流れる主要な共振
電流の方向を示す説明図。 第3図および第4図は円偏波用マイクロストリップアン
テナの入力インピーダンスの周波数特性を示す特性図、
第5図はこの発明の第2の実施例を示す円偏波用マイク
ロストリップアンテナの構成図、第6図はこの発明の第
3の実施例を示す円偏波用マイクロストリップアンテナ
の構成図、第7図はこの発明の第4の実施例を示す円偏
波用マイクロストリップアンテナの構成図、第8図は従
来の円偏波用マイクロストリップアンテナを示す構成図
、第9図はマイクロストリップアンテナの動作を説明す
るだめの説明図、第10図は円偏波用マイクロストリッ
プアンテナの放射導体板上を流れる主要な共振電流の方
向を示す説明図、第11図は円偏波用マイクロストリッ
プアンテナの入力インピーダンスの周波数特性を示す特
性図である。 図において、(1)は誘電体基板1 (Ia)は第1の
薄膜基板、 (1b)は第1の発泡誘電体基板# (1
c)は第2の薄膜基板I (Id)は第2の発泡誘電体
基板、(2)は放射導体板、(3)は地導体板、  (
3a)は第1の地導体板* (3b)は第2の地導体板
、(4)は給電用ストリップ導体、〔5)は放射導体板
(2)に設けられた凹部。 (6)は放射導体板(2)に設けられた凸部、(7)は
放射用孔、(8)は給電用同軸線路、(9)は内導体、
α〔は外導体、 (Illはスロツ)、Hは第2の誘電
体基板、01はストリップ導体、α荀はマイクロストリ
ップ線路である。 なお、各図中、同一符号は同一または相当部分を示す。 第1図 (a)
Fig. 1 is a configuration diagram of a circularly polarized microstrip antenna showing an embodiment of the present invention, and Fig. 2 is an explanation showing the direction of the main resonant current flowing on the radiation conductor plate of the circularly polarized microstrip antenna. figure. Figures 3 and 4 are characteristic diagrams showing the frequency characteristics of the input impedance of a circularly polarized microstrip antenna;
FIG. 5 is a block diagram of a circularly polarized microstrip antenna showing a second embodiment of the present invention, and FIG. 6 is a block diagram of a circularly polarized microstrip antenna showing a third embodiment of the present invention. FIG. 7 is a configuration diagram of a microstrip antenna for circularly polarized waves showing a fourth embodiment of the present invention, FIG. 8 is a configuration diagram of a conventional microstrip antenna for circularly polarized waves, and FIG. 9 is a configuration diagram of a microstrip antenna for circularly polarized waves. Figure 10 is an explanatory diagram showing the direction of the main resonant current flowing on the radiation conductor plate of a circularly polarized microstrip antenna. Figure 11 is a circularly polarized microstrip antenna. FIG. 3 is a characteristic diagram showing the frequency characteristics of the input impedance. In the figure, (1) is a dielectric substrate 1 (Ia) is a first thin film substrate, (1b) is a first foamed dielectric substrate # (1
c) is the second thin film substrate I (Id) is the second foamed dielectric substrate, (2) is the radiation conductor plate, (3) is the ground conductor plate, (
3a) is the first ground conductor plate* (3b) is the second ground conductor plate, (4) is the power feeding strip conductor, and [5] is the recess provided in the radiation conductor plate (2). (6) is a convex portion provided on the radiation conductor plate (2), (7) is a radiation hole, (8) is a coaxial line for power feeding, (9) is an inner conductor,
α[ is an outer conductor, (Ill is a slot), H is a second dielectric substrate, 01 is a strip conductor, and α is a microstrip line. In each figure, the same reference numerals indicate the same or corresponding parts. Figure 1(a)

Claims (1)

【特許請求の範囲】[Claims] 円板の中心を通るこの円板上の第1の直線と円周が交差
する部分の周上に凹部が設けられ、かつ、上記第1の直
線と直交し、上記円板の中心を通るこの円板上の第2の
直線と円周が交差する部分の周上に凸部が設けられた形
状の放射導体板と、上記放射導体板と絶縁され、かつ、
対向させて略平行に配置された地導体板と、上記第1の
直線と第2の直線に対してそれぞれ所定の角度をなし、
上記円板の中心を通る直線上に給電点を有する給電回路
を備えたマイクロストリップアンテナ。
A recess is provided on the circumference of a portion where the circumference intersects a first straight line on the disc passing through the center of the disc, and a recess is provided on the circumference of the part where the circumference intersects with a first straight line on the disc passing through the center of the disc, and a radiation conductor plate having a shape in which a convex portion is provided on the circumference of a portion where the second straight line on the disk intersects with the circumference, and the radiation conductor plate is insulated from the radiation conductor plate, and
ground conductor plates arranged facing each other and substantially parallel, each forming a predetermined angle with respect to the first straight line and the second straight line;
A microstrip antenna including a feeding circuit having a feeding point on a straight line passing through the center of the disk.
JP1184921A 1989-07-18 1989-07-18 Microstrip antenna Expired - Fee Related JP2536163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1184921A JP2536163B2 (en) 1989-07-18 1989-07-18 Microstrip antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1184921A JP2536163B2 (en) 1989-07-18 1989-07-18 Microstrip antenna

Publications (2)

Publication Number Publication Date
JPH0349404A true JPH0349404A (en) 1991-03-04
JP2536163B2 JP2536163B2 (en) 1996-09-18

Family

ID=16161662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1184921A Expired - Fee Related JP2536163B2 (en) 1989-07-18 1989-07-18 Microstrip antenna

Country Status (1)

Country Link
JP (1) JP2536163B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436472A (en) * 1993-09-20 1995-07-25 Rohm Co., Ltd. Photointerrupter
JP2016163185A (en) * 2015-03-02 2016-09-05 東芝テック株式会社 Antenna and polarization changeover method therefor
JP2017188925A (en) * 2017-05-25 2017-10-12 東芝テック株式会社 Antenna and polarization changeover method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436472A (en) * 1993-09-20 1995-07-25 Rohm Co., Ltd. Photointerrupter
JP2016163185A (en) * 2015-03-02 2016-09-05 東芝テック株式会社 Antenna and polarization changeover method therefor
JP2017188925A (en) * 2017-05-25 2017-10-12 東芝テック株式会社 Antenna and polarization changeover method therefor

Also Published As

Publication number Publication date
JP2536163B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
JP2536194B2 (en) Microstrip antenna
WO2008050441A1 (en) Antenna device
JPH0332202A (en) Two way communication radiation element
JPS61264804A (en) Plane antenna shared for two frequencies
JPH07154136A (en) Slot array antenna of double circularly polarized wave tem mode
JPH0270104A (en) Wide directional microstrip antenna
JP2001168637A (en) Cross dipole antenna
JPH11177335A (en) Antenna system
JPH04122107A (en) Microstrip antenna
JP2884885B2 (en) Microstrip antenna
JP4516246B2 (en) antenna
Wang et al. An electrically small antenna with quasi-isotropic coverage for linearly polarized receiver
JPH05129825A (en) Microstrip antenna
JPH0349404A (en) Microstrip antenna
JPS617707A (en) Array antenna for circularly polarized wave
JPH07307613A (en) Circular polarized wave microstrip antenna
JPH05167337A (en) Composite plane antenna
JPH07111418A (en) Plane antenna for polarized wave diversity
JPH0628321B2 (en) Circularly polarized antenna
JP3239654B2 (en) Circularly polarized microstrip antenna
JPH0325961B2 (en)
JPH0685526A (en) Planer antenna
JP2565108B2 (en) Planar antenna
JPH0738530B2 (en) Micro strip antenna
JPH0575284B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070708

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees