JPH0349303B2 - - Google Patents

Info

Publication number
JPH0349303B2
JPH0349303B2 JP61223867A JP22386786A JPH0349303B2 JP H0349303 B2 JPH0349303 B2 JP H0349303B2 JP 61223867 A JP61223867 A JP 61223867A JP 22386786 A JP22386786 A JP 22386786A JP H0349303 B2 JPH0349303 B2 JP H0349303B2
Authority
JP
Japan
Prior art keywords
lead
silicate glass
lead silicate
ray diffraction
stabilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61223867A
Other languages
Japanese (ja)
Other versions
JPS6381148A (en
Inventor
Akio Oguma
Juzo Akiba
Masashi Shoji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd filed Critical Mizusawa Industrial Chemicals Ltd
Priority to JP22386786A priority Critical patent/JPS6381148A/en
Publication of JPS6381148A publication Critical patent/JPS6381148A/en
Publication of JPH0349303B2 publication Critical patent/JPH0349303B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、ケイ酸鉛ガラス系の塩素含有量合体
用安定剤に関するもので、より詳細には、塩素含
有重合体に対する分散性に優れ、該重合体に対す
る初期着色傾向が少なく且つ熱安定性に優れ、配
合樹脂組成物の発泡傾向も安全に解消されたケイ
酸鉛ガラス系熱安定剤に関する。 (従来の技術) 従来、ケイ酸鉛が塩化ビニル樹脂等に対する熱
安定化作用を有することは古くから知られてい
る。 一酸化鉛とケイ酸とを高温で反応せしめること
により製造される融解法ケイ酸鉛(ケイ酸鉛ガラ
ス)は反応性が少ないので、塩化ビニルなどの安
定剤としては用を為さないと言われており(特公
昭32−757号公報第1頁左欄参照)、このため安定
剤としてのケイ酸鉛を湿式法で製造する方法、例
えば酢酸鉛や硝酸鉛等の水溶性鉛塩とケイ酸ソー
ダやケイ酸ゾルとを反応させる方法(特公昭28−
5668号、30−1872号、31−6840号公報)、及び一
酸化鉛とケイ酸ゲルとを、必要により酢酸等の触
媒の存在下に水中で反応させる方法(特公昭32−
757号公報)が知られている。 (発明が解決しようとする問題点) しかしながら、湿式法によるケイ酸鉛は、必ら
ず吸着水分や水和水分を含有しており、塩素含有
重合体に配合して押出等の熱成形を行う際、或い
はこれを配合した樹脂成形品の高温に曝したと
き、樹脂の発泡を生ずるという不都合を生じる。 ケイ酸鉛ガラスに何等かの手段で熱安定性を賦
与することができれば、前述した発泡の問題も解
消することができ、塩素含有重合体への分散性に
も優れていることが期待される。 (問題点を解決するための手段) 本発明者等は、ケイ酸鉛ガラス相中に酸化鉛成
分を易反応性の状態で含有せしめることにより、
溶融法ケイ酸ガラスとしては予想外に優れた塩素
含有重合体に対する熱安定性が得られることを見
出した。また、この熱安定剤は溶融法により形成
されたガラス質であることから、それ自体分解揮
散成分を含有せず、また水分等の吸着性もなく、
発泡傾向が完全に解消されると共に、白色性に優
れており、樹脂への分散性にも優れていることが
わかつた。 本発明によれば、鉛成分とケイ素成分とを、
夫々PbO及びSiO2として表わして、 PbO:SiO2=70:30〜90:10 特に75:25〜88:12 の重量比で含有するケイ酸鉛ガラス粉末から成
り、該ケイ酸鉛ガラス粉末は10μm以下の粒度を
有し、下記式 Rn=X1/X0×100 式中、X0はケイ酸ガラス5g中に含有される
鉛酸化物のグラム数であり、X1はケイ酸鉛ガラ
ス5gを0.35規定の硝酸50ml中で2分間撹拌する
とき溶解する鉛酸化物のグラム数である、 で定義される硝酸反応率(Rn)が30%以上であ
り且つハンター白色度が80%以上であるケイ酸鉛
ガラス粉末であることを特徴とする塩素含有重合
体用安定剤が提供される。 (作用) 本発明に用いるケイ酸鉛ガラスは、酸化鉛と二
酸化ケイ素とを溶融反応させることにより得られ
るにもかかわらず、30%以上、特に40%以上の硝
酸反応率(Rn)を有することが顕著な特徴であ
る。 本明細書において硝酸反応率とは次の意味を有
する。即ち、酸化鉛成分と二酸化ケイ素成分とを
含有する一定の系において、酸化鉛成分の全てが
遊離の形で存在すると、硝酸反応率(Rn)は100
%の値を示す。0.35規定の硝酸は、ケイ酸鉛ガラ
スの形に結合した酸化鉛成分を可溶化しない程の
酸度であり、かくして前記系において、酸化鉛成
分の全てがケイ酸鉛ガラスの形で存在すると、硝
酸反応率(Rn)は0%の値を示す。本発明に用
いるケイ酸鉛ガラスが30%以上の硝酸反応率を示
すという事実は、ケイ酸鉛ガラス組成物中の酸化
鉛成分の30%以上が遊離の酸化鉛或いは遊離の酸
化鉛に近い状態で存在することを意味している。 ケイ酸鉛ガラスの生成段階を時間的に考察する
と、酸化鉛成分が溶融し、この溶融連続相中に二
酸化ケイ素が分散し、二酸化ケイ素粒子の表面で
二酸化ケイ素と溶融酸化鉛とが反応し、ガラス相
中に次第にケイ酸鉛ガラスが生成し、やがてガラ
ス相が全体にわたつて均質化するものと思われ
る。 本発明で用いるケイ酸鉛ガラスは、上記ケイ酸
鉛ガラス反応過程の途中段階せ得られるものであ
り、ガラス相中にケイ酸鉛と反応ガラス成分と酸
化鉛分とが混在する組成となつていることが明ら
かであろう。 本発明で用いるケイ酸鉛ガラス粉末は、硝酸反
応率(Rn)を30%以上、特に40%以上とするこ
とにより、塩素含有重合体に対する優れた熱安定
作用が得られる。下記A表は、ケイ酸鉛ガラスと
して硝酸反応率(Rn)を変化させたものを使用
し、下記配合(重量基準−以下同じ) 塩化ビニル樹脂 100部 可塑剤 50部 ケイ酸鉛ガラス 5部 ステアリン酸 0.3部 のものについて、熟安定化時間(成形品試料を
210℃のギアオーブンに入れ、試料が黒化する迄
の時間)及び塩化水素捕捉性(成形品試料を210
℃のオイルバスに入れ、発生する塩化水素により
コンゴーレツド試験紙が変色する迄の時間)を試
験した結果を示す。
(Field of Industrial Application) The present invention relates to a lead silicate glass-based stabilizer for chlorine-containing coalescence, and more specifically, it has excellent dispersibility in chlorine-containing polymers and has a tendency to cause initial coloring of the polymers. The present invention relates to a lead silicate glass heat stabilizer which has a small amount of heat, has excellent thermal stability, and safely eliminates the foaming tendency of a blended resin composition. (Prior Art) It has been known for a long time that lead silicate has a thermal stabilizing effect on vinyl chloride resin and the like. Fused lead silicate (lead silicate glass), which is produced by reacting lead monoxide and silicic acid at high temperatures, has little reactivity, so it is of no use as a stabilizer for vinyl chloride, etc. (Refer to the left column of page 1 of the Japanese Patent Publication No. 32-757). Therefore, a method of manufacturing lead silicate as a stabilizer by a wet method, for example, a method of producing lead silicate as a stabilizer using a water-soluble lead salt such as lead acetate or lead nitrate, and silicate. Method of reacting with acid soda and silicate sol (Special Publication 1979-
No. 5668, No. 30-1872, No. 31-6840), and a method in which lead monoxide and silicate gel are reacted in water in the presence of a catalyst such as acetic acid if necessary (Japanese Patent Publication No. 32-
Publication No. 757) is known. (Problems to be Solved by the Invention) However, lead silicate produced by a wet process necessarily contains adsorbed water or hydrated water, and is mixed with a chlorine-containing polymer and subjected to thermoforming such as extrusion. When a molded resin product containing the resin is exposed to high temperatures, foaming of the resin occurs, which is a problem. If thermal stability could be imparted to lead silicate glass by some means, the aforementioned foaming problem could be solved, and it is expected that it would have excellent dispersibility in chlorine-containing polymers. . (Means for solving the problem) The present inventors have solved the problem by incorporating a lead oxide component in a highly reactive state into the lead silicate glass phase.
It has been found that unexpectedly excellent thermal stability against chlorine-containing polymers can be obtained for a fused silicate glass. In addition, since this heat stabilizer is a glassy substance formed by a melting method, it does not contain any decomposed and volatile components, nor does it have the ability to adsorb moisture, etc.
It was found that the foaming tendency was completely eliminated, and that it had excellent whiteness and excellent dispersibility in resin. According to the present invention, the lead component and the silicon component are
It consists of lead silicate glass powder containing a weight ratio of PbO:SiO2 = 70:30 to 90:10 , in particular 75:25 to 88:12, expressed as PbO and SiO2, respectively; It has the following particle size, and the following formula Rn=X1/X0×100 In the formula, X 0 is the number of grams of lead oxide contained in 5 g of silicate glass, and X 1 is the number of grams of lead oxide contained in 5 g of lead silicate glass. Silicic acid with a nitric acid reaction rate (Rn) of 30% or more and a Hunter whiteness of 80% or more, defined as the number of grams of lead oxide dissolved when stirred for 2 minutes in 50 ml of specified nitric acid. A stabilizer for chlorine-containing polymers is provided, characterized in that it is a lead glass powder. (Function) Although the lead silicate glass used in the present invention is obtained by melting and reacting lead oxide and silicon dioxide, it has a nitric acid reaction rate (Rn) of 30% or more, particularly 40% or more. is a notable feature. In this specification, nitric acid reaction rate has the following meaning. That is, in a given system containing lead oxide components and silicon dioxide components, if all of the lead oxide components exist in free form, the nitric acid reaction rate (Rn) will be 100.
Indicates the value in %. 0.35 normal nitric acid is of such acidity that it does not solubilize the lead oxide component bound in the form of lead silicate glass; thus, in the above system, if all of the lead oxide component is present in the form of lead silicate glass, nitric acid The reaction rate (Rn) shows a value of 0%. The fact that the lead silicate glass used in the present invention exhibits a nitric acid reaction rate of 30% or more means that 30% or more of the lead oxide component in the lead silicate glass composition is free lead oxide or close to free lead oxide. It means that it exists. Considering the formation stages of lead silicate glass in terms of time, the lead oxide component melts, silicon dioxide is dispersed in this molten continuous phase, silicon dioxide and molten lead oxide react on the surface of silicon dioxide particles, It is thought that lead silicate glass gradually forms in the glass phase, and eventually the glass phase becomes homogeneous throughout. The lead silicate glass used in the present invention is obtained at an intermediate stage in the above-mentioned lead silicate glass reaction process, and has a composition in which lead silicate, reactive glass components, and lead oxide components are mixed in the glass phase. It is clear that there are. The lead silicate glass powder used in the present invention has an excellent thermal stabilizing effect on chlorine-containing polymers by setting the nitric acid reaction rate (Rn) to 30% or more, particularly 40% or more. Table A below uses lead silicate glasses with different nitric acid reaction rates (Rn), and the following composition (based on weight - the same applies below): Vinyl chloride resin 100 parts Plasticizer 50 parts Lead silicate glass 5 parts Stearin Maturation stabilization time (molded article sample) for 0.3 parts of acid
(time until the sample turns black when placed in a gear oven at 210℃)
The test results are shown for the time it takes for Congo Red test paper to change color due to the generated hydrogen chloride when placed in an oil bath at ℃.

【表】 上記A表の結果によると、ケイ酸鉛ガラス粉末
の内でも硝酸反応率(Rn)が30%以上のものは、
塩化ビニル樹脂に対して樹脂を変化させることな
く予想外に優れた熱安定化作用を示すことがわか
る。 本発明に用いるケイ酸鉛ガラスは、遊離の酸化
鉛分を含有するにもかかわらず、着色の程度が少
なく、ハンター白色度が80%以上、特に90%以上
の白色度が好ましく、このような範囲にあるガラ
スは、塩素含有重合体の安定剤として優れてい
る。尚、ケイ酸鉛ガラスの白色度は、その原料及
び溶融温度などによつて左右される。かくして、
このケイ酸鉛ガラスは、塩素含有重合体を着色す
る傾向が少ない。一般に無機安定剤と呼ばれるも
のは、塩素含有重合体に配合した初期から塩素含
有重合体を微黄色乃至微赤色に着色する傾向を有
している。この初期着色は、塩素含有重合体と無
機安定剤との溶融混練時における相互作用による
ものと思われる。本発明に用いるケイ酸鉛ガラス
安定剤は、湿式法ケイ酸鉛は勿論のこと、二塩基
性ケイ酸鉛等のその他の鉛系安定剤に比しても初
期着色傾向が著しく少ないという利点を有する。 本発明に用いるケイ酸鉛ガラスでは、PbO:
SiO2が70:30乃至90:10の量比にあることも重
要である。即ちPbOが上記範囲よりも少ない場合
には満足すべき熱安定化作用は得られず、また上
記範囲よりも多い場合には均一相としてのガラス
化が困難となる。 このケイ酸ガラスは、熱安定作用と樹脂中への
分散性との点で10μm以下の粒度、特に7μm以下
の粒度の微粉末であるべきである。このケイ酸鉛
ガラスは、化学組成によつても変化するが、一般
に6乃至30ml/100gの吸油量(JIS K−5101−
19)と1.7乃至2.3g/c.c.との嵩比量とを有してい
るように、比較的デンスでしかも吸油量が少な
く、樹脂への分散が良好でしかも配合も容易であ
る。 (構成の説明) 本発明に用いるケイ酸鉛は、一酸化鉛、三二酸
化鉛等の酸化鉛と二酸化ケイ素とを硝酸鉛反応率
(Rn)が上記範囲内となるように溶融反応させる
ことに得られる。酸化鉛成分と二酸化ケイ素成分
との熔融・反応を行うための温度及び時間は、原
料の種類や両成分の配合比によつてもかなり相違
し、一概に規定することはできない。しかしなが
ら、一般的に言つて、600乃至1000℃、特に700乃
至950℃の温度範囲、及び10分間乃至60分間特に
15乃至45分間の処理時間の範囲から、前述した硝
酸反応率(Rn)が、30以上の範囲となる様な条
件を選べは良い。得られた溶融反応物を、水中に
投入するなどして冷却し、造粒する。この造粒物
を乾式又は湿式で粉砕し、必要により分級して、
所定粒度のケイ酸鉛ガラス安定剤とする。 本発明に用いるケイ酸鉛ガラス安定剤には、結
晶的に、複数のタイプが存在する、第1のタイプ
のものは、X線回折学的に非晶質のものであり、
そのX線回折像を第1図に示す。この非晶質タイ
プのものは、冷却された溶融反応物を乾式粉砕す
ることにより得られる。 第2のタイプのものは、実質上下記X線回折像面間隔(Å) 相対強度比(%) 3.22 50 3.03 100 2.96 100 2.82 60 2.10 30 1.85 30 と一致するX線回折像を有するものである。その
X線回折像を第2図に示す。このX線回折像は、
三二酸化鉛に特有のものと認められる。第2のタ
イプのものは、冷却された溶融反応物を湿式粉砕
することにより得られる。湿式粉に際して、三二
酸化鉛の結晶が生成する理由は、今だ不明である
が、湿式粉砕時に、ガラス相中の遊離酸化鉛成分
が酸化され、かつ再結晶化する為と思われる。意
外なことに、このタイプのものは、三二酸化鉛の
結晶を有するにもかかわらず、ハンター白色度
が、80%以上と白色性に優れている。第3のタイ
プのものは、ケイ酸鉛ガラス粉末が実質上下記X
線回折像面積間隔(Å) 相対強度比(%) 3.25 60 2.90 100 2.86 90 と一致するX線回折像を有するものである。その
X線回折像を第3図に示す。このX線回折像はピ
ロケイ酸鉛(Pb3Si2O7)に特有のものと認めら
れる。第3のタイプのものは、前述した第1、お
よび第2のタイプのものをケイ酸鉛の結晶化温
度、一般に500乃至650℃の温度で処理することに
より得られる。このタイプのものは、微黄色に、
着色した粉体である。 本発明に用いるケイ酸鉛ガラスは、上述した3
つのタイプに限定されず、例えは、 PbSiO2 Pb2SiO4 等の他の結晶のもの、これらの2種以上の混晶の
もの、あるいは、これらの2種以上の固溶体のも
のなどが含まれることが当然である。 本発明のケイ酸鉛安定剤は、比表面積及び吸油
量が著しく小さいことから、それ単独で使用して
も、塩素含有重合体樹脂への練り込みが容易で、
樹脂への均一分散性に優れているが、所望によつ
ては各種脂肪酸、脂肪酸石ケン、脂肪酸金属石ケ
ン、樹脂酸金属石ケン、各種ワツクス類、各種樹
脂類、で表面をコートしておくことが出来る。コ
ーテイング量はケイ酸鉛ガラスあたり0.1乃至
10.0%の範囲が適当である。又、このコーテイン
グ層には、有機系の各種の安定剤を安定助剤とし
て含有させることができる。多価アルコール、多
価フエノール類、β−ジケトン類が好適であり、
その適当な例は、モノ及びジペンタエリスリトー
ル、その他のポリペンタエリスリトール、マンニ
トール、ソルビトール、グルコース、フラクトー
ス、トリメチロールプロパン、ポリエチレングリ
コール、ポリプロピレン−ポリオキシエチレンブ
ロツク重合体、ビスフエノールA、立体障害フエ
ノール類、アセト酢酸エステル、アセチルアセト
ン、メチルベンゾイルケトン等である。 また、本発明において使用する塩素含有重合体
としては、例えば、ポリ塩化ビニル、ポリ塩化ビ
ニリデン、塩素化ポリエチレン、塩素化ポリプロ
ピレン、塩化ゴム、塩化ビニル−酢酸ビニル共重
合体、塩化ビニル−エチレン共重合体、塩化ビニ
ル−プロピレン共重合体、塩化ビニル−スチレン
共重合体、塩化ビニル−イソブチレン共重合体、
塩化ビニル−塩化ビニリデン共重合体、塩化ビニ
ル−スチレン−無水マレイン酸三元共重合体、塩
化ビニル−スチレン−アクリロニトリル共重合
体、塩化ビニル−ブタジエン共重合体、塩化ビニ
ル−イソプレン共重合体、塩化ビニル−塩素化プ
ロピレン共重合体、塩化ビニル−塩化ビニリデン
−酢酸ビニル三元共重合体、塩化ビニル−アクリ
ル酸エステル共重合体、塩化ビニル−マレイン酸
エステル共重合体、塩化ビニル−メタクリル酸エ
ステル共重合体、塩化ビニル−アクリロニトリル
共重合体、内部可塑化ポリ塩化ビニル等の重合
体、及びこれらの塩素含有重合体とポリエチレ
ン、ポリプロピレン、ポリブテン、ポリ−3−メ
チルブテンなどのα−オレフイン重合体又はエチ
レン−酢酸ビニル共重合体、エチレン−プロピレ
ン共重合体などのポリオレフイン及びこれらの共
重合体、ポリスチレン、アクリル樹脂、スチレン
と他の単量体(例えば無水マレイン酸、ブタジエ
ン、アクリロニトルなど)との共重合体、アクリ
ロニトリル−ブタジエン−スチレン共重合体、ア
クリル酸エステル−ブタジエン−スチレン共重合
体、メタクリル酸エステル−ブタジエン−スチレ
ン共重合体とのブレンド品、などをあげることが
できる。 また、本発明の塩素含有重合体組成物は、それ
自体公知の各種添加物、例えば可塑剤、酸化防止
剤、光安定剤、造核剤、充填剤、非金属安定剤、
有機錫、エポキシ安定剤、有機キレータ、顔料、
帯電防止剤、塩基性無機酸塩、防曇剤、プレート
アウト防止剤、表面処理剤、滑剤、難燃剤、蛍光
剤、防カビ剤、殺菌剤、光劣化剤、加工助剤、離
型剤等を配合することができる。 (発明の作用効果) 本発明によれば、塩素含有重合体に対する分散
性に優れ該重合体に対する初期着色傾向が少なく
且つ熱安定性に優れ、配合樹脂組成物の発泡傾向
も完全に解消されたケイ酸鉛ガラス系熱安定剤が
提供される。 本発明を次の実施例で説明する。 実施例 1 本実施例でPbO:SiO2が85:15の塩素含有重
合体用安定剤について説明する。 酸化鉛(PbO)原料は下記分析値のLIS K−
1456、1号合格品のリサージを用いた。 PbO 99.8% 乾燥減量(105℃×3時間) 0.05% 酢酸不溶分 0.05% Fe 0.0004% Cu 0.0001% 又、二酸化硅素(SiO2)原料は下記分析値お
よび粒度を有するクリスタルガラス用硅砂粉末を
用いた。 SiO2 99.9% K2O 0.004% Na2O 0.003% CaO 0.008% TiO2 0.003% Al2O3 0.04% Fe2O3 0.002% 粒度 100Mesh on 2% 100Mesh〜200Mesh 66% 200Mesh under 32% 上記原料をPbO:SiO2の重量比が85:15にな
るように乾式混合し、アルミナルツボを用い950
℃で熔融し、この熔融物を水に入れ急冷してカレ
ツト化物を得た。このカレツト化物をポツトミル
に採り純水を加え湿式粉砕を行いその後脱水、乾
燥し試料粉末Aを得た。 又、上記カレツト化物を乾燥し、ポツトミルに
採り乾式粉砕を行い資料粉末Bを得た。 さらに試料粉末Aを550℃にて仮焼し試料粉末
Cを得た。別に、上記熔融物を炉内で徐冷しガラ
ス状物を得このガラス状物を湿式粉砕して試料粉
末D、乾式粉砕して試料粉末Eを得た。 これら試料粉末A〜Eを用い、下記配合物をロー
ル混練し、次いでプレス加工を行い厚さ1mmのポ
リ塩化ビニルシートを作成した。このシートにつ
いて、初期着色性および210℃でのギヤオーブン
耐熱性および210℃でのコンゴーレツド法による
塩化水素補捉性の試験を行つた 配合 ポリ塩化ビニル樹脂 100重量部 可塑剤 50重量部 試料粉末 5重量部 ステアリン酸 0.3重量部 得られた試料粉末の粉末特性およびポリ塩化ビ
ニルシートの各試験結果を第1表に示す。
[Table] According to the results in Table A above, among lead silicate glass powders, those with a nitric acid reaction rate (Rn) of 30% or more,
It can be seen that it exhibits an unexpectedly excellent thermal stabilizing effect on vinyl chloride resin without changing the resin. Although the lead silicate glass used in the present invention contains free lead oxide, it has a small degree of coloring, and preferably has a Hunter whiteness of 80% or more, particularly 90% or more. Glasses in the range are excellent stabilizers for chlorine-containing polymers. Note that the whiteness of lead silicate glass depends on its raw material, melting temperature, and other factors. Thus,
This lead silicate glass has less tendency to stain chlorine-containing polymers. What is generally called an inorganic stabilizer has a tendency to color a chlorine-containing polymer slightly yellow to slightly red from the initial stage when it is blended into the chlorine-containing polymer. This initial coloring is thought to be due to the interaction between the chlorine-containing polymer and the inorganic stabilizer during melt-kneading. The lead silicate glass stabilizer used in the present invention has the advantage that it has a significantly lower initial coloring tendency than other lead-based stabilizers such as dibasic lead silicate as well as wet-process lead silicate. have In the lead silicate glass used in the present invention, PbO:
It is also important that SiO 2 be present in a quantitative ratio of 70:30 to 90:10. That is, if PbO is less than the above range, a satisfactory thermal stabilizing effect cannot be obtained, and if it is more than the above range, it becomes difficult to vitrify as a homogeneous phase. This silicate glass should be a fine powder with a particle size of less than 10 μm, especially less than 7 μm, in terms of thermal stabilization and dispersibility in the resin. Although this lead silicate glass varies depending on its chemical composition, it generally has an oil absorption capacity of 6 to 30ml/100g (JIS K-5101-
19) and a bulk ratio of 1.7 to 2.3 g/cc, it is relatively dense and has a small amount of oil absorption, and is easily dispersed in resins and easily blended. (Description of structure) Lead silicate used in the present invention is obtained by melting and reacting lead oxide such as lead monoxide and lead sesquioxide with silicon dioxide so that the lead nitrate reaction rate (Rn) is within the above range. can get. The temperature and time for melting and reacting the lead oxide component and the silicon dioxide component vary considerably depending on the type of raw materials and the blending ratio of both components, and cannot be unconditionally defined. However, generally speaking, a temperature range of 600 to 1000°C, especially 700 to 950°C, and a period of 10 minutes to 60°C, especially
It is good to select conditions such that the above-mentioned nitric acid reaction rate (Rn) is in the range of 30 or more from the treatment time range of 15 to 45 minutes. The obtained molten reaction product is cooled by pouring it into water, etc., and granulated. The granules are pulverized dry or wet, classified if necessary,
A lead silicate glass stabilizer with a predetermined particle size. The lead silicate glass stabilizer used in the present invention has a plurality of crystal types; the first type is amorphous in terms of X-ray diffraction;
The X-ray diffraction image is shown in FIG. This amorphous type is obtained by dry grinding the cooled molten reactant. The second type has an X-ray diffraction image that substantially matches the following X-ray diffraction image plane spacing (Å) relative intensity ratio (%): . The X-ray diffraction image is shown in FIG. This X-ray diffraction image is
It is recognized to be unique to lead sesquioxide. The second type is obtained by wet milling of the cooled molten reactants. The reason why lead sesquioxide crystals are formed during wet milling is still unknown, but it is thought to be because free lead oxide components in the glass phase are oxidized and recrystallized during wet milling. Surprisingly, this type of material has excellent whiteness, with a Hunter whiteness of 80% or more, even though it contains lead sesquioxide crystals. In the third type, the lead silicate glass powder is substantially
It has an X-ray diffraction image that matches the line diffraction image area spacing (Å) and relative intensity ratio (%) 3.25 60 2.90 100 2.86 90. The X-ray diffraction image is shown in FIG. This X-ray diffraction image is recognized to be unique to lead pyrosilicate (Pb 3 Si 2 O 7 ). The third type is obtained by treating the first and second types described above at the crystallization temperature of lead silicate, generally from 500 to 650°C. This type is slightly yellow,
It is a colored powder. The lead silicate glass used in the present invention is
Examples include other crystals such as PbSiO 2 Pb 2 SiO 4 , mixed crystals of two or more of these types, or solid solutions of two or more of these types. Of course. The lead silicate stabilizer of the present invention has a significantly small specific surface area and oil absorption, so even if it is used alone, it can be easily kneaded into a chlorine-containing polymer resin.
It has excellent uniform dispersibility in resins, but if desired, the surface may be coated with various fatty acids, fatty acid soaps, fatty acid metal soaps, resin acid metal soaps, various waxes, and various resins. I can do it. Coating amount is 0.1 to 0.1 per lead silicate glass
A range of 10.0% is appropriate. Further, this coating layer can contain various organic stabilizers as stabilizing aids. Polyhydric alcohols, polyhydric phenols, and β-diketones are preferred;
Suitable examples thereof are mono- and dipentaerythritol, other polypentaerythritols, mannitol, sorbitol, glucose, fructose, trimethylolpropane, polyethylene glycol, polypropylene-polyoxyethylene block polymers, bisphenol A, sterically hindered phenols. , acetoacetate, acetylacetone, methylbenzoyl ketone, etc. In addition, examples of the chlorine-containing polymer used in the present invention include polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, chlorinated polypropylene, chlorinated rubber, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer coalescence, vinyl chloride-propylene copolymer, vinyl chloride-styrene copolymer, vinyl chloride-isobutylene copolymer,
Vinyl chloride-vinylidene chloride copolymer, vinyl chloride-styrene-maleic anhydride terpolymer, vinyl chloride-styrene-acrylonitrile copolymer, vinyl chloride-butadiene copolymer, vinyl chloride-isoprene copolymer, chloride Vinyl-chlorinated propylene copolymer, vinyl chloride-vinylidene chloride-vinyl acetate terpolymer, vinyl chloride-acrylic acid ester copolymer, vinyl chloride-maleic acid ester copolymer, vinyl chloride-methacrylic acid ester copolymer Polymers such as vinyl chloride-acrylonitrile copolymers, internally plasticized polyvinyl chloride, and these chlorine-containing polymers and α-olefin polymers such as polyethylene, polypropylene, polybutene, poly-3-methylbutene, etc., or ethylene. - Polyolefins such as vinyl acetate copolymers, ethylene-propylene copolymers and their copolymers, polystyrene, acrylic resins, copolymers of styrene and other monomers (e.g. maleic anhydride, butadiene, acrylonitrile, etc.) Examples include blends with acrylonitrile-butadiene-styrene copolymers, acrylic ester-butadiene-styrene copolymers, and methacrylic ester-butadiene-styrene copolymers. The chlorine-containing polymer composition of the present invention may also contain various additives known per se, such as plasticizers, antioxidants, light stabilizers, nucleating agents, fillers, nonmetallic stabilizers,
Organic tin, epoxy stabilizer, organic chelator, pigment,
Antistatic agent, basic inorganic acid salt, antifogging agent, plate-out prevention agent, surface treatment agent, lubricant, flame retardant, fluorescent agent, fungicide, fungicide, photodegrading agent, processing aid, mold release agent, etc. can be blended. (Operations and Effects of the Invention) According to the present invention, the dispersibility in chlorine-containing polymers is excellent, the tendency for initial coloring of the polymers is small, the thermal stability is excellent, and the foaming tendency of the blended resin composition is completely eliminated. A lead silicate glass heat stabilizer is provided. The invention is illustrated in the following examples. Example 1 In this example, a stabilizer for chlorine-containing polymers having a PbO:SiO 2 ratio of 85:15 will be described. Lead oxide (PbO) raw material is LIS K- with the analysis value below.
1456, Resurge, a No. 1 approved product, was used. PbO 99.8% Loss on drying (105℃ x 3 hours) 0.05% Acetic acid insoluble content 0.05% Fe 0.0004% Cu 0.0001% In addition, as the silicon dioxide (SiO 2 ) raw material, silica sand powder for crystal glass having the following analytical values and particle size was used. . SiO 2 99.9% K 2 O 0.004% Na 2 O 0.003% CaO 0.008% TiO 2 0.003% Al 2 O 3 0.04% Fe 2 O 3 0.002% Particle size 100Mesh on 2% 100Mesh~200Mesh 66% 200Mesh under 32% The above raw materials Dry mix PbO:SiO 2 at a weight ratio of 85:15, and mix using an aluminum crucible at 950 °C.
The mixture was melted at ℃, and the melt was poured into water and quenched to obtain a cullet. This cullet was placed in a pot mill, and pure water was added thereto for wet pulverization, followed by dehydration and drying to obtain sample powder A. Further, the cullet was dried, taken in a pot mill, and dry-pulverized to obtain sample powder B. Further, sample powder A was calcined at 550°C to obtain sample powder C. Separately, the above melt was slowly cooled in a furnace to obtain a glass-like material, which was wet-pulverized to obtain a sample powder D, and dry-pulverized to obtain a sample powder E. Using these sample powders A to E, the following formulation was roll-kneaded and then pressed to produce a polyvinyl chloride sheet with a thickness of 1 mm. This sheet was tested for initial colorability, gear oven heat resistance at 210°C, and hydrogen chloride scavenging ability using the Congo Red method at 210°C. Polyvinyl chloride resin: 100 parts by weight Plasticizer: 50 parts by weight Sample powder 5 Part by weight Stearic acid 0.3 part by weight Table 1 shows the powder characteristics of the obtained sample powder and the test results of the polyvinyl chloride sheet.

【表】【table】

【表】 実施例 2 本実施例で、PbO:SiO2重量比を変化させた
場合の塩素含有重合体用安定剤について説明す
る。 実施例1の試料粉末Aと同様の操作で第2表に
示すPbO:SiO2重量比の試料粉末を得た。 次いで、実施例1と同様の配合でポリ塩化ビニ
ルシートを作成し同様の試験を行つた。 それぞれの結果を第2表に示す。
[Table] Example 2 In this example, stabilizers for chlorine-containing polymers in which the weight ratio of PbO:SiO 2 is varied will be described. A sample powder having a PbO:SiO 2 weight ratio shown in Table 2 was obtained in the same manner as the sample powder A of Example 1. Next, a polyvinyl chloride sheet was prepared using the same formulation as in Example 1, and the same test was conducted. The results are shown in Table 2.

【表】 上記第2表から、PbO:SiO2重量比が70:30
よりもPbO分が少なくなると熱安定剤が不足し、
又、PbO:SiO2が90:10程度になると塩化水素
補捉効果、熱安定効果はあるもののポリ塩化ビニ
ルの変化がはげしく安定剤としては不適当な物質
になることが理解される。
[Table] From Table 2 above, the PbO:SiO 2 weight ratio is 70:30.
If the PbO content is less than that, there will be a shortage of heat stabilizer,
It is also understood that when the ratio of PbO:SiO 2 is about 90:10, although it has a hydrogen chloride scavenging effect and a thermal stabilizing effect, the polyvinyl chloride changes drastically and becomes an unsuitable substance as a stabilizer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は乾式粉砕ケイ酸鉛ガラス安定剤のX−
線回折図、第2図は湿式粉砕ケイ酸鉛ガラス安定
剤のX−線回折図、第3図は熱処理ケイ酸鉛ガラ
ス安定剤のX−線回折図である。
Figure 1 shows the X-
Figure 2 is an X-ray diffraction diagram of a wet-milled lead silicate glass stabilizer, and Figure 3 is an X-ray diffraction diagram of a heat-treated lead silicate glass stabilizer.

Claims (1)

【特許請求の範囲】 1 鉛成分とケイ素成分とを、夫々PbO及び
SiO2として表して、 PbO:SiO2=70:30〜90:10 の重量比で含有し、且つこれらを溶融反応するこ
とによつて得られるケイ酸鉛ガラス粉末から成
り、該ケイ酸鉛ガラス粉末は10μm以下の粒度を
有し、下記式 Rn=X1/X0×100 式中、X0はケイ酸鉛ガラス5g中に含有され
る鉛酸化物のグラムの数であり、X1はケイ酸鉛
ガラス5gを0.35規定の硝酸50ml中で20分間撹拌
するとき溶解する鉛酸化物のグラム数である、 で定義される硝酸反応率(Rn)が30%以上であ
り、且つハンター白色度が80%以上であるケイ酸
鉛ガラス粉末であることを特徴とする塩素含有重
合体用安定剤。 2 ケイ酸鉛ガラス粉末がX−線回折学的に非晶
質である特許請求の範囲第1項記載の安定剤。 3 ケイ酸鉛ガラス粉末が、実質上下記X−線回
折像面間隔(Å) 相対強度比(%) 3.22 50 3.03 100 2.96 100 2.82 60 2.10 30 1.85 30 と一致するX−線回折像を有するものである特許
請求の範囲第1項記載の安定剤。 4 ケイ酸鉛ガラス粉末が、実質上下記X−線回
折像面間隔(Å) 相対強度比(%) 3.25 60 2.90 100 2.86 90 と一致するX−線回折像を有するものである特許
請求の範囲第1項記載の安定剤。
[Claims] 1. The lead component and the silicon component are PbO and PbO, respectively.
The lead silicate glass powder is expressed as SiO2 and contains PbO:SiO2 in a weight ratio of 70:30 to 90:10, and is obtained by melting and reacting them. It has a particle size of 10 μm or less, and has the following formula: Rn=X1/X0×100, where X0 is the number of grams of lead oxide contained in 5 g of lead silicate glass, and The nitric acid reaction rate (Rn), defined as the number of grams of lead oxide dissolved when stirred for 20 minutes in 50 ml of 0.35 normal nitric acid, is 30% or more, and the Hunter whiteness is 80% or more. A stabilizer for chlorine-containing polymers, characterized in that it is a lead silicate glass powder. 2. The stabilizer according to claim 1, wherein the lead silicate glass powder is amorphous in terms of X-ray diffraction. 3 Lead silicate glass powder has an X-ray diffraction image that substantially matches the following X-ray diffraction image plane spacing (Å) relative intensity ratio (%) The stabilizer according to claim 1, which is 4. Claims in which the lead silicate glass powder has an X-ray diffraction image that substantially matches the following X-ray diffraction image plane spacing (Å) relative intensity ratio (%) Stabilizer according to paragraph 1.
JP22386786A 1986-09-24 1986-09-24 Stabilizer for chlorine-containing polymer Granted JPS6381148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22386786A JPS6381148A (en) 1986-09-24 1986-09-24 Stabilizer for chlorine-containing polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22386786A JPS6381148A (en) 1986-09-24 1986-09-24 Stabilizer for chlorine-containing polymer

Publications (2)

Publication Number Publication Date
JPS6381148A JPS6381148A (en) 1988-04-12
JPH0349303B2 true JPH0349303B2 (en) 1991-07-29

Family

ID=16804948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22386786A Granted JPS6381148A (en) 1986-09-24 1986-09-24 Stabilizer for chlorine-containing polymer

Country Status (1)

Country Link
JP (1) JPS6381148A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733458B2 (en) * 1990-12-18 1995-04-12 三菱化学エムケーブイ株式会社 Chlorinated polyethylene resin composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5157749A (en) * 1974-11-15 1976-05-20 Mizusawa Industrial Chem
JPS58173159A (en) * 1982-04-02 1983-10-12 Adeka Argus Chem Co Ltd Stabilized halogen-containing resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5157749A (en) * 1974-11-15 1976-05-20 Mizusawa Industrial Chem
JPS58173159A (en) * 1982-04-02 1983-10-12 Adeka Argus Chem Co Ltd Stabilized halogen-containing resin composition

Also Published As

Publication number Publication date
JPS6381148A (en) 1988-04-12

Similar Documents

Publication Publication Date Title
US4033780A (en) Method of enhancing the refractoriness of high purity fused silica
EP1203050B1 (en) Aluminosilicate stabilized halogenated polymers
WO1997009274A1 (en) Composite alkali aluminum hydroxide carbonate, and process for production and use thereof
US4758619A (en) Additives for resins and their compositions
EP0015794B1 (en) Process for obtaining a glass composition based on metallic silicates and having a low melting point and improved refining properties
JPH0336839B2 (en)
EP3333217B1 (en) Polymer composition
KR20130004142A (en) Process to prepare additive packages for use in pvc compounding
JPS58213031A (en) Alumina/silica compounding ingredient for resin
US3762936A (en) Manufacture of borosilicate glass powder essentially free of alkali and alkaline earth metals
JPH0116794B2 (en)
JPH0349303B2 (en)
US6414071B1 (en) Aluminosilicate stabilized halogenated polymers
US3740245A (en) Antimony-containing inorganic composition of matter and method for preparing same
EP0725109B1 (en) Stabilizer for chlorine-containing polymers, process for the preparation thereof and chlorine-containing polymer composition
EP0606397B1 (en) Stabilizer systems and products produced utilizing the same
DE3523572C2 (en)
US3810864A (en) Translucent polyvinylchloride plastic composition and method for preparing same
EP0330411B1 (en) Flame retardant for halogen-containing vinyl resins
JP2733266B2 (en) Antistatic chlorine-containing polymer composition and antistatic agent
EP0255743A1 (en) Tetrakis[3-(3,5-di-tert.buthyl-4-hydroxyphenyl)propionyl-oxymethyl]methane with amorphous structure, process for its preparation and its use as a stabilizer
JP2621432B2 (en) Weather resistant resin composition with improved discoloration
JP2504033B2 (en) Method for producing antimony-containing flame retardant
JP3274340B2 (en) Stabilizer for chlorine-containing polymer, method for producing the same, and chlorine-containing polymer composition
US3607189A (en) Melting particulate glass batch

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees