JPH0349301A - Band pass filter - Google Patents

Band pass filter

Info

Publication number
JPH0349301A
JPH0349301A JP18542389A JP18542389A JPH0349301A JP H0349301 A JPH0349301 A JP H0349301A JP 18542389 A JP18542389 A JP 18542389A JP 18542389 A JP18542389 A JP 18542389A JP H0349301 A JPH0349301 A JP H0349301A
Authority
JP
Japan
Prior art keywords
resonator
resonators
pass filter
band pass
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18542389A
Other languages
Japanese (ja)
Inventor
Akihiro Ikeda
池田 明寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18542389A priority Critical patent/JPH0349301A/en
Publication of JPH0349301A publication Critical patent/JPH0349301A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the entire band pass filter small without deteriorating an out-band attenuation by bending microstrip line resonators at each center part and making each bent resonator opposite to an adjacent resonator in parallel respectively. CONSTITUTION:Resonators 13-16 each made of a half wavelength microstrip line are formed on a dielectric base 1 whose rear side is made of a conductor. A half (1/4 wavelength) of each resonator is coupled with an adjacent resonator or input/output lines 11, 12 as a parallel line, Since the resonators 13-16 are bent at the center by an angle of 90 deg., the length of the entire band pass filter is decreased by nearly a half in comparison with the case of straight line resonators 23-26 like a conventional band pass filter. Since the resonator lines other than the adjacent resonators are not arranged in parallel closely different from the conventional filter, the deterioration of attenuation in out-band, especially at high frequency is not caused.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は誘電体基板上に設けたマイクロストリップライ
ンを用いた帯域通過ろ波器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a bandpass filter using a microstrip line provided on a dielectric substrate.

〔従来の技術〕[Conventional technology]

従来、この種の帯域通過ろ波器は、第2図に示すように
、半波長のマイクロストリップラインからなる共振器2
3〜26を直線状に形成する構造が一般に行なわれてい
た。ずなわち、それぞれ半波長の共振器23〜26の半
分(1/4波長)どうしを互いに平行に対向させて共振
器間の結合をとりながら共振器23〜26を順次一方の
方向に配列する構造をとっていた。
Conventionally, this type of bandpass filter has a resonator 2 consisting of a half-wavelength microstrip line, as shown in FIG.
A structure in which 3 to 26 are formed in a straight line has generally been used. That is, the resonators 23 to 26 are sequentially arranged in one direction while the halves (1/4 wavelength) of the resonators 23 to 26, each having a half wavelength, are opposed in parallel to each other to provide coupling between the resonators. It had a structure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述した従来の帯域通過ろ波器は全体で
1/4波長に段数をかけ合わせた長さ以上の長さが必要
となるため、特に周波数が低い場合、各共振器の長さが
長くなり形状が大きくなるという欠点がある。
However, the conventional bandpass filter described above requires a total length equal to or longer than 1/4 wavelength multiplied by the number of stages, so the length of each resonator is long, especially when the frequency is low. The disadvantage is that the shape becomes larger.

一方、上述した第2図に示す帯域通過ろ波器の欠点を補
うために、従来、第3図に示すように共振器33〜36
を2個所で折り曲げて全体として180度に折り曲げる
ことにより、小形化する構造がとられている。しかしな
がら、この構造はすべての共振器の1/4波長波長部分
が平行に近接して配列されているため、隣接する共振器
どうしの結合だけでなくさらに離れた共振器間での結合
が発生し、帯域外、特に高域側での減衰量の劣化を伴な
うという欠点がある。
On the other hand, in order to compensate for the drawbacks of the bandpass filter shown in FIG. 2, conventionally, as shown in FIG.
The structure is made more compact by bending it at two places and bending it at 180 degrees as a whole. However, in this structure, the 1/4 wavelength parts of all the resonators are arranged close to each other in parallel, so coupling occurs not only between adjacent resonators but also between resonators further apart. However, there is a drawback that the amount of attenuation is degraded outside the band, especially on the high frequency side.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の帯域通過ろ波器は、裏面を導体とする誘導体基
板上に設けた半波長のマイクロストリップラインからな
る共振器を少なくとも1つ備え、これら共振器の半分の
長さの部分を隣接する前記共振器または入出力線路と平
行に対向させることにより接合させた構造の帯域通過ろ
波器において、前記共振器のそれぞれが長平方向の中央
部分の1個所で曲折された形状である。
The bandpass filter of the present invention includes at least one resonator made of a half-wavelength microstrip line provided on a dielectric substrate whose back surface is a conductor, and the half-length portion of the resonator is connected to the adjacent resonator. In the bandpass filter having a structure in which the resonators or the input/output lines are connected to each other by facing each other in parallel, each of the resonators has a shape bent at one point in the central portion in the longitudinal direction.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)および(b)は本発明の一実施例の平面図
および側面図である。
FIGS. 1(a) and 1(b) are a plan view and a side view of an embodiment of the present invention.

半波長のマイクロストリップラインからなる共振器13
〜16が裏面を導体とする誘電体基板1上に構成されて
いる。各共振器はその半分(1/4波長)の部分で隣り
の共振器または入出力線路ix、12と平行線路として
結きする。ここで各共振器13〜16はその中心部分で
90度に折り曲げているため、第2図に示ず従来例のよ
うに各共振器23〜26を直線とした場合に比較して、
帯域通過ろ波器全体として約1/72近くの長さに小形
化できる。また第3し1の従来例に見られるように隣接
共振器間以外の共振器の線路が互いに近接して平行に並
ぶことがないため、帯域外、特に高域側の減衰量が劣化
することがない。第4図にその特性例を示す。曲線41
は第1図に示す実施例または第2図に示す従来例の帯域
外減衰特性、曲線42は第3図に示す従来例の帯域外減
衰特性を示す。通過帯域の中心周波数(f o ” 4
 G Hz )の2倍の周波数(2fo =8GHz 
>に高次共振モードによる減衰量劣化が見られるが、第
3図に示す従来例は曲線42に見られるように6G H
z付近で減衰量の大きく劣化しているのがわかる。
Resonator 13 consisting of a half-wavelength microstrip line
16 are formed on a dielectric substrate 1 whose back surface is a conductor. Each resonator is connected to an adjacent resonator or an input/output line ix, 12 at a half (1/4 wavelength) portion thereof as a parallel line. Here, each of the resonators 13 to 16 is bent at 90 degrees at its center, so compared to the case where each of the resonators 23 to 26 is a straight line as in the conventional example (not shown in FIG. 2),
The overall length of the bandpass filter can be reduced to about 1/72. In addition, as seen in the third and first conventional example, the lines of resonators other than those between adjacent resonators are not lined up close to each other in parallel, so the amount of attenuation outside the band, especially on the high frequency side, deteriorates. There is no. Figure 4 shows an example of its characteristics. curve 41
curve 42 shows the out-of-band attenuation characteristic of the embodiment shown in FIG. 1 or the conventional example shown in FIG. 2, and the curve 42 shows the out-of-band attenuation characteristic of the conventional example shown in FIG. Center frequency of passband (f o ” 4
GHz) twice the frequency (2fo = 8GHz
> deterioration of attenuation due to higher-order resonance mode is seen, but in the conventional example shown in Fig. 3, the 6G H
It can be seen that the attenuation decreases significantly near z.

第1図に示す実施例では各共振器の折り曲げ角度を90
度にしているが、帯域外減衰量がさほど劣1ヒしない範
囲で折り曲げ角度をさらに大きくして一層の小形化をは
かることもできる。
In the embodiment shown in FIG. 1, the bending angle of each resonator is 90
However, the bending angle can be further increased to achieve further miniaturization as long as the amount of out-of-band attenuation is not significantly degraded.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、マイクロストリップライ
ン共振器をその中央部分の1個所で折り曲げることによ
り、帯域外減衰量を劣化させることなく帯域通過ろ波器
全体の形状を小形化することができる効果があり、特に
通過帯域周波数が低く、半波長共振器の長さが長くなる
場合に有効である。
As explained above, in the present invention, by bending the microstrip line resonator at one point in the center thereof, it is possible to downsize the overall shape of the bandpass filter without deteriorating the out-of-band attenuation. This is particularly effective when the passband frequency is low and the length of the half-wavelength resonator is long.

3〜16・・・共振器。3-16...Resonator.

Claims (1)

【特許請求の範囲】[Claims]  裏面を導体とする誘導体基板上に設けた半波長のマイ
クロストリップラインからなる共振器を少なくとも1つ
備え、これら共振器の半分の長さの部分を隣接する前記
共振器または入出力線路と平行に対向させることにより
結合させた構造の帯域通過ろ波器において、前記共振器
のそれぞれが長手方向の中央部分の1個所で曲折された
形状であることを特徴とする帯域通過ろ波器。
At least one resonator consisting of a half-wavelength microstrip line is provided on a dielectric substrate whose back surface is a conductor, and a half-length portion of the resonator is parallel to the adjacent resonator or input/output line. 1. A band-pass filter having a structure in which each of the resonators is coupled by facing each other, wherein each of the resonators has a shape bent at one point in a central portion in the longitudinal direction.
JP18542389A 1989-07-17 1989-07-17 Band pass filter Pending JPH0349301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18542389A JPH0349301A (en) 1989-07-17 1989-07-17 Band pass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18542389A JPH0349301A (en) 1989-07-17 1989-07-17 Band pass filter

Publications (1)

Publication Number Publication Date
JPH0349301A true JPH0349301A (en) 1991-03-04

Family

ID=16170531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18542389A Pending JPH0349301A (en) 1989-07-17 1989-07-17 Band pass filter

Country Status (1)

Country Link
JP (1) JPH0349301A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990765A (en) * 1997-02-11 1999-11-23 Com Dev Ltd. Planar dual mode filters and a method of construction thereof
US6995635B2 (en) * 2004-02-26 2006-02-07 Chung Shan Institute Of Science And Technology Microstrip line parallel-coupled-resonator filter with open-and-short end

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146801A (en) * 1988-11-28 1990-06-06 Fujitsu Ltd Band pass filter whose center frequency is variable
JPH02206201A (en) * 1989-02-03 1990-08-16 Toshiba Corp Band pass filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146801A (en) * 1988-11-28 1990-06-06 Fujitsu Ltd Band pass filter whose center frequency is variable
JPH02206201A (en) * 1989-02-03 1990-08-16 Toshiba Corp Band pass filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990765A (en) * 1997-02-11 1999-11-23 Com Dev Ltd. Planar dual mode filters and a method of construction thereof
US6995635B2 (en) * 2004-02-26 2006-02-07 Chung Shan Institute Of Science And Technology Microstrip line parallel-coupled-resonator filter with open-and-short end

Similar Documents

Publication Publication Date Title
JPH10215102A (en) Micro strip band inhibition filter
JPS62164301A (en) Strip line filter
EP1175006B1 (en) Longitudinal coupling surface acoustic wave filter
JP3186607B2 (en) Distributed constant line type filter
JPH0349301A (en) Band pass filter
JP2718984B2 (en) Resonator and filter using the resonator
JPH0622281B2 (en) Dielectric filter
JP3316962B2 (en) filter
JPH06101643B2 (en) Bandpass filter
JPS63283201A (en) Integrally molded type high frequency filter
JP3214226B2 (en) Surface acoustic wave resonator filter
JPS6311802B2 (en)
JP2003069306A (en) Band pass filter
JPH05315805A (en) Strip line loop resonator filter
JP2002076703A (en) Distributed constant filter
JP2927107B2 (en) Laterally coupled dual mode surface acoustic wave filter
JPH05110316A (en) Resonator
JPH0134404B2 (en)
JP2004104588A (en) Bandpass filter
JPH07183702A (en) Filter
JPS6291001A (en) Strip line filter
JP2519747B2 (en) Dielectric polar filter
JP3500568B2 (en) Duplexer
JPH10303601A (en) Dielectric filter
JPH0244802A (en) Resonator