JPH0349285B2 - - Google Patents

Info

Publication number
JPH0349285B2
JPH0349285B2 JP61025693A JP2569386A JPH0349285B2 JP H0349285 B2 JPH0349285 B2 JP H0349285B2 JP 61025693 A JP61025693 A JP 61025693A JP 2569386 A JP2569386 A JP 2569386A JP H0349285 B2 JPH0349285 B2 JP H0349285B2
Authority
JP
Japan
Prior art keywords
groups
resin
epoxy
adduct
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61025693A
Other languages
Japanese (ja)
Other versions
JPS62184011A (en
Inventor
Eiichiro Takyama
Michiaki Arai
Takao Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP61025693A priority Critical patent/JPS62184011A/en
Publication of JPS62184011A publication Critical patent/JPS62184011A/en
Publication of JPH0349285B2 publication Critical patent/JPH0349285B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、塗料、接着剤、成形材、FRPなど
各種用途に有用な新規構造を有するラジカル硬化
可能な樹脂の製造方法に関する。 〔従来の技術〕 現在、常温で硬化可能なラジカル硬化型の樹脂
としては、不飽和ポリエステル樹脂およびビニル
エステル樹脂(エポキシアクリレート樹脂)が代
表的であり、それぞれの特長を生かして多方面に
用いられている。 しかし、用途が拡大するにつれて、樹脂に要求
される性能も細かく且つ高度なものになり、今迄
の樹脂ではその要求を満足させることが困難とな
ることもある。 例えば、耐熱性を例にとつてみても、スチレン
を架橋剤とする限り、その熱変形温度でみた実用
範囲は高くても120℃程度であり、それ以上の高
温が要求される用途には用いることが出来ない。
特殊な高反応性樹脂で熱変形温度が130〜150℃と
いつた耐熱性の樹脂もないわけではないが、多く
の場合他の物性、例えば機械的強度が十分でな
く、実用性には問題を生ずることがあつた。 〔発明が解決しようとする問題点〕 本発明者らは、前記情勢に鑑み、これら既存樹
脂特にビニルエステル樹脂の物性を越える高性能
の樹脂を工業的に容易に製造すべく種々検討した
結果、耐熱性及び機械的強度にすぐれた新規構造
を有するラジカル硬化可能な樹脂の製造方法を見
出し、本発明に到達した。 〔問題点を解決するための手段〕 即ち、本発明の硬化可能な樹脂の製造方法は、 (A) 1分子中に2個以上のエポキシ基を有するエ
ポキシ樹脂に、1価フエノール類を、エポキシ
基とフエノール性水酸基とが実質的に等モルに
なるように反応させて得られる、1分子中にそ
れぞれ2個以上の水酸基とアリルオキシメチレ
ン基を共有するエポキシ樹脂−フエノール付加
体と、 (B) 1分子中に2個以上のエポキシ基を有するエ
ポキシ樹脂に、アクリル酸またはメタクリル酸
(以下、(メタ)アクリル酸という)を、エポキ
シ基とカルボキシル基とが実質的に当量になる
割合で反応させて得られる、1分子中にそれぞ
れ2個以上のアクリロイル基またはメタクリロ
イル基(以下、(メタ)アクリロイル基という)
とヒドロキシル基とを共有するビニルエステル
樹脂とを、 (C) ジイソシアナートと、 反応させて少なくとも4個のウレタン結合を介
して(A)成分と(B)成分とを(C)成分によつて結合さ
せることを特徴とするものである。 〔作用〕 先づ、本発明の理解を助けるために、代表例を
用いた本発明の硬化可能な樹脂の化学構造式を示
す。 1分子中にそれぞれ2個以上の水酸基とアリル
オキシメチレン基を共有するエポキシ樹脂−フエ
ノール付加体(A) 1分子中にそれぞれ2個以上の(メタ)アクリ
ロイル基とヒドロキシル基とを共有するビニルエ
ステル樹脂(B)
[Industrial Application Field] The present invention relates to a method for producing a radically curable resin having a novel structure useful for various uses such as paints, adhesives, molding materials, and FRP. [Conventional technology] Currently, unsaturated polyester resins and vinyl ester resins (epoxy acrylate resins) are typical as radical-curing resins that can be cured at room temperature, and they are used in a wide range of fields by taking advantage of their respective characteristics. ing. However, as the applications expand, the performance required of the resin becomes more detailed and sophisticated, and it may be difficult to satisfy these demands with conventional resins. For example, taking heat resistance as an example, as long as styrene is used as a crosslinking agent, its practical range in terms of heat distortion temperature is at most 120℃, and it is used for applications that require higher temperatures. I can't do that.
Although there are special highly reactive resins that are heat resistant and have a heat distortion temperature of 130 to 150℃, in many cases other physical properties such as mechanical strength are insufficient, making them problematic for practical use. This sometimes occurred. [Problems to be Solved by the Invention] In view of the above situation, the present inventors have conducted various studies in order to industrially easily produce a resin with high performance that exceeds the physical properties of these existing resins, particularly vinyl ester resins. The present invention was achieved by discovering a method for producing a radically curable resin having a novel structure with excellent heat resistance and mechanical strength. [Means for solving the problem] That is, the method for producing a curable resin of the present invention includes (A) adding monovalent phenols to an epoxy resin having two or more epoxy groups in one molecule; An epoxy resin-phenol adduct that shares two or more hydroxyl groups and allyloxymethylene groups in each molecule, which is obtained by reacting the group and the phenolic hydroxyl group in substantially equimolar amounts, and (B ) An epoxy resin having two or more epoxy groups in one molecule is reacted with acrylic acid or methacrylic acid (hereinafter referred to as (meth)acrylic acid) in a ratio that makes the epoxy groups and carboxyl groups substantially equivalent. 2 or more acryloyl groups or methacryloyl groups in each molecule (hereinafter referred to as (meth)acryloyl groups) obtained by
and a vinyl ester resin that shares a hydroxyl group with (C) a diisocyanate to form components (A) and (B) with component (C) through at least four urethane bonds. This is characterized by the fact that they are connected together. [Function] First, in order to aid understanding of the present invention, the chemical structural formula of the curable resin of the present invention will be shown using representative examples. Epoxy resin-phenol adduct (A) that shares two or more hydroxyl groups and allyloxymethylene groups in each molecule Vinyl ester resin (B) that shares two or more (meth)acryloyl groups and hydroxyl groups in each molecule

〔実施例〕〔Example〕

次に、本発明の理解を助けるために、以下に実
施例を示す。 実施例 1 エポキシ樹脂−フエノール付加体〔〕の製造 撹拌機、還流コンデンサー、温度計を付した1
三ツ口フラスコに、エポキシ樹脂として油化シ
エルエポキシ社のエピコート827を360g、フエノ
ール188g、トリメチルベンジルアンモニウムク
ロライド1.5gを仕込み昇温すると、120℃を越え
た段階で急速に発熱する。 冷却して150〜160℃に保ち、以後再加熱して
150〜160℃に5時間反応すると、赤外分析の結果
遊離のエポキシ基は完全に消失したことが認めら
れた。 室温に迄冷却したエポキシ樹脂−フエノール付
加体〔〕はシラツプ状、淡黄褐色であつた。 イソシアナート付加体〔〕の製造 同様な装置に、付加体〔〕を350g、スチレ
ン150g、パラベンゾキノン0.01gを秤取し、60
〜70℃に加温溶解した後、2,4−トリレンジイ
ソシアナート220gを加え、60℃で5時間反応す
るとジ−n−ブチルアミン−塩酸滴定法による分
析の結果、イソシアナート基は3.8%から1.6%と
ほぼ半分に減少していることが認められた。 スチレン130gを追加し、イソシアナート付加
体〔〕が淡黄褐色液状で得られた。 ビニルエステル樹脂〔〕の製造 撹拌機、還流コンデンサー、温度計を付した1
三ツ口フラスコに、エポキシ樹脂として前述の
エピコート827を360g、メタクリル酸172g、ハ
イドロキノン0.2g、トリメチルベンジルアンモ
ニウムクロライド1.5gを仕込み、120〜130℃で
激しく撹拌しながら3時間反応すると、、酸価は
5.9となつた。 スチレン230gを加え、ビニルエステル樹脂
〔〕が赤褐色液状で得られた。 硬化可能な樹脂〔A〕の製造 撹拌機、還流コンデンサー、温度計を付した2
三ツ口フラスコにイソシアナート付加体〔〕
430g、ビニルエステル樹脂〔〕760gを仕込
み、温度60℃に達した段階で、ジブチル錫ジラウ
レート2gを加え、60℃で3時間反応すると、赤
外分析の結果、遊離のイソシアナート基は完全に
消失していた。 スチレン410gを追加し、硬化可能な樹脂〔A〕
が赤褐色、粘度9.7ポイズで得られた。 樹脂〔A〕100部に、硬化剤として化薬ヌーリ
ー社の#328Eを1.5部、ナフテン酸コバルト0.5部
加えた系は29分でゲル化後急速に発熱し、硬化樹
脂を与えた。 その性質は、 曲げ強さ 16.7Kg/mm2 曲げ弾性係数 460Kg/mm2 シヤルピー衝撃値 3.7Kg・cm/cm2 熱変形温度 127℃ ロツクウエル硬さ M−113 であつた。 比較例 1 同一装置に、ビニルエステル〔〕760gに、
2,4−トリレンジイソシアナート174g(イソ
シアナート付加体〔〕と等モルのイソシアナー
ト基を含む)を加え、60℃でジブチル錫ジラウレ
ート1.6gを加えた所、約3分後にゲル化し、実
用可能な樹脂は得られなかつた。 実施例 2 エポキシ樹脂−キシレノール付加体〔〕の製
造 撹拌機、還流コンデンサー、温度計を付した2
三ツ口フラスコに、ノボラツク型エポキシ樹脂
として、DEN−431を360g、2,6−キシレノ
ール270g、ベンジルメチルアミン2gを仕込み、
150〜160℃で3時間反応すると、赤外分析の結果
遊離のエポキシ基は消失したものと認められた。 更にスチレン370g、ハイドロキノン0.1g加
え、エポキシ樹脂−キシレノール付加体〔〕が
淡赤褐色液状で得られた。 イソシアナート付加体〔〕の製造 室温付近に迄冷却した付加体〔〕全量に、更
にジフニルメタンジイソシアナート500g、スチ
レン330g加え、昇温させて60℃で5時間反応す
ると、実施例1と同様の分析により、イソシアナ
ート価はほぼ半減したものと認められた。 イソシアナート付加体〔〕が淡赤褐色、液状
で得られた。 硬化可能な樹脂〔B〕の製造 撹拌機、還流コンデンサー、温度計を付した3
三ツ口フラスコに、イソシアナート付加体
〔〕を920g、実施例1で用いたビニルエステル
〔〕を760g、パラベンゾキノン0.1gを仕込み、
60℃に加温してからジブチル錫ジラウレート1g
加え、60℃3時間加熱すると、赤外分析の結果遊
離のイソシアナート基は完全に消失していること
が確認された。 スチレン520gを追加し、赤褐色、粘度22.6ポ
イズの硬化可能な樹脂〔B〕が得られた。 樹脂〔B〕100部に、#328Eを1.5部、ナフテン
酸コバルト0.3部加えた樹脂は14分でゲル化後急
速に発熱し、最高発熱温度は154℃に達した。 硬化樹脂の熱変形温度は129℃、曲げ強さは
14.9Kg/mm2であつた。 実施例 3 エポキシ樹脂−α−ナフトール付加物〔〕の
製造 撹拌機、還流コンデンサー、温度計を付した2
三ツ口フラスコに、エポキシ樹脂として、ユニ
オン・カーバイト社のERL−4221を260g、α−
ナフトール280g、トリフエニルホスフイン2g
を仕込み、150〜160℃に昇温、必要に応じて冷却
後160℃で8時間反応すると、赤外分析の結果遊
離のエポキシ基は消失したことが確認された。 次で、温度120℃付近でp−メチルスチレン460
gを加え、エポキシ樹脂−αナフトール付加物
〔〕が淡赤褐色液状で得られた。 イソシアナート付加体〔〕の製造 エポキシ樹脂−αナフトール付加物〔〕の全
量に、更にイソホロンジイソシアナート440g、
p−メチルスチレン260gを追加し、60℃に加温
した後、ジブチル錫ジラウレート3gを加え、60
℃に6時間反応すると、実施例1と同様の分析方
法で、遊離のイソシアナート基はほぼ半減したも
のとみられた。 イソシアナート付加体〔〕が赤褐色、液状で
得られた。 ビニルエステル樹脂〔〕の製造 撹拌機、還流コンデンサー、温度計を付した2
三ツ口フラスコに、エポキシ樹脂として、
ERL−4221を520g、メタアクリル酸を344g、
ハイドロキノン0.5g、トリフエニルホスフイン
2.5gを仕込み、120〜125℃に5時間反応させる
と、酸価は7.4となつたので、p−メチルスチレ
ンを740g加え、ビニルエステル樹脂〔〕が赤
褐色液状で得られた。 硬化可能な樹脂〔C〕の製造 ビニルエステル樹脂〔〕を700g、イソシア
ナート付加体〔〕850g、パラベンゾキノン
0.15g、ジブチル錫ジラウレート2gを追加し、
60℃で8時間反応すると、赤外分析の結果遊離の
イソシアナート基は消失したことが確認された。 得られた硬化可能な樹脂〔C〕は赤褐色、粘度
39ポイズであつた。 樹脂〔C〕100部に、#328Eを1.5部、ナフテン
酸コバルト0.2部を加えた系は、室温で24分でゲ
ル化後急速に発熱し、最高発熱温度は149℃に達
した。 成形品の熱変形温度は 167℃、 曲げ強さ 11.9Kg/mm2 ロツクウエル硬さ M−115 であつた。 〔発明の効果〕 本発明の新規構造を有する硬化可能な樹脂は、
その合成が容易であり、またラジカル硬化させる
ことによつて、ビニルエステル樹脂より優れた物
性、特に耐熱性及び機械的強度に優れた性質を有
する硬化物が得られるので、塗料、接着剤、成形
材、FRPなど各種用途に極めて有用である。
Next, examples will be shown below to help understand the present invention. Example 1 Production of epoxy resin-phenol adduct [] 1 equipped with a stirrer, reflux condenser, and thermometer
In a three-necked flask, 360 g of Epicote 827 (produced by Yuka Ciel Epoxy Co., Ltd.) as an epoxy resin, 188 g of phenol, and 1.5 g of trimethylbenzylammonium chloride are charged and the temperature is raised. When the temperature exceeds 120°C, heat is generated rapidly. Cool and keep at 150-160℃, then reheat.
After reacting at 150-160°C for 5 hours, infrared analysis showed that free epoxy groups had completely disappeared. The epoxy resin-phenol adduct [] cooled to room temperature was syrup-like and pale yellowish brown in color. Production of isocyanate adduct [] Weighed 350 g of adduct [], 150 g of styrene, and 0.01 g of parabenzoquinone into a similar device, and
After heating and dissolving at ~70°C, 220 g of 2,4-tolylene diisocyanate was added and reacted at 60°C for 5 hours. As a result of analysis by di-n-butylamine-hydrochloric acid titration method, the isocyanate group concentration ranged from 3.8%. It was observed that the rate had decreased by almost half to 1.6%. 130 g of styrene was added to obtain an isocyanate adduct [] in the form of a pale yellowish brown liquid. Production of vinyl ester resin [ ] 1 with a stirrer, reflux condenser, and thermometer
In a three-necked flask, 360 g of the above-mentioned Epicote 827 as an epoxy resin, 172 g of methacrylic acid, 0.2 g of hydroquinone, and 1.5 g of trimethylbenzylammonium chloride were charged and reacted for 3 hours with vigorous stirring at 120 to 130°C, the acid value was
It became 5.9. 230 g of styrene was added, and vinyl ester resin [] was obtained in the form of a reddish brown liquid. Production of curable resin [A] 2 equipped with a stirrer, reflux condenser, and thermometer
Isocyanate adduct in a three-necked flask []
When the temperature reached 60℃, 2g of dibutyltin dilaurate was added and reacted at 60℃ for 3 hours. As a result of infrared analysis, free isocyanate groups completely disappeared. Was. Resin that can be cured by adding 410g of styrene [A]
was obtained with a reddish brown color and a viscosity of 9.7 poise. A system consisting of 100 parts of resin [A], 1.5 parts of #328E from Kayaku Nouri Co., Ltd. as a curing agent, and 0.5 part of cobalt naphthenate was gelled in 29 minutes and rapidly generated heat to give a cured resin. Its properties were: bending strength: 16.7 Kg/mm 2 bending modulus: 460 Kg/mm 2 Sharpie impact value: 3.7 Kg cm/cm 2 heat distortion temperature: 127°C Rockwell hardness: M-113. Comparative Example 1 In the same device, 760 g of vinyl ester []
When 174 g of 2,4-tolylene diisocyanate (containing equimolar isocyanate groups as the isocyanate adduct []) was added and 1.6 g of dibutyltin dilaurate was added at 60°C, it gelled after about 3 minutes and was ready for practical use. No viable resin was obtained. Example 2 Production of epoxy resin-xylenol adduct [] 2 equipped with a stirrer, reflux condenser, and thermometer
In a three-necked flask, 360 g of DEN-431, 270 g of 2,6-xylenol, and 2 g of benzylmethylamine were charged as a novolak type epoxy resin.
After reacting at 150-160°C for 3 hours, infrared analysis confirmed that free epoxy groups had disappeared. Furthermore, 370 g of styrene and 0.1 g of hydroquinone were added to obtain an epoxy resin-xylenol adduct in the form of a pale reddish brown liquid. Production of isocyanate adduct [] To the entire amount of adduct [] cooled to around room temperature, 500 g of dipnylmethane diisocyanate and 330 g of styrene were further added, and the mixture was heated and reacted at 60°C for 5 hours, resulting in Example 1. Similar analysis revealed that the isocyanate value was reduced by almost half. The isocyanate adduct [ ] was obtained in a pale reddish brown liquid state. Production of curable resin [B] 3 equipped with a stirrer, reflux condenser, and thermometer
In a three-necked flask, 920 g of isocyanate adduct [], 760 g of vinyl ester [] used in Example 1, and 0.1 g of parabenzoquinone were charged.
1g of dibutyltin dilaurate after heating to 60℃
In addition, upon heating at 60°C for 3 hours, infrared analysis confirmed that free isocyanate groups had completely disappeared. By adding 520 g of styrene, a curable resin [B] having a reddish brown color and a viscosity of 22.6 poise was obtained. A resin prepared by adding 1.5 parts of #328E and 0.3 parts of cobalt naphthenate to 100 parts of resin [B] rapidly generated heat after gelling in 14 minutes, and the maximum exothermic temperature reached 154°C. The heat distortion temperature of the cured resin is 129℃, and the bending strength is
It was 14.9Kg/ mm2 . Example 3 Production of epoxy resin-α-naphthol adduct [] 2 equipped with a stirrer, reflux condenser, and thermometer
In a three-necked flask, add 260 g of Union Carbide's ERL-4221 as an epoxy resin, α-
Naphthol 280g, triphenylphosphine 2g
was charged, heated to 150 to 160°C, cooled if necessary, and reacted at 160°C for 8 hours. As a result of infrared analysis, it was confirmed that free epoxy groups had disappeared. Next, p-methylstyrene 460 at a temperature of around 120℃
g was added, and an epoxy resin-α naphthol adduct [] was obtained in the form of a light reddish brown liquid. Production of isocyanate adduct [] To the total amount of epoxy resin-α naphthol adduct [], 440 g of isophorone diisocyanate,
Add 260g of p-methylstyrene and heat to 60°C, then add 3g of dibutyltin dilaurate and heat to 60°C.
After reacting at .degree. C. for 6 hours, the number of free isocyanate groups was found to have been reduced by approximately half using the same analytical method as in Example 1. The isocyanate adduct [ ] was obtained in a reddish brown liquid form. Production of vinyl ester resin [ ] 2 equipped with a stirrer, reflux condenser, and thermometer
As epoxy resin in a three-necked flask,
520g of ERL-4221, 344g of methacrylic acid,
Hydroquinone 0.5g, triphenylphosphine
After charging 2.5 g and reacting at 120 to 125° C. for 5 hours, the acid value became 7.4, so 740 g of p-methylstyrene was added to obtain vinyl ester resin [ ] in the form of a reddish-brown liquid. Production of curable resin [C] 700 g of vinyl ester resin [], 850 g of isocyanate adduct [], parabenzoquinone
Add 0.15g, dibutyltin dilaurate 2g,
After reacting at 60°C for 8 hours, infrared analysis confirmed that free isocyanate groups had disappeared. The obtained curable resin [C] has a reddish brown color and a viscosity of
It was 39 poise. A system in which 100 parts of resin [C], 1.5 parts of #328E, and 0.2 parts of cobalt naphthenate were added rapidly generated heat after gelling at room temperature in 24 minutes, and the maximum exothermic temperature reached 149°C. The molded product had a heat distortion temperature of 167°C, a bending strength of 11.9 kg/mm , and a Rockwell hardness of M-115. [Effects of the Invention] The curable resin having the novel structure of the present invention has the following properties:
It is easy to synthesize, and by radical curing, a cured product with physical properties superior to vinyl ester resins, especially heat resistance and mechanical strength, can be obtained. It is extremely useful for various uses such as wood and FRP.

Claims (1)

【特許請求の範囲】 1 (A) 1分子中に2個以上のエポキシ基を有す
るエポキシ樹脂に、1価フエノール類を、エポ
キシ基とフエノール性水酸基とが実質的に等モ
ルになるように反応させて得られる、1分子中
にそれぞれ2個以上の水酸基とアリルオキシメ
チレン基を共有するエポキシ樹脂−フエノール
付加体と、 (B) 1分子中に2個以上のエポキシ基を有するエ
ポキシ樹脂に、アクリル酸またはメタクリル酸
を、エポキシ基とカルボキシル基とが実質的に
当量になる割合で反応させて得られる、1分子
中にそれぞれ2個以上のアクリロイル基または
メタクリロイル基とヒドロキシル基とを共有す
るビニルエステル樹脂とを、 (C) ジイソシアナートと、 反応させて少なくとも4個のウレタン結合を介
して(A)成分と(B)成分とを(C)成分によつて結合さ
せることを特徴とする硬化可能な樹脂の製造方
法。
[Claims] 1 (A) An epoxy resin having two or more epoxy groups in one molecule is reacted with a monovalent phenol so that the epoxy groups and phenolic hydroxyl groups are substantially equimolar. (B) an epoxy resin-phenol adduct that shares two or more hydroxyl groups and allyloxymethylene groups in each molecule, obtained by Vinyl that shares two or more acryloyl groups or methacryloyl groups and hydroxyl groups in each molecule, obtained by reacting acrylic acid or methacrylic acid in a ratio in which epoxy groups and carboxyl groups are substantially equivalent. ester resin and (C) a diisocyanate to bond components (A) and (B) with component (C) through at least four urethane bonds. Method of manufacturing curable resin.
JP61025693A 1986-02-10 1986-02-10 Curable resin Granted JPS62184011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61025693A JPS62184011A (en) 1986-02-10 1986-02-10 Curable resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61025693A JPS62184011A (en) 1986-02-10 1986-02-10 Curable resin

Publications (2)

Publication Number Publication Date
JPS62184011A JPS62184011A (en) 1987-08-12
JPH0349285B2 true JPH0349285B2 (en) 1991-07-29

Family

ID=12172870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61025693A Granted JPS62184011A (en) 1986-02-10 1986-02-10 Curable resin

Country Status (1)

Country Link
JP (1) JPS62184011A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19632022A1 (en) * 1995-08-11 1997-03-06 Takeda Chemical Industries Ltd Vinyl ester resin compsn. for prodn. of hardened moulded prods.
CN103189188B (en) * 2010-11-19 2015-09-09 三菱电机株式会社 The manufacture method of fiber-reinforced plastic formed body, performing member and manufacture method thereof and adhesive film

Also Published As

Publication number Publication date
JPS62184011A (en) 1987-08-12

Similar Documents

Publication Publication Date Title
EP0470674B1 (en) Epoxy resin composition
JPH05140253A (en) Curable molding material with increased viscosity and its preparation
EP0168126A1 (en) Process for producing a curable resin
JPS5871914A (en) Poly(oxazolidone/urethane) thermosettable resin and manufacture
JPH0349285B2 (en)
CN111116857B (en) Vinyl resin and preparation method thereof
JPH0346485B2 (en)
JPH0333180B2 (en)
JPH0410894B2 (en)
JPH0347649B2 (en)
JPH0411567B2 (en)
JPH0333179B2 (en)
US4996270A (en) Vinyl ester resins
JPS619424A (en) Urethane (meth)acrylate resin
JPH0411566B2 (en)
JPH0155650B2 (en)
JPH0364530B2 (en)
JPH0411568B2 (en)
JP2851414B2 (en) Heat resistant vinyl ester resin composition
JPS6254815B2 (en)
JPS6330518A (en) Curable resin and its production
JPS63142011A (en) Normal temperature-curable resin
JPS6320333A (en) Production of curable resin
JPH07690B2 (en) Method for modifying unsaturated polyester resin
JPS62153311A (en) Cured film and its production