JPH0349224B2 - - Google Patents

Info

Publication number
JPH0349224B2
JPH0349224B2 JP12066884A JP12066884A JPH0349224B2 JP H0349224 B2 JPH0349224 B2 JP H0349224B2 JP 12066884 A JP12066884 A JP 12066884A JP 12066884 A JP12066884 A JP 12066884A JP H0349224 B2 JPH0349224 B2 JP H0349224B2
Authority
JP
Japan
Prior art keywords
voltage
power supply
midpoint
inverting input
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12066884A
Other languages
Japanese (ja)
Other versions
JPS611160A (en
Inventor
Kenji Takato
Mitsutoshi Ayano
Kyoshi Shibuya
Yoshimi Iijima
Atsuo Serikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59120668A priority Critical patent/JPS611160A/en
Priority to CA000481865A priority patent/CA1233580A/en
Priority to US06/736,345 priority patent/US4631366A/en
Priority to KR1019850003559A priority patent/KR900000721B1/en
Priority to EP85106415A priority patent/EP0163275B2/en
Priority to DE8585106415T priority patent/DE3576266D1/en
Priority to AU42834/85A priority patent/AU560001B2/en
Publication of JPS611160A publication Critical patent/JPS611160A/en
Publication of JPH0349224B2 publication Critical patent/JPH0349224B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M19/00Current supply arrangements for telephone systems
    • H04M19/001Current supply source at the exchanger providing current to substations
    • H04M19/005Feeding arrangements without the use of line transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Devices For Supply Of Signal Current (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、デイジタル交換機の給電回路に係
り、特に加入者回路の定電流給電回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a power supply circuit for a digital exchange, and particularly to a constant current power supply circuit for a subscriber circuit.

デイジタル交換機の加入者回路の一般的構成例
を第4図に示す。同図において、B1は本発明が
関係する給電部、Oは雷等の大電圧から加入者回
路を保護するための大電圧保護部(図においては
一次と二次が設けられている)、Rはリンギング
回路であつて加入者Jにベル音を通知する回路、
Cは音声信号とPCM信号との間で変換を行うコ
ーデツク、Hは2線−4線変換を行うハイブリツ
ド、そしてTは試験回路である。
FIG. 4 shows an example of a general configuration of a subscriber circuit of a digital exchange. In the figure, B1 is a power supply unit to which the present invention relates, O is a high voltage protection unit for protecting subscriber circuits from large voltages such as lightning (primary and secondary are provided in the figure), R is a ringing circuit that notifies subscriber J of a bell sound;
C is a codec that performs conversion between audio signals and PCM signals, H is a hybrid that performs 2-wire to 4-wire conversion, and T is a test circuit.

給電部Bは通信線A,Bに接続されており、加
入者Jのオフフツク時に定電流を通話線A,Bに
供給する。この場合、給電部Bは交流信号(音声
信号)に対しては信号を減衰させない様にハイイ
ンピーダンスとなつている。
Power supply section B is connected to communication lines A and B, and supplies constant current to communication lines A and B when subscriber J is off-hook. In this case, the power feeding section B has a high impedance for AC signals (audio signals) so as not to attenuate the signals.

〔従来技術〕[Prior art]

従来の加入者回路の給電回路を第5図から第7
図によつて説明する。
The power supply circuit of the conventional subscriber circuit is shown in Figures 5 to 7.
This will be explained using figures.

第5図aは従来の定抵抗形給電回路の回路図、
第5図bはこの回路における通話線A,Bのそれ
ぞれの給電回路の直流電圧−電流特性を示すグラ
フである。第5図aにおいて、通話線Aと電源−
VBBの間に抵抗R1とインダクタンスL1が直列接続
されており、通話線Bと接地Gの間に抵抗R2
インダクタンスL2が直列接続されている。イン
ダクタンスL1,L2は通常、リレーに用いられる
レターコイルが適用され抵抗R1,R2は通常レタ
ーコイルの巻線抵抗である。レターコイルは一般
に音声周波数の信号に対しては高インピーダンス
であるので、音声信号を給電回路に引込むことは
なく、従つて音声信号は通話線A,B上を減衰す
ることなく通過する。しかも、レターコイルは直
流に対しては抵抗R1,R2で示される低インピー
ダンスとなり給電電流値は第5図bに示すように
安定に定まる。
Figure 5a is a circuit diagram of a conventional constant resistance type power supply circuit.
FIG. 5b is a graph showing the DC voltage-current characteristics of the respective feeder circuits of communication lines A and B in this circuit. In Figure 5a, the communication line A and the power supply -
A resistor R 1 and an inductance L 1 are connected in series between V BB and a resistor R 2 and an inductance L 2 are connected in series between the communication line B and ground G. Inductances L 1 and L 2 are usually letter coils used in relays, and resistors R 1 and R 2 are usually letter coil winding resistances. Since the letter coil generally has a high impedance for audio frequency signals, the audio signal is not drawn into the power supply circuit, and therefore the audio signal passes through the communication lines A and B without attenuation. Furthermore, the letter coil has a low impedance with respect to direct current as indicated by the resistances R 1 and R 2 , and the feeding current value is stably determined as shown in FIG. 5b.

すなわち、第5図bにおいて、グラフは通話
線Bの電圧−電流特性を示しており、グラフは
通話線Aの電圧−電流特性を示している。加入者
Jがオフフツクして通話線AとBが接続されてい
る状態では、通話線AとBの中点電位は常に−
VBB/2となつている。
That is, in FIG. 5b, the graph shows the voltage-current characteristics of the communication line B, and the graph shows the voltage-current characteristics of the communication line A. When subscriber J goes off-hook and communication lines A and B are connected, the midpoint potential of communication lines A and B is always -
V BB /2.

レターコイルによる定抵抗形給電回路では、加
入者線路が短い時に100mA以上の電流が流れる
ので消費電力及び発熱に対応する実装上の見地か
ら経済的ではないという問題がある。
In a constant resistance type power supply circuit using a letter coil, a current of 100 mA or more flows when the subscriber line is short, so there is a problem that it is not economical from a mounting point of view in terms of power consumption and heat generation.

そこで、第6図aに示す、低消費電力が可能な
定電流形の給電回路が従来から考えられていた。
第6図aにおいては、給電回路Ba,Bbはそれぞ
れ、抵抗Rと定電流源Isa又はIsbとの並列回路で
構成されている。この回路によれば、定電流源自
体が高インピーダンスのため、音声信号が通話線
上で減衰することはなく、且つ、加入者線路の距
離に無関係に常に一定電流を流すことができるの
で低消費電力化を図ることができる。しかしなが
ら、第6図bに示したその電圧−電流特性からわ
かるように、定電流値Isa(図示2)、Isb(図示1)
又、抵抗Rのアンバランスにより、加入者Jのオ
フフツク中での通話線A,B間の中点電位は−
VBB/2に必ずしもならず、通信線A,Bの各々
の電圧は接地と−VBB/2、−VBB/2と電源電圧
−VBBの間にある為、A,Bの電位は電源電圧−
VBB又は接地電位Gに極端に移動し、その結果給
電回路のトランジスタが飽和し、通話信号がクリ
ツプしてしまうという問題がある。
Therefore, a constant current type power supply circuit capable of low power consumption, as shown in FIG. 6a, has been considered in the past.
In FIG. 6a, each of the power supply circuits B a and B b is constituted by a parallel circuit of a resistor R and a constant current source I sa or I sb . According to this circuit, the constant current source itself has high impedance, so the voice signal does not attenuate on the telephone line, and a constant current can always flow regardless of the distance of the subscriber line, resulting in low power consumption. It is possible to aim for However, as can be seen from the voltage-current characteristics shown in Figure 6b, the constant current values I sa (Figure 2) and I sb (Figure 1)
Also, due to the unbalance of the resistor R, the midpoint potential between the communication lines A and B when subscriber J is off-hook is -
The potential of A and B is not necessarily V BB /2, but the voltage of each communication line A and B is between ground and -V BB /2, and between -V BB /2 and power supply voltage -V BB , so the potential of A and B is Power supply voltage -
There is a problem in that there is an extreme shift to V BB or ground potential G, resulting in saturation of the transistor in the power supply circuit and clipping of the speech signal.

また、たとえ2つの定電流源の特性が全く相等
しい場合でも、通話線A及びBに外来ノイズが同
相ノイズとして加わると、二つの定電流源Isa
びIsbの電流値のバランスがくずれた形と同等に
なり、上記中点電位はやはり−VBB/2からずれ
てしまい。音声信号のクリツプの原因となる。
Furthermore, even if the characteristics of the two constant current sources are exactly the same, if external noise is added to the communication lines A and B as common mode noise, the current values of the two constant current sources I sa and I sb will become unbalanced. The above midpoint potential still deviates from -V BB /2. This causes audio signal clipping.

第7図は第6図の従来回路を具体的にした従来
の定電流給電回路を示す回路図である。同図にお
いて、A0,A1は演算増幅器(以下オペアンプと
称する)、Tr0,Tr1はトランジスタ、Tは通話信
号を通すトランス、Cは直流阻止コンデンサであ
る。抵抗Ra0,Rb,Ra1により地気(0V)と電池
−VBBの間の電圧を分割する。抵抗Ra0,Ra1の両
端の電圧がオペアンプA0,A1の非反転入力端子
に基準電位としてそれぞれ加わると、抵抗Re0
Re1の両端電圧が抵抗Ra0,Ra1の両端電圧とそれ
ぞれ等しくなるように、オペアンプA0,A1が動
作し、抵抗Re0には Isb={VBB×Rs0/Ra0+Rb+Ra1}/Re0 の定電流が流れる。抵抗Re1にも同様に Isa={VBB×Ra1/Ra0+Rb+Ra1}/Re1 の定電流が流れる。トランジスタTr0,Tr1の電
流増幅率hFEをhFE≫1とすれば、抵抗Re0を流れ
る電流IsbはトランジスタTr0を流れる電流にほぼ
等しくなり、抵抗Re1を流れる電流Isaはトランジ
スタTr1を流れる電流にほぼ等しくなる。IabとIsa
及び抵抗R0とR1が全く等しければ、理論的には
通話線AとBの中点電位は−VBB/2となる筈で
あるが、定電流回路を構成する素子の特性が若干
でもちがうと、IsaとIsbは異なる値となり、前述
の如く通話線A及びBは電源電圧−VBB又は接地
電圧0Vに極端に移動してしまう。これを防ぐた
めに、抵抗R0,R1が定電流源に付加されている。
抵抗R0,R1により上記二つの定電流値Isa,Isb
誤差を吸収する様に働く。
FIG. 7 is a circuit diagram showing a conventional constant current power supply circuit which is a concrete example of the conventional circuit shown in FIG. In the figure, A 0 and A 1 are operational amplifiers (hereinafter referred to as operational amplifiers), Tr 0 and Tr 1 are transistors, T is a transformer that passes a communication signal, and C is a DC blocking capacitor. The voltage between the ground air (0V) and the battery -VBB is divided by resistors R a0 , R b , and R a1 . When the voltages across the resistors R a0 and R a1 are applied as reference potentials to the non-inverting input terminals of the operational amplifiers A 0 and A 1 , respectively, the resistors R e0 and
The operational amplifiers A 0 and A 1 operate so that the voltage across R e1 is equal to the voltage across resistors R a0 and R a1 , respectively, and the resistor R e0 has I sb = {V BB ×R s0 /R a0 +R A constant current of b + R a1 }/R e0 flows. Similarly, a constant current of I sa = {V BB ×R a1 /R a0 +R b +R a1 }/R e1 flows through the resistor R e1 . If the current amplification factor h FE of the transistors Tr 0 and Tr 1 is h FE ≫1, the current I sb flowing through the resistor R e0 is approximately equal to the current flowing through the transistor Tr 0 , and the current I sa flowing through the resistor R e1 is It is approximately equal to the current flowing through transistor Tr1 . I ab and I sa
If the resistors R 0 and R 1 are exactly equal, theoretically the midpoint potential of communication lines A and B should be -V BB /2, but even if the characteristics of the elements that make up the constant current circuit are slightly different, If they are different, I sa and I sb will have different values, and as described above, the communication lines A and B will extremely move to the power supply voltage -V BB or the ground voltage 0V. To prevent this, resistors R 0 and R 1 are added to the constant current source.
The resistors R 0 and R 1 work to absorb errors in the two constant current values I sa and I sb .

しかしながら、抵抗R0,R1の抵抗値を小さく
すると、定電流特性は損われ、且つ、給電回路の
通話信号に対するインピーダンスが低くなり、通
話信号が減衰することになるので、あまり小さく
はできないという問題がある。抵抗値が大きいと
定電流特性が維持されるが通話線A,B間の中点
電位が−VBB/2よりずれやすくなる。
However, if the resistance values of resistors R 0 and R 1 are made small, the constant current characteristics will be impaired, and the impedance of the power supply circuit to the speech signal will be lowered, causing the speech signal to be attenuated, so it cannot be made too small. There's a problem. If the resistance value is large, constant current characteristics are maintained, but the midpoint potential between communication lines A and B tends to deviate from -V BB /2.

さらに、同相ノイズが通信線A,Bに加わる
と、インピーダンスの値に比例した同相ノイズ電
圧が発生し、第6図bについて前述した如く二つ
の定電流源のバランスをくずして通信信号のクリ
ツプあるいは通信信号の通過阻止の原因となり易
いという問題がある。
Furthermore, when common-mode noise is applied to communication lines A and B, a common-mode noise voltage proportional to the impedance value is generated, which upsets the balance between the two constant current sources and causes the communication signal to become clipped or There is a problem in that it is likely to cause the passage of communication signals to be blocked.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、上述の従来形における問題に
かんがみ、加入者回路の定電流給電回路におい
て、定電流特性を維持して低消費電力を図り、通
話線に印加される同相信号に対してのみインピー
ダンスを低下させて同相ノイズに対する耐力を向
上させ、且つ、通話線の中点電位を電源電圧と接
地電圧の中間に固定して通信信号のクリツプを防
止することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems with the conventional type, it is an object of the present invention to maintain constant current characteristics and reduce power consumption in a constant current power supply circuit of a subscriber circuit, and to The purpose of this method is to lower the impedance to improve resistance to common-mode noise, and to fix the midpoint potential of the communication line between the power supply voltage and the ground voltage to prevent communication signal clipping.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するために、本発明により、
提供されるものは、電源と接地間の、電位に対し
上下対称となる2対の基準電圧設定素子群で分割
して得られる電圧を基準電位とし、二本の通話線
にそれぞれ一定電流を供給する定電流回路と、 該通話線間の中点電圧を検出し前記2対の基準
電圧設定素子群の中点に出力する中点電圧出力手
段とを備え、 前記定電流回路は、該前記基準電圧設定素子群
で分割された電圧を基準電圧として入力する演算
増幅器と、抵抗、トランジスタにより構成される
電圧−電流変換回路を備え、前記演算増幅器の非
反転入力端子は前記基準電圧設定素子群を介して
前記中点電圧出力手段の出力電圧を受け、反転入
力端子は前記トランジスタの前記電源側又は前記
接地側の一端子に接続され、出力端子は該トラン
ジスタのベースに接続されており、該トランジス
タの他端子は該通信線に接続され、且つ、前記演
算増幅器の反転入力端子と前記トランジスタの該
一端との間、及び該演算増幅器の反転入力端子と
前記電源又は前記接地との間に、それぞれ、電源
雑音吸収用抵抗を接続し、それによつて、前記演
算増幅器の非反転入力端子の電位と反転入力端子
の電位とが、電源雑音に対して同一電位となるよ
うにし、 前記中点電圧出力手段は、該通話線間の中点電
位を正相増幅する増幅器を備え、該増幅器の出力
は2対の前記基準電圧設定素子群の中点に接続し
てなることを特徴とする加入者回路の定電流給電
回路である。
In order to solve the above problems, according to the present invention,
What is provided is a voltage that is divided between the power supply and the ground by two pairs of reference voltage setting elements that are vertically symmetrical with respect to the potential, and the voltage obtained is set as the reference potential, and a constant current is supplied to each of the two communication lines. and a midpoint voltage output means for detecting a midpoint voltage between the communication lines and outputting it to the midpoint of the two pairs of reference voltage setting element groups; It includes an operational amplifier that inputs the voltage divided by the voltage setting element group as a reference voltage, and a voltage-current conversion circuit composed of a resistor and a transistor, and a non-inverting input terminal of the operational amplifier inputs the voltage divided by the reference voltage setting element group. The inverting input terminal is connected to one terminal of the power supply side or the ground side of the transistor, the output terminal is connected to the base of the transistor, and the inverting input terminal is connected to one terminal of the power supply side or the ground side of the transistor. The other terminal is connected to the communication line, and is connected between the inverting input terminal of the operational amplifier and the one end of the transistor, and between the inverting input terminal of the operational amplifier and the power supply or the ground, respectively. , a power supply noise absorbing resistor is connected so that the potential of the non-inverting input terminal and the potential of the inverting input terminal of the operational amplifier are the same potential with respect to the power supply noise, and the midpoint voltage output The subscriber circuit is characterized in that the means includes an amplifier that amplifies the midpoint potential between the communication lines in positive phase, and the output of the amplifier is connected to the midpoint of the two pairs of the reference voltage setting elements. This is a constant current power supply circuit.

本発明の他の態様によれば、電源と接地間の、
電位に対して上下対称となる2対の基準電圧設定
素子群で分割して得られる電圧を基準電位とし、
二本の通話線にそれぞれ一定電流を供給する定電
流回路と、 該通話線間の中点電圧を検出し前記2対の基準
電圧設定素子群の中点に出力する中点電圧出力手
段とを備え、 前記定電流回路は、該前記基準電圧設定素子群
で分割された電圧を基準電圧として入力する演算
増幅器と、抵抗、トランジスタにより構成される
電圧−電流変換回路を備え、前記演算増幅器の非
反転入力端子は前記基準電圧設定素子群を介して
前記中点電圧出力手段の出力電圧を受け、反転入
力端子は前記トランジスタの前記電源側又は前記
接地側の一端子に接続され、出力端子は該トラン
ジスタのベースに接続されており、該トランジス
タの他端子は該通信線に接続され、且つ、前記演
算増幅器の反転入力端子と前記トランジスタの該
一端との間、及び該演算増幅器の反転入力端子と
前記電源又は前記接地との間に、それぞれ、電源
雑音吸収用抵抗を接続し、それによつて、前記演
算増幅器の非反転入力端子の電位と反転入力端子
の電位とが、電源雑音に対して同一電位となるよ
うにし、 さらに、前記演算増幅器の出力と前記トランジ
スタのベースの間に電流制限用抵抗を接続し、 前記中点電圧出力手段は、該通話線間の中点電
位を正相増幅する増幅器を備え、該増幅器の出力
は2対の前記基準電圧設定素子群の中点に接続
し、 該増幅器の出力と該電源又は該接地との間に電
流制限用のツエナーダイオードを接続してなるこ
とを特徴とする加入者回路の定電流給電回路が提
供される。
According to another aspect of the invention, between power supply and ground;
The voltage obtained by dividing by two pairs of reference voltage setting element groups that are vertically symmetrical with respect to the potential is set as a reference potential,
A constant current circuit that supplies a constant current to each of the two communication lines, and a midpoint voltage output means that detects the midpoint voltage between the two communication lines and outputs it to the midpoint of the two pairs of reference voltage setting elements. The constant current circuit includes an operational amplifier that inputs the voltage divided by the reference voltage setting element group as a reference voltage, and a voltage-current conversion circuit composed of a resistor and a transistor. The inverting input terminal receives the output voltage of the midpoint voltage output means via the reference voltage setting element group, the inverting input terminal is connected to one terminal of the power supply side or the grounding side of the transistor, and the output terminal is connected to one terminal of the power supply side or the ground side of the transistor. The transistor is connected to the base of the transistor, and the other terminal of the transistor is connected to the communication line, and between the inverting input terminal of the operational amplifier and the one end of the transistor, and the inverting input terminal of the operational amplifier and A power supply noise absorbing resistor is connected between the power supply or the ground, respectively, so that the potential of the non-inverting input terminal and the potential of the inverting input terminal of the operational amplifier are the same with respect to power supply noise. further, a current limiting resistor is connected between the output of the operational amplifier and the base of the transistor, and the midpoint voltage output means amplifies the midpoint potential between the communication lines in positive phase. an amplifier, the output of the amplifier is connected to the midpoint of the two pairs of reference voltage setting elements, and a Zener diode for current limiting is connected between the output of the amplifier and the power source or the ground. A constant current power supply circuit for a subscriber circuit is provided.

〔実施例〕〔Example〕

以下、第1図から第3図によつて本発明の実施
例を詳述する。
Embodiments of the present invention will be described in detail below with reference to FIGS. 1 to 3.

第1図は本発明の前提となる加入者回路の定電
流給電回路を示す回路図である。同図において、
第7図について前述した従来例との相違は、中点
電位検出出力の手段として中点電圧検出回路ID
が付加されていること、第7図の抵抗Rbを2等
分した抵抗Rb0,Rb1が設けられていること、及
び第7図の抵抗R0,R1が除去されていることに
ある。そしてこの抵抗Ra0,Rb0及びRa1,Rb1
それぞれ基準電位設定素子群となる。中点電圧検
出回路IDは、通信線A,Bの間に直列接続され
た抵抗Rc0,Rc1(Rc0=Rc1)と、増幅器A2を備え
ている。電源−VBBと接地Gとの間には定電流設
定用の抵抗Ra0,Rb0,Rb1,Ra1(Ra0=Ra1,Rb0
=Rb1)が直列接続されている。増幅器A2の入力
は抵抗Rc0とRc1との接続点M1に、出力は抵抗Rb0
とRb1の接続点M2に接続されている。増幅器A2
はボルテージホロワでゲインが1であり、通信線
A,Bの中点電位信号を定電流設定用抵抗Rb0
Rb1の中点M2に帰還をかける。抵抗Rc0,Rc1の接
続点M1には、通信線A,B上の同相モードの信
号のみが得られ、通常の通話信号は差動信号なの
で接続点M1には現われない。増幅器A2の出力に
得られる同相信号は、抵抗Rb0又はRb1を介して
オペアンプA0又はA1の非反転入力端子に印加さ
れ、オペアンプA0,A1の動作により、その反転
入力端子に上記同相信号が得られる。この同相信
号はトランジスタTr0,Tr1により反転され、上
記同相信号と逆相の信号が通信線A,Bに加わ
る。従つて、定電流回路CC0,CC1の同相信号に
対するインピーダンスはそれぞれ、定電流源によ
る無限大から、(Ra0+Rb0×Re0/Ra0、 (Ra1+Rb1)×Re1/Ra1 の低インピーダンスに低下し、同相ノイズが定電
流回路に吸収されることになり、同相ノイズに対
する給電回路の耐力が向上する。
FIG. 1 is a circuit diagram showing a constant current feeding circuit for a subscriber circuit, which is the premise of the present invention. In the same figure,
The difference from the conventional example described above in FIG. 7 is that the midpoint voltage detection circuit ID is used as a means of midpoint potential detection output.
is added, resistors R b0 and R b1 are provided, which are obtained by dividing the resistor R b in Fig. 7 into two, and resistors R 0 and R 1 in Fig. 7 are removed. be. The resistors R a0 , R b0 and R a1 , R b1 each constitute a reference potential setting element group. The midpoint voltage detection circuit ID includes resistors R c0 and R c1 (R c0 =R c1 ) connected in series between communication lines A and B, and an amplifier A 2 . Constant current setting resistors R a0 , R b0 , R b1 , R a1 (R a0 = R a1 , R b0
= R b1 ) are connected in series. The input of amplifier A 2 is connected to the connection point M 1 between resistors R c0 and R c1 , and the output is connected to resistor R b0
and R b1 are connected to the connection point M2 . Amplifier A 2
is a voltage follower with a gain of 1, and the midpoint potential signal of communication lines A and B is connected to constant current setting resistor R b0 ,
Apply feedback to the midpoint M2 of R b1 . At the connection point M1 between the resistors R c0 and R c1 , only the common mode signals on the communication lines A and B are obtained, and since the normal communication signal is a differential signal, it does not appear at the connection point M1 . The common-mode signal obtained at the output of amplifier A 2 is applied to the non-inverting input terminal of operational amplifier A 0 or A 1 via resistor R b0 or R b1 , and due to the operation of operational amplifiers A 0 and A 1 , its inverting input The above in-phase signal is obtained at the terminal. This in-phase signal is inverted by transistors Tr 0 and Tr 1 , and signals having a phase opposite to the in-phase signal are applied to communication lines A and B. Therefore, the impedances of the constant current circuits CC 0 and CC 1 for the common-mode signal are respectively (R a0 + R b0 × R e0 /R a0 , (Ra1 + R b1 ) × R e1 /R a1 from infinity due to the constant current source). The impedance of the power supply circuit decreases to a low impedance, and common-mode noise is absorbed by the constant current circuit, improving the resistance of the power supply circuit to common-mode noise.

上記同相インピーダンスが上式のように表わさ
れる理由は次の通りである。
The reason why the common mode impedance is expressed as in the above equation is as follows.

すなわち、第1図において、同相信号とは、通
信線A,B両方の端子に同じ位相の電圧が引加さ
れることであり、差動信号とは通信線A,B両方
の端子に逆位相の電圧が引加される事である。
That is, in Fig. 1, a common-mode signal means that voltages of the same phase are applied to both terminals of communication lines A and B, and a differential signal means that voltages of the same phase are applied to both terminals of communication lines A and B. This means that phase voltages are applied.

ここで中点電圧M1は、同相信号の場合はA,
B両方の電圧と同じになる。
Here, the midpoint voltage M 1 is A in the case of a common mode signal,
The voltage of both B will be the same.

また差動信号の場合は、抵抗Rc0,Rc1が等しけ
れば、電圧は零になる。
Further, in the case of a differential signal, if the resistances R c0 and R c1 are equal, the voltage becomes zero.

同相信号の場合のM1の電圧はA,Bの電圧と
等しいが、増幅器A2により中点M2は低インピー
ダンス(0Ω)で電圧が加えられる。
In the case of a common mode signal, the voltage on M 1 is equal to the voltage on A and B, but the amplifier A 2 applies a voltage to the midpoint M 2 at low impedance (0Ω).

そこで、給電回路は、G側と−VBB側でそれぞ
れ独立に等価回路が描ける。
Therefore, equivalent circuits of the power supply circuit can be drawn independently on the G side and the -V BB side.

同相インピーダンスは交流に対するインピーダ
ンスであり、A点の交流電圧をVaとすると、M1
の電圧もVaであり、M2の電圧もVaである。
Common mode impedance is the impedance for alternating current, and if the alternating current voltage at point A is V a , then M 1
The voltage of M 2 is also V a , and the voltage of M 2 is also V a .

オペアンプA1の非反転入力は無限大のインピ
ーダンスであるため、ここの電圧V+は抵抗Rb1
とRa1で分圧したものである。
Since the non-inverting input of operational amplifier A1 has infinite impedance, the voltage V+ here is the resistance R b1
and R a1 .

V+=Va×Ra1/(Ra1+Rb1) V+の電圧はオペアンプの動作(イマジナリーシ
ヨート)により、抵抗Re1のトランジスタに接続
される側の電圧をV+と同じにする。
V + = V a × R a1 / (R a1 + R b1 ) The voltage of V + is set to the same voltage as V + on the side connected to the transistor of resistor R e1 by the operation of the operational amplifier (imaginary short). .

従つて抵抗Re1に流れる電流Ire1は、 Ire1=V+/Re1=Va×Ra1/((Ra1+Rb1) ×Re1 となる。トランジスタTr1はこのIre1にほぼ等し
い(1/Hfeだけ少ない)電流をA点より引きこ
む。従つて同相インピーダンスはA点の電圧に対
する電流で規定出来るので、 同相インピーダンス=Va/Ire1=Va/(Va×Ra1/((Ra1
+Rb1)×Re1))=(Ra1Rb1×Re1/Ra1 となる。回路は対称であるので、B点側も同様に
(Ra0+Rb0)×Re0/Ra0となる。
Therefore, the current I re1 flowing through the resistor R e1 is I re1 = V + /R e1 = V a × R a1 / ((R a1 + R b1 ) × R e1 . The transistor Tr 1 is approximately equal to this I re1 (Less by 1/H fe ) current is drawn from point A. Therefore, the common mode impedance can be defined by the current with respect to the voltage at point A, so common mode impedance = V a /I re1 = V a / (V a ×R a1 /((R a1
+R b1 ) x R e1 )) = (R a1 R b1 x R e1 /R a1 . Since the circuit is symmetrical, the same goes for the point B side (R a0 + R b0 ) x R e0 /R a0. .

また定電流源のアンバランスによる通信線A,
Bの中点電位のずれは、A,Bの同相のずれとし
て検出され、上記低インピーダンスの値で、−
VBB/2付近に安定する為第7図の従来回路の如
き付加抵抗R0,R1は不要になる。
Also, communication line A due to unbalance of constant current source,
A shift in the midpoint potential of B is detected as a shift in the same phase of A and B, and at the above low impedance value, -
Since the voltage is stabilized around V BB /2, the additional resistors R 0 and R 1 as in the conventional circuit shown in FIG. 7 are not required.

第1図の回路により、定電流構成で、しかも同
相信号に対するインピーダンスが小さい給電回路
が得られる。
The circuit shown in FIG. 1 provides a power supply circuit that has a constant current configuration and has low impedance to common-mode signals.

しかしながら、第1図の回路のみでは、以下に
述べる不都合がある。すなわち、第1図の回路で
は接地Gと電源−VBBの間の電圧を単純に分割し
て定電流値の設定を行つているので、電源−VBB
に電圧VNのノイズが混入した場合、オペアンプ
A1の非反転入力端子にはRa0+Rb0+Rb1/Ra0+Rb0+Rb1
+Ra1× VNの信号が入り、オペアンプA0の非反転入力端
子にはRa0/Ra0+Rb0+Rb1+Ra1×VNの信号が入る。
However, the circuit shown in FIG. 1 alone has the following disadvantages. In other words, in the circuit shown in Figure 1, the constant current value is set by simply dividing the voltage between the ground G and the power supply -VBB .
If noise of voltage V N is mixed into the operational amplifier
The non-inverting input terminal of A1 has R a0 +R b0 +R b1 /R a0 +R b0 +R b1
A signal of +R a1 × V N is input, and a signal of R a0 /R a0 +R b0 +R b1 +R a1 × V N is input to the non-inverting input terminal of operational amplifier A0 .

従つて、通信線A及びBには異なつたノイズ信号
が送出され、これが差動ノイズとなつて加入者J
に送出される。
Therefore, different noise signals are sent to communication lines A and B, and this becomes differential noise and is transmitted to subscriber J.
will be sent to.

第2図はこの点を改良した、本発明の第一の実
施例による加入者回路の定電流給電回路を示す回
路図である。同図において、第1図との相違は、
オペアンプA0の反転入力端子とPNPトランジス
タTr0のエミツタとの間に接続された抵抗Rf0
オペアンプの反転入力端子と電源−VBBとの間に
直列接続された抵抗Rs0及びコンデンサC0、オペ
アンプA1の反転入力端子とNPNトランジスタ
Tr1のエミツタとの間に接続された抵抗Rf1、及
びオペアンプA1の反転入力端子と接地Gとの間
に直列接続された抵抗Rs1及びコンデンサC1を設
けたことにある。第2図において、 Rf0/Rs0=Ra0/Ra0+2×Rb0,Rf1/Rs1=Ra1/Ra1
+2×Rb1 となるように抵抗値Rf0,Rs0,Rf1,Rs1を選び、
コンデンサC0,C1は交流的に無視出来る様充分
大きく選ぶとオペアンプA1の非反転入力には、
電源ノイズVNによつてRa0=Ra1,Rb0=Rb1とす
ると V+=Ra0+Rb0+Rb1/Ra0+Rb0+Rb1+Ra1×VN =Rs1/Rf1+Rs1VN の信号が入力される。
FIG. 2 is a circuit diagram showing a constant current feeding circuit for a subscriber circuit according to a first embodiment of the present invention, which is improved in this respect. In the figure, the differences from Figure 1 are as follows:
A resistor R f0 connected between the inverting input terminal of the operational amplifier A 0 and the emitter of the PNP transistor Tr 0 ,
A resistor R s0 and a capacitor C 0 are connected in series between the inverting input terminal of the operational amplifier and the power supply −V BB , and the inverting input terminal of the operational amplifier A1 and the NPN transistor are connected in series.
This is because a resistor R f1 is connected between the emitter of Tr 1 , and a resistor R s1 and a capacitor C 1 are connected in series between the inverting input terminal of the operational amplifier A 1 and the ground G. In Figure 2, R f0 /R s0 =R a0 /R a0 +2×R b0 ,R f1 /R s1 =R a1 /R a1
Select the resistance values R f0 , R s0 , R f1 , R s1 so that +2×R b1 ,
If capacitors C 0 and C 1 are chosen large enough so that they can be ignored in terms of AC, the non-inverting input of operational amplifier A 1 will have
If R a0 = R a1 and R b0 = R b1 due to power supply noise V N , then V + = R a0 + R b0 + R b1 /R a0 + R b0 + R b1 + R a1 ×V N = R s1 /R f1 + R s1 V N signals are input.

一方、オペアンプA1の反転入力端子の電圧V-
は電源ノイズVNによつて、 V-=Rs1/Rf1+Rs1×VN となる。
On the other hand, the voltage V - at the inverting input terminal of operational amplifier A1
depends on the power supply noise V N , and becomes V - = R s1 /R f1 + R s1 ×V N.

従つてV+=V-となり、オペアンプA1の出力に
は電源ノイズによる信号が現われないことにな
る。
Therefore, V + =V - , and no signal due to power supply noise appears at the output of operational amplifier A1 .

オペアンプA0についても同様にしてV+=V-
なり、電源ノイズは出力に現われない。
Similarly for operational amplifier A0 , V + = V - , and power supply noise does not appear in the output.

第2図の回路において、電源から入る交流雑音
の影響が除去される理由を更に詳細に説明する。
The reason why the influence of AC noise input from the power supply is removed in the circuit of FIG. 2 will be explained in more detail.

第2図において、前述の如く、オペアンプA0
の非反転入力には、電源−VBBに発生した雑音電
圧を抵抗Ra0,Rb0,Rb1,Ra1で分圧した雑音電
圧が入力される。また、オペアンプA0の反転入
力には、コンデンサC0を通じて、電源−VBBの雑
音電圧が入力される。ここで、抵抗値Rf0,RS0
前述のように選ぶことにより、オペアンプA0
反転入力電圧と非反転入力電圧とが一致し、出力
に電圧が出ない構成になり、抵抗器Re0の両端に
は雑音電圧が発生しない。抵抗器Re0に雑音電圧
が発生しないので、トランジスタTr0は雑音電流
を流すことが無くなるため、加入者に雑音を出す
ことがない。
In FIG. 2, as mentioned above, the operational amplifier A 0
A noise voltage obtained by dividing the noise voltage generated in the power supply -V BB by resistors R a0 , R b0 , R b1 , and R a1 is input to the non-inverting input of. Further, the noise voltage of the power supply −V BB is input to the inverting input of the operational amplifier A 0 through the capacitor C 0 . Here, by selecting the resistance values R f0 and R S0 as described above, the inverting input voltage and the non-inverting input voltage of the operational amplifier A 0 match, and a configuration is created in which no voltage is output from the resistor R e0 No noise voltage is generated across the terminals. Since no noise voltage is generated in the resistor R e0 , the transistor Tr 0 does not allow any noise current to flow, and therefore does not generate noise to the subscriber.

こうして、第2図の回路によれば、電源にノイ
ズが混入しても、通話線A,Bにはそれによる差
動ノイズは現われないという利益が得られる。
In this way, the circuit shown in FIG. 2 has the advantage that even if noise mixes into the power supply, differential noise will not appear on the communication lines A and B.

しかしながら、第2図の回路においても、以下
に述べる不都合がある。すなわち、第2図の回路
において、オペアンプA0,A1の非反転入力端子
には常に接地〜電源間を抵抗分割した電圧Vが印
加されているので、加入者Jがオンフツクして通
話線A,B間を開放したときも、ループ電流を必
要としないにもかかわらずオペアンプは定電流を
流そうとする。すなわち、加入者Jがオンフツク
して通話線A,Bが開放になると、トランジスタ
Tr0,Tr1に電流が流れず、従つて抵抗Re0,Re1
の両端に電圧降下を生じないので、オペアンプ
A0,A1の反転入力端子の電圧V-は0V、−VBB
なり、非反転入力端子の電圧V+と等しくならな
い。この結果、オペアンプはコンパレータとして
働きA0はその出力電圧を電源電圧−VBBまで下
げ、それにより、抵抗Re0−トランジスタTr0
オペアンプA0の出力の径路でループ時と同じ定
電流が流れることになるか、或いは、オペアンプ
A0の出力制限電流まで電流を引込むことになる。
オペアンプA1も同様にして、出力電圧をオペア
ンプ出力の最高電位にし、定電流値又は、出力制
限電流まで電流を流し出す。こうして、オンフツ
ク時にも、オフフツク時と同様又はオペアンプの
制限電流までの電流が流れることになり不経済で
ある。
However, the circuit shown in FIG. 2 also has the following disadvantages. That is, in the circuit shown in FIG. 2, a voltage V obtained by dividing the voltage between the ground and the power supply by resistance is always applied to the non-inverting input terminals of the operational amplifiers A 0 and A 1 . , B, the operational amplifier tries to flow a constant current even though no loop current is required. In other words, when subscriber J goes on-hook and communication lines A and B become open, the transistor
No current flows through Tr 0 and Tr 1 , so the resistances R e0 and R e1
Since there is no voltage drop across the op amp
The voltage V - at the inverting input terminal of A 0 and A 1 becomes 0V, −V BB , and is not equal to the voltage V + at the non-inverting input terminal. As a result, the operational amplifier acts as a comparator and A 0 reduces its output voltage to the supply voltage −V BB , thereby reducing the resistance R e0 − transistor Tr 0
Will the same constant current as in the loop flow in the output path of op amp A 0 , or will the op amp
The current will be drawn up to the output limit current of A0 .
Similarly, for the operational amplifier A1 , the output voltage is set to the highest potential of the operational amplifier output, and the current flows out to the constant current value or the output limit current. In this way, even during on-hook, the same current as that during off-hook or up to the limit current of the operational amplifier flows, which is uneconomical.

第3図はこの点を改良した、本発明の第二の実
施例による加入者回路の定電流給電回路を示す回
路図である。同図において、第2図との相違は、
オペアンプA0,A1の出力とトランジスタTr0
Tr1のベースとの間に電流制限用の抵抗Rd0,Rd1
を挿入したこと、及び、増幅器A2の出力と抵抗
Rb0,Rb1の接続点M2の間に抵抗R9を挿入し、接
続点M2と接地間、接続点M2と電源−VBBにそれ
ぞれツエナーダイオードD0,D1を挿入したこと
である。
FIG. 3 is a circuit diagram showing a constant current feeding circuit for a subscriber circuit according to a second embodiment of the present invention, which is improved in this respect. In the same figure, the differences from Figure 2 are as follows:
The output of operational amplifier A 0 , A 1 and transistor Tr 0 ,
Current limiting resistors R d0 and R d1 are connected to the base of Tr 1 .
and the output of amplifier A 2 and the resistance
A resistor R 9 was inserted between the connection point M 2 of R b0 and R b1, and Zener diodes D 0 and D 1 were inserted between the connection point M 2 and the ground, and between the connection point M 2 and the power supply −V BB , respectively. It is.

抵抗Rd0,Rd1によつて、オンフツク時にトラ
ンジスタTr0,Tr1のベースとエミツタとの間を
流れる電流が制限され、低消費電力化に効果大と
なる。抵抗Rd0,Rd1の抵抗値は、オフフツク状
態でトランジスタTr0,Tr1にベース電流を充分
供給できる範囲で最大の値に選べばよい。
The resistors R d0 and R d1 limit the current flowing between the base and emitter of the transistors T r0 and T r1 during on-hook, which is highly effective in reducing power consumption. The resistance values of the resistors R d0 and R d1 may be selected to be the maximum value within a range that can sufficiently supply base current to the transistors Tr 0 and Tr 1 in the off-hook state.

抵抗R9及びツエナーダイオードD0,D1は通話
線A,Bが地路、混触等の回線障害を発生した場
合の対策として設けられている。例えば、通話線
Aが地路し、通話線Bが開放の場合、抵抗Rc0
Rc1の接続点M1の電位は接地レベルGであり、増
幅器A2の出力は接地レベルGとなる。この結果、
接続点M1の電位は電源電圧を基準にして正常時
の2倍の電圧となり、オペアンプA1を含む定電
流回路CC10の設定電流は2倍になる。この結果、
定電流回路CC10における消費電力は正常時の4
倍となつてしまい、熱設計を再考慮せざるを得な
くなる。これを避けるために、抵抗R9、ツエナ
ーダイオードD0,D1が設けられており、例えば
トランジスタTr1の消費電力が問題となる場合、
ツエナーダイオードにより設定電流の、例えば
1.4倍でクランプするようにすれば、消費電力の
増加は2倍におさめることができる。
The resistor R 9 and the Zener diodes D 0 and D 1 are provided as a countermeasure in case a line failure such as ground connection or cross contact occurs in the communication lines A and B. For example, if the communication line A is grounded and the communication line B is open, the resistance R c0 ,
The potential at the connection point M1 of R c1 is at ground level G, and the output of amplifier A2 is at ground level G. As a result,
The potential at the connection point M1 is twice the normal voltage with respect to the power supply voltage, and the set current of the constant current circuit CC10 including the operational amplifier A1 is doubled. As a result,
The power consumption in the constant current circuit CC 10 is 4 during normal operation.
This will double the amount, forcing us to reconsider the thermal design. To avoid this, a resistor R 9 and Zener diodes D 0 and D 1 are provided. For example, if the power consumption of the transistor Tr 1 is a problem,
The current set by a Zener diode, e.g.
By clamping at 1.4 times, the increase in power consumption can be doubled.

なお、前述の各実施例では増幅器A2はゲイン
1のボルテージホロワとしたが、ゲインを1より
大とすることにより、通話線A,B上の同相ノイ
ズに対するインピーダンスを1/ゲインと更に小
さくすることが可能である。ただし、この場合は
単純なボルテージホロワでない非反転回路を使用
しなければならないことは勿論である。
In each of the above embodiments, the amplifier A2 is a voltage follower with a gain of 1, but by making the gain larger than 1, the impedance against common mode noise on the communication lines A and B can be further reduced to 1/gain. It is possible to do so. However, in this case, it goes without saying that a non-inverting circuit other than a simple voltage follower must be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、加入者
回路の定電流給電回路において、中点電圧検出回
路を設けたことにより、定電流特性を維持しつつ
通話線上の同相ノイズが吸収されるので、低消費
電力化を実現して経済性及び熱的設計の容易性が
得られると共に同相ノイズに対する耐力を向上さ
せることができる。
As explained above, according to the present invention, by providing the midpoint voltage detection circuit in the constant current feeding circuit of the subscriber circuit, common mode noise on the communication line can be absorbed while maintaining constant current characteristics. , it is possible to realize low power consumption, to obtain economical efficiency and ease of thermal design, and to improve resistance to common mode noise.

また、定電流回路に抵抗を挿入することによ
り、電源に混入したノイズを吸収することが可能
になる。
Furthermore, by inserting a resistor into the constant current circuit, it becomes possible to absorb noise mixed into the power supply.

さらに、オンフツク時の不要な電流を制限して
低消費電力化を一層向上させることもできる。
Furthermore, unnecessary current during on-hook can be limited to further reduce power consumption.

さらに、通話線の他絡や混解等の障害による大
電力の消費を抑制して、給電回路の熱設計を容易
にすることも可能になる。
Furthermore, it becomes possible to suppress the consumption of large amounts of power due to disturbances such as cross-circuiting and disconnection of communication lines, and to facilitate the thermal design of the power supply circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の前提となる加入者回路の定電
流給電回路を示す回路図、第2図及び第3図はそ
れぞれ、本発明の第一及び第二の実施例による加
入者回路の定電流給電回路を示す回路図、第4図
は本発明に係るデイジタル交換機の加入者回路の
一般的構成例を示す回路図、第5図〜第7図は従
来の加入者回路の給電回路を説明するための図で
ある。 A,B……通話線、ID……中間電圧出力回路、
CC0,CC1,CC10……定電流回路、Ra0,Rb0
Rb1,Ra1……定電流設定用抵抗、A2……増幅器、
A0,A1……演算増幅器、Tr0,Tr1……トランジ
スタ、G……接地、−VBB……電源、Rf0,Rs0
Rf1,Rs1……電源雑音吸収用抵抗、Rd0,Rd1……
電流制限用抵抗。
FIG. 1 is a circuit diagram showing a constant current feeding circuit of a subscriber circuit which is a premise of the present invention, and FIGS. A circuit diagram showing a current feeding circuit, FIG. 4 is a circuit diagram showing a general configuration example of a subscriber circuit of a digital exchange according to the present invention, and FIGS. 5 to 7 explain a conventional power feeding circuit of a subscriber circuit. This is a diagram for A, B...Talking line, ID...Intermediate voltage output circuit,
CC 0 , CC 1 , CC 10 ... Constant current circuit, R a0 , R b0 ,
R b1 , R a1 ... Constant current setting resistor, A 2 ... Amplifier,
A 0 , A 1 ... operational amplifier, Tr 0 , Tr 1 ... transistor, G ... ground, -V BB ... power supply, R f0 , R s0 ,
R f1 , R s1 ... Power supply noise absorption resistance, R d0 , R d1 ...
Current limiting resistor.

Claims (1)

【特許請求の範囲】 1 電源−VBBと接地G間の、電位に対し上下対
照となる2対の基準電圧設定素子群Rap,Rbp
Ra1,Rb1で分割して得られる電圧を基準電位と
し、二本の通話線A,Bにそれぞれ一定電流を供
給する定電流隘路CC0,CC1と、 該通話線間の中点電圧を検出し前記2対の基準
電圧設定素子群の中点M2に出力する中点電圧出
力手段IDとを備え、 前記定電流回路CC0,CC1は、該前記基準電圧
設定素子群で分割された電圧を基準電圧として入
力する演算増幅器A0,A1と、抵抗Rep,Re1、ト
ランジスタTr0,Tr1により構成される電圧−電
流変換回路を備え、前記演算増幅器A0,A1の非
反転入力端子は前記基準電圧設定素子群を介して
前記中点電圧出力手段IDの出力電圧を受け、反
転入力端子は前記トランジスタTr0,Tr1の前記
電源側又は前記接地側の一端子に接続され、出力
端子は該トランジスタTr0,Tr1のベースに接続
されており、該トランジスタTr0,Tr1の他端子
は該通信線A,Bに接続され、且つ、前記演算増
幅器A0,A1の反転入力端子と前記トランジスタ
Tr0,Tr1の該一端との間、及び該演算増幅器A0
A1の反転入力端子と前記電源−VBB又は前記接地
Gとの間に、それぞれ、電源雑音吸収用抵抗Rf0
Rf1,Rs0,Rs1を接続し、それによつて、前記演
算増幅器A0,A1の非反転入力端子の電位と反転
入力端子の電位とが、電源雑音に対して同一電位
となるようにし、 前記中点電圧出力手段IDは、該通話線A,B
間の中点電位を正相増幅する増幅器A2を備え、
該増幅器A2の出力は2対の前記基準電圧設定素
子群{Rap,Rbp,Ra1,Rb1}の中点に接続してな
ることを特徴とする加入者回路の定電流給電回
路。 2 電源−VBB又接地G間の、電位に対し上下対
称となる2対の基準電圧設定素子群{Rap,Rbp
Ra1,Rb1}で分割して得られる電圧を基準電位
とし、二本の通話線A,Bにそれぞれ一定電流を
供給する定電流回路CC0,CC1と、 該通話線間の中点電圧を検出し前記2対の基準
電圧設定素子群の中点M2に出力する中点電圧出
力手段IDとを備え、 前記定電流回路CC0,CC1は、該前記基準電圧
設定素子群で分割された電圧を基準電圧として入
力する演算増幅器A0,A1と、抵抗Rep,Re1、ト
ランジスタTr0,Tr1により構成される電圧−電
流変換回路を備え、前記演算増幅器A0,A1の非
反転入力端子は前記基準電圧設定素子群を介して
前記中点電圧出力手段IDの出力電圧を受け、反
転入力端子は前記トランジスタTr0,Tr1の前記
電源側又は前記接地側の一端子に接続され、出力
端子は該トランジスタTr0,Tr1のベースに接続
されており、該トランジスタTr0,Tr1の他端子
は該通信線A,Bに接続され、且つ、前記演算増
幅器A0,A1の反転入力端子と前記トランジスタ
Tr0,Tr1の該一端との間、及び該演算増幅器A0
A1の反転入力端子と前記電源−VBB又は前記接地
Gとの間に、それぞれ、電源雑音吸収用抵抗Rf0
Rf1,Rs0,Rs1を接続し、それによつて、前記演
算増幅器A0,A1の非反転入力端子の電位と反転
入力端子の電位とが、電源雑音に対して同一電位
となるようにし、 さらに、前記演算増幅器A0,A1の出力と前記
トランジスタTr0,Tr1のベースの間に電流制限
用抵抗Rdp,Rd1を接続し、 前記中点電圧出力手段IDは、該通話線A,B
間の中点電位を正相増幅する増幅器A2を備え、
該増幅器A2の出力は2対の前記基準電圧設定素
子群{Rap,Rbp,Ra1,Rb1}の中点に接続し、 該増幅器A2の出力と該電源−VBB又は該接地G
との間に電流制限用のツエナーダイオードDp
D1を接続してなることを特徴とする加入者回路
の定電流給電回路。
[Claims] 1. Two pairs of reference voltage setting element groups R ap , R bp , which are vertically symmetrical with respect to the potential between the power supply −V BB and the ground G.
Using the voltage obtained by dividing by R a1 and R b1 as a reference potential, constant current bottlenecks CC 0 and CC 1 that supply constant current to two communication lines A and B, respectively, and the midpoint voltage between the communication lines. and a midpoint voltage output means ID for detecting and outputting to the midpoint M2 of the two pairs of reference voltage setting element groups, and the constant current circuits CC 0 and CC 1 are divided by the reference voltage setting element groups. The operational amplifiers A 0 , A 1 are provided with operational amplifiers A 0 , A 1 which input the obtained voltage as a reference voltage, and a voltage-current conversion circuit constituted by resistors R ep , R e1 and transistors Tr 0 , Tr 1 . The non-inverting input terminal of No. 1 receives the output voltage of the midpoint voltage output means ID via the reference voltage setting element group, and the inverting input terminal receives one of the power supply side or the ground side of the transistors Tr 0 and Tr 1 . The output terminal is connected to the bases of the transistors Tr 0 and Tr 1 , and the other terminals of the transistors Tr 0 and Tr 1 are connected to the communication lines A and B, and the output terminal is connected to the bases of the transistors Tr 0 and Tr 1 . 0 , the inverting input terminal of A1 and the transistor
between the one ends of Tr 0 and Tr 1 , and the operational amplifier A 0 ,
A power supply noise absorbing resistor R f0 is connected between the inverting input terminal of A 1 and the power supply −V BB or the ground G, respectively.
R f1 , R s0 , and R s1 are connected so that the potentials of the non-inverting input terminals and the potentials of the inverting input terminals of the operational amplifiers A 0 , A 1 are at the same potential with respect to power supply noise. and the midpoint voltage output means ID is for the communication lines A and B.
Equipped with an amplifier A 2 that amplifies the midpoint potential between the two in positive phase,
A constant current power supply circuit for a subscriber circuit, characterized in that the output of the amplifier A2 is connected to the midpoint of the two pairs of reference voltage setting element groups {R ap , R bp , R a1 , R b1 }. . 2 Two pairs of reference voltage setting element groups {R ap , R bp ,
R a1 , R b1 }, with the voltage obtained by dividing by R a1 , R b1 } as a reference potential, constant current circuits CC 0 and CC 1 that supply constant current to two communication lines A and B, respectively, and the midpoint between the communication lines. midpoint voltage output means ID for detecting a voltage and outputting it to the midpoint M2 of the two pairs of reference voltage setting element groups; The operational amplifier A 0 , A 1 includes operational amplifiers A 0 , A 1 that input the divided voltage as a reference voltage, a voltage-current conversion circuit composed of resistors R ep , R e1 , and transistors Tr 0 , Tr 1 . A non-inverting input terminal of A 1 receives the output voltage of the midpoint voltage output means ID via the reference voltage setting element group, and an inverting input terminal of the transistors Tr 0 and Tr 1 on the power supply side or the ground side. The output terminal is connected to the bases of the transistors Tr 0 and Tr 1 , and the other terminals of the transistors Tr 0 and Tr 1 are connected to the communication lines A and B, and the output terminal is connected to the bases of the transistors Tr 0 and Tr 1 . Inverting input terminals of A 0 and A 1 and the transistor
between the one ends of Tr 0 and Tr 1 , and the operational amplifier A 0 ,
A power supply noise absorbing resistor R f0 is connected between the inverting input terminal of A 1 and the power supply −V BB or the ground G, respectively.
R f1 , R s0 , and R s1 are connected so that the potentials of the non-inverting input terminals and the potentials of the inverting input terminals of the operational amplifiers A 0 , A 1 are at the same potential with respect to power supply noise. Further, current limiting resistors R dp and R d1 are connected between the outputs of the operational amplifiers A 0 and A 1 and the bases of the transistors Tr 0 and Tr 1 , and the midpoint voltage output means ID is Call lines A, B
Equipped with an amplifier A 2 that amplifies the midpoint potential between the two in positive phase,
The output of the amplifier A 2 is connected to the midpoint of the two pairs of reference voltage setting element groups {R ap , R bp , R a1 , R b1 }, and the output of the amplifier A 2 and the power supply −V BB or the Ground G
Zener diode D p for current limiting between
A constant current power supply circuit for a subscriber circuit, characterized in that it is formed by connecting D1 .
JP59120668A 1984-05-26 1984-06-14 Constant current feeding circuit of subscriber circuit Granted JPS611160A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP59120668A JPS611160A (en) 1984-06-14 1984-06-14 Constant current feeding circuit of subscriber circuit
CA000481865A CA1233580A (en) 1984-05-26 1985-05-17 Battery feed circuit for subscriber line
US06/736,345 US4631366A (en) 1984-05-26 1985-05-21 Battery feed circuit for subscriber line
KR1019850003559A KR900000721B1 (en) 1984-05-26 1985-05-23 Power feeding circuit in a subscriber
EP85106415A EP0163275B2 (en) 1984-05-26 1985-05-24 Battery feed circuit for subscriber line
DE8585106415T DE3576266D1 (en) 1984-05-26 1985-05-24 POWER CIRCUIT FOR A SUBSCRIBER LINE.
AU42834/85A AU560001B2 (en) 1984-05-26 1985-05-24 Battery feed circuit for subscriber line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59120668A JPS611160A (en) 1984-06-14 1984-06-14 Constant current feeding circuit of subscriber circuit

Publications (2)

Publication Number Publication Date
JPS611160A JPS611160A (en) 1986-01-07
JPH0349224B2 true JPH0349224B2 (en) 1991-07-26

Family

ID=14791957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59120668A Granted JPS611160A (en) 1984-05-26 1984-06-14 Constant current feeding circuit of subscriber circuit

Country Status (1)

Country Link
JP (1) JPS611160A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777508B2 (en) * 1987-12-26 1995-08-16 神田通信工業株式会社 Electronic choke circuit
JPH10334783A (en) 1997-05-30 1998-12-18 Takamisawa Denki Seisakusho:Kk Electromagnetic relay and contact spring set thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5389306A (en) * 1977-01-17 1978-08-05 Hitachi Ltd Dc current supplying circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5389306A (en) * 1977-01-17 1978-08-05 Hitachi Ltd Dc current supplying circuit

Also Published As

Publication number Publication date
JPS611160A (en) 1986-01-07

Similar Documents

Publication Publication Date Title
US5515433A (en) Resistance forward telephone line feed circuit
US4041252A (en) Transformerless two-wire/four-wire hybrid with DC sourcing capability
US4433213A (en) Subscriber's line circuit for telecommunications networks
US3823272A (en) Electronic telephone transmission circuit
WO1983001163A1 (en) Balanced current multiplier circuit for a subscriber loop interface circuit
US3665125A (en) Repeater with biascompensating means
US5444777A (en) Battery feed for telephone line cards
CA1143492A (en) Interface circuits
US7486787B2 (en) Subscriber line interface circuitry with common base audio isolation stage
JPH05145627A (en) Ring trip detection circuit
JPH0349224B2 (en)
KR930002588B1 (en) Method and apparatus for feeding power to a telephone line
US4631366A (en) Battery feed circuit for subscriber line
US4723280A (en) Constant current line circuit
JPS58501610A (en) Detection circuit for communication line
US6563924B1 (en) Subscriber matching circuit for electronic exchange
US4518829A (en) Two terminal microphone active load gain regulation circuit
WO1982000554A1 (en) Loop sensing circuit for use with a subscriber loop interface circuit
JPS631240A (en) Telephone and line voltage stabilizing circuit for the telephone
JP2912388B2 (en) Subscriber circuit
GB2066026A (en) Active speech network for a telephone set
US3636266A (en) Negative impedance line isolators
US3681538A (en) Telephone circuits utilizing non-linear elements
KR100391885B1 (en) Subscriber interface circuit of full electronic switching system
JPS6230546B2 (en)