JPH0348606B2 - - Google Patents

Info

Publication number
JPH0348606B2
JPH0348606B2 JP60056424A JP5642485A JPH0348606B2 JP H0348606 B2 JPH0348606 B2 JP H0348606B2 JP 60056424 A JP60056424 A JP 60056424A JP 5642485 A JP5642485 A JP 5642485A JP H0348606 B2 JPH0348606 B2 JP H0348606B2
Authority
JP
Japan
Prior art keywords
insulator
optical
electrode
lightning
voltage sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60056424A
Other languages
Japanese (ja)
Other versions
JPS61214309A (en
Inventor
Kenji Tsuge
Masahiro Akizuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP60056424A priority Critical patent/JPS61214309A/en
Publication of JPS61214309A publication Critical patent/JPS61214309A/en
Publication of JPH0348606B2 publication Critical patent/JPH0348606B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Insulators (AREA)
  • Testing Relating To Insulation (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) この発明は送電線路又は配電線路に使用される
避雷機能を備えた碍子に係わり、特に光による電
解測定手段を用いた電圧センサ内蔵型耐雷碍子に
関する。
[Detailed Description of the Invention] Purpose of the Invention (Field of Industrial Application) The present invention relates to an insulator with a lightning protection function used in power transmission lines or distribution lines, and particularly relates to an insulator with a built-in voltage sensor using optical electrolytic measurement means. Regarding type lightning insulators.

(従来の技術) 従来、送電線又は配電線では、変電所におい
て、線路に変成器を設けて事故電圧を検出し、継
電器を作動させ、遮断機をトリツプさせて線路を
保護していた。
(Prior Art) Conventionally, on power transmission lines or distribution lines, a transformer is installed on the line at a substation to detect fault voltage, operate a relay, and trip a circuit breaker to protect the line.

ところで、これまでに経路の電圧の検出に用い
られてきた装置は、導体を支持する碍子とは別体
のものであり、測定精度が充分でないばかりか、
大型で測定場所への取付作業も複雑で、その設置
によつて線路の美観を損ねることが少なくなかつ
た。このため、電圧の検出可能な電圧検出装置内
蔵型の碍子として、特開昭54−134395号公報に開
示された碍子が提案された。
By the way, the devices that have been used to date to detect voltage in paths are separate from the insulators that support the conductors, and not only do they not have sufficient measurement accuracy, but
Due to their large size, installation work at the measurement location was complicated, and their installation often spoiled the aesthetic appearance of the railroad tracks. For this reason, an insulator disclosed in Japanese Unexamined Patent Publication No. 134395/1983 was proposed as an insulator with a built-in voltage detection device capable of detecting voltage.

この碍子は第4図に示すように、磁器よりなる
碍子本体31の内部に空洞部32を設けるととも
に、同碍子本体31頂部に前記空洞部32と連通
する孔33を設け、その孔33にはチタン酸バリ
ウムなどを主成分とするセラミツクス体34が嵌
合固着されていた。更に、前記セラミツクス体3
4上端には、導体35を支持するための導体支持
部36を設けた電極37が一体に設けられるとと
もに、下端には電極38が一体に設けられてい
た。そして、同電極38には碍子外部に導出した
リード線39が接続されており、又、碍子本体3
1の下方にはベース金具40がセメントで一体に
嵌着されていた。
As shown in FIG. 4, this insulator has a cavity 32 inside an insulator body 31 made of porcelain, and a hole 33 communicating with the cavity 32 at the top of the insulator body 31. A ceramic body 34 mainly composed of barium titanate or the like was fitted and fixed. Furthermore, the ceramic body 3
An electrode 37 provided with a conductor support portion 36 for supporting the conductor 35 was integrally provided at the upper end of 4, and an electrode 38 was integrally provided at the lower end. A lead wire 39 led out to the outside of the insulator is connected to the electrode 38, and the insulator body 3
1, a base metal fitting 40 was integrally fitted with cement.

これによつて、碍子本体31は線路の導体35
を大地から絶縁支持するとともに、電極37と電
極38の間にはセラミツクス体34が介在されて
いるので、前記電極37,38は極板として、セ
ラミツクス体34は誘電率の高い誘電体として作
用し、静電容量の大きいセラミツクスコンデンサ
が形成される。従つて、電極38に接続されたリ
ード線39を測定器に接続させることにより、碍
子本体31外周表面の汚損の影響をほとんど受け
ず、線路電圧が容易に検出されていた。
With this, the insulator main body 31 is connected to the conductor 35 of the line.
Since the ceramic body 34 is interposed between the electrode 37 and the electrode 38, the electrodes 37 and 38 act as electrode plates, and the ceramic body 34 acts as a dielectric with a high permittivity. , a ceramic capacitor with large capacitance is formed. Therefore, by connecting the lead wire 39 connected to the electrode 38 to a measuring device, the line voltage can be easily detected without being affected by contamination on the outer peripheral surface of the insulator body 31.

一方、送電線又は配電線においては導体を支持
するとともに、雷サージによる過電圧でフラツシ
オーバが生じた際、これに伴う続流を遮断して続
流アークによる断線や碍子本体の損傷を防止する
ため、非直線性抵抗素子を内蔵した耐雷碍子が使
用されていた。
On the other hand, in power transmission lines or distribution lines, in addition to supporting conductors, when flashover occurs due to overvoltage due to lightning surges, it is necessary to block the accompanying current and prevent wire breakage and damage to the insulator body due to follow-on arc. Lightning insulators with built-in nonlinear resistance elements were used.

(発明が解決しようとする問題点) ところが、前述した電圧検出装置内蔵型の碍子
は、碍子内部のリード線39が外部からの電磁誘
導をうけるので、SN比が低下するという欠点が
あつた。特に、近年は送電線や配電線の信頼性を
更に向上させるために、これまで検出困難であつ
た事故電圧の検出も必要となりつつあるので、線
路電圧の精度の高い測定が望まれている。
(Problems to be Solved by the Invention) However, the above-mentioned insulator with a built-in voltage detection device has the drawback that the lead wire 39 inside the insulator receives electromagnetic induction from the outside, resulting in a reduction in the S/N ratio. In particular, in recent years, in order to further improve the reliability of power transmission lines and distribution lines, it has become necessary to detect fault voltages, which have been difficult to detect in the past, so highly accurate measurement of line voltage is desired.

この発明の第1の目的は耐雷碍子の碍子本体内
部に雷気光学素子よりなる電圧センサを内蔵し
て、構造が簡単でコンパクト、かつ線路電圧の検
出が容易なばかりでなく、耐雷碍子本来の機能を
損なうことなく避雷器としての動作状態も検知で
きて、しかも検出信号のSN比や測定精度の高い
電圧センサ内蔵型耐雷碍子を提供することにあ
る。
The first object of this invention is to incorporate a voltage sensor made of a lightning optical element inside the insulator body of a lightning insulator, so that the structure is simple and compact, and the line voltage can be easily detected. It is an object of the present invention to provide a lightning insulator with a built-in voltage sensor that can detect the operating state of a lightning arrester without impairing its function, and has a high SN ratio of a detection signal and high measurement accuracy.

第2の目的は前記第1の目的に加えて、非直線
性抵抗素子は課電により劣化する虞があるため、
劣化した非直線性抵抗素子の交換を容易に行うこ
とができる電圧センサ内蔵型耐雷碍子を提供する
ことにある。
In addition to the first purpose, the second purpose is to
It is an object of the present invention to provide a lightning insulator with a built-in voltage sensor that allows easy replacement of a deteriorated nonlinear resistance element.

発明の構成 (問題点を解決するための手段) 第1発明は前記第1の目的を達成するために、
中空状の碍子本体1の上下両端に課電側電極4と
接地側電極5を備え、前記中空状部1aには所定
の放電間隙Gをもつて対向配置した課電側放電電
極14及び設置側放電電極15と、非直線性抵抗
素子13を直列に接続した碍子において、前記両
放電電極14,15の間には電気光学素子を介在
させ、同電気光学素子には外部から同素子へ光パ
ワを供給し、同電気光学素子内で変調された光を
外部へ導出するための光フアイバ20a,20b
を接続するという構成を採用している。
Structure of the invention (means for solving the problem) In order to achieve the first object, the first invention has the following features:
A charging side electrode 4 and a grounding side electrode 5 are provided at both upper and lower ends of the hollow insulator main body 1, and a charging side discharge electrode 14 and an installation side are provided in the hollow portion 1a and are arranged facing each other with a predetermined discharge gap G. In an insulator in which a discharge electrode 15 and a non-linear resistance element 13 are connected in series, an electro-optical element is interposed between the discharge electrodes 14 and 15, and an optical power is applied to the element from the outside. optical fibers 20a and 20b for supplying light and guiding the light modulated within the electro-optical element to the outside.
A configuration is adopted in which the .

次に、第2発明は前記第2の目的を達成するた
めに、中空状の碍子本体23の上下両端に課電側
電極4と接地側電極5を備え、前記中空状部23
cには所定の放電間隙Gをもつて対向配置した課
電側放電電極14及び接地側放電電極15と、非
直線性抵抗素子13を直列に接続した碍子におい
て、前記両放電電極14,15の間には電気光学
素子を介在させ、同電気光学素子には外部から同
素子へ光パワを供給し、同電気光学素子内で変調
された光を外部へ導出するための光フアイバ20
a,20bを接続するとともに、前記非直線性抵
抗素子13の収容部と、両放電電極14,15及
び電気光学素子の収容部との境界部で分離すべ
く、前記碍子本体23を上部と下部碍子23a,
23bとに別体で形成して互に連結するという構
成を採用している。
Next, in order to achieve the second object, the second invention includes a energizing side electrode 4 and a grounding side electrode 5 at both upper and lower ends of the hollow insulator body 23, and
c, in an insulator in which a non-linear resistance element 13 is connected in series with a energized discharge electrode 14 and a grounded discharge electrode 15 which are arranged facing each other with a predetermined discharge gap G, both of the discharge electrodes 14 and 15 are connected in series. An electro-optical element is interposed therebetween, and an optical fiber 20 is provided for supplying optical power to the electro-optical element from the outside and guiding light modulated within the electro-optical element to the outside.
a, 20b, and separate the insulator body 23 from the upper and lower portions in order to separate the accommodating portion of the non-linear resistance element 13 from the accommodating portions of both the discharge electrodes 14, 15 and the electro-optical element. Insulator 23a,
23b and is formed separately and connected to each other.

(作用) この発明は前記構成を採用したことにより、次
のように作用する。
(Function) By employing the above configuration, the present invention functions as follows.

第1発明は、碍子に支持された導体にかかる電
圧が課電側電極を通じて課電側及び接地側の放電
電極、(電気光学素子)および非直線性抵抗素子
とに印加される。このとき、碍子外部の発行ダイ
オードなどの光源から出射された光パワが、入射
光用光フアイバを通じて前記電気光学素子に導か
れ、同光は電気光学素子を通過する間に放電電極
間の電界強度つまり線路電圧に応じて強度変調さ
れる。
In the first invention, a voltage applied to a conductor supported by an insulator is applied to a discharge electrode, an electro-optical element, and a nonlinear resistance element on the power supply side and the ground side through the power supply side electrode. At this time, optical power emitted from a light source such as a light emitting diode outside the insulator is guided to the electro-optic element through an optical fiber for incident light, and while the light passes through the electro-optical element, the electric field strength between the discharge electrodes is In other words, the intensity is modulated according to the line voltage.

更に、この強度変調された光信号は、出射光用
光フアイバを通じて碍子外部に導出され、受光素
子に導かれて電気信号となり、線路電圧が測定さ
れる。
Furthermore, this intensity-modulated optical signal is led out to the outside of the insulator through an optical fiber for emitted light, guided to a light receiving element, becomes an electric signal, and the line voltage is measured.

ところで、導体に雷サージが侵入すると、過電
圧が放電間隙及び非直線性抵抗素子に印加され
る。このとき、前記放電間隙ではフラツシオーバ
が生じ、電流は非直線性抵抗素子、接地側電極を
経て、大地に流される。なお、これに伴う続流
は、非直線性抵抗素子が抵抗値を瞬時に回復して
遮断され、アークは消弧される。
By the way, when a lightning surge enters a conductor, an overvoltage is applied to the discharge gap and the nonlinear resistance element. At this time, a flashover occurs in the discharge gap, and the current flows to the ground via the nonlinear resistance element and the ground electrode. Incidentally, the following current caused by this is interrupted by the nonlinear resistance element instantaneously recovering its resistance value, and the arc is extinguished.

このときの電圧変化は、前述した電気光学素子
及び光フアイバと同様の作用によつて、碍子外部
の測定器に伝送されて測定される。
The voltage change at this time is transmitted to a measuring device outside the insulator and measured by the same action as the electro-optical element and optical fiber described above.

次に、第2発明では第1発明の作用に加えて、
碍子本体の上部碍子と下部碍子とを分離すること
により、劣化した非直線性抵抗素子は新しいもの
と交換可能である。
Next, in the second invention, in addition to the effect of the first invention,
By separating the upper and lower insulators of the insulator body, a deteriorated nonlinear resistance element can be replaced with a new one.

(実施例) 以下、第1発明を具体化した実施例を第1図に
従つて説明する。
(Example) Hereinafter, an example embodying the first invention will be described with reference to FIG.

図面中1は磁器よりなる中空状のクランプトツ
プラインポスト型の碍子本体であつて、その上下
端部の外周部にはフランジ金具2,3がセメント
で接着され、フランジ金具2には課電側電極4
が、又、フランジ金具3には接地側電極5がそれ
ぞれ締付されている。6は電線等の導体であつ
て、前記課電側電極4の上端凹状溝4aに対し
て、導電性の座金7を介して嵌込まれている。8
は前記導体6を把持するクランプ金具であつて、
課電側電極4の上部の図示しないねじ穴に螺合さ
れナツト9で締付けられたボルト10に係合さ
れ、ナツト11によつて締付固定さている。12
は碍子頭部を被覆する絶縁カバーである。
In the drawing, 1 is a hollow clamp-to-spline post type insulator body made of porcelain, and flange fittings 2 and 3 are bonded with cement to the outer periphery of its upper and lower ends. Electrode 4
However, the ground side electrodes 5 are fastened to the flange fittings 3, respectively. Reference numeral 6 denotes a conductor such as an electric wire, which is fitted into the upper concave groove 4a of the power supply side electrode 4 via a conductive washer 7. 8
is a clamp fitting for gripping the conductor 6,
It is engaged with a bolt 10 which is screwed into a screw hole (not shown) in the upper part of the energizing side electrode 4 and tightened with a nut 9, and is fastened and fixed with a nut 11. 12
is an insulating cover that covers the insulator head.

13は碍子本体1の中空状部1aの下半部に嵌
合され、下端を接地側電極5に当接させた酸化亜
鉛を主成分とした中空状の非直線性抵抗素子であ
つて、電圧電流特性が非直線性を示し、大きな静
電容量を備えている。14,15は電極板16を
介して前記非直線性抵抗素子13の上下に直列に
配置された有底短円筒状をなす課電側及び接地側
の放電電極であつて、それらの放電端部14a,
15aの間に放電間隙Gを形成している。17は
前記接地側放電電極の底面に支持した絶縁性を備
えた電気光学素子としてのポツケルス素子、18
はポツケルス素子17と前記課電側放電電極との
間に介在させた絶縁スペーサである。25は前記
課電側放電電極14と課電側電極4とを電気的に
接続するとともに機械的に固定させるためのスプ
リングである。
Reference numeral 13 denotes a hollow nonlinear resistance element mainly composed of zinc oxide, which is fitted into the lower half of the hollow part 1a of the insulator body 1 and whose lower end is in contact with the ground electrode 5. It has nonlinear current characteristics and large capacitance. Reference numerals 14 and 15 denote discharge electrodes on the power supply side and the ground side, each having a short cylindrical shape with a bottom and arranged in series above and below the non-linear resistance element 13 with an electrode plate 16 interposed therebetween; 14a,
A discharge gap G is formed between 15a. 17 is a Pockels element as an electro-optical element with insulation supported on the bottom surface of the ground side discharge electrode; 18
is an insulating spacer interposed between the Pockels element 17 and the charging side discharge electrode. Reference numeral 25 denotes a spring for electrically connecting and mechanically fixing the energizing side discharge electrode 14 and the energizing side electrode 4.

20a,20bは前記非直線性抵抗素子13の
空洞部13aに挿通された高絶縁性と無誘導性と
を備えた人射光用及び出射光用の一対の光フアイ
バであつて、一端は前記ポツケルス素子17に、
他端は、接地側電極5に嵌合固定された光コネク
タ21に接続されている。22は前記光フアイバ
20a,20bを囲繞して、空洞部13aに充填
されたレジン、コンパウンド、あるいは絶縁油、
SF6ガスなどの絶縁物である。
Reference numerals 20a and 20b are a pair of optical fibers for human light and emitted light having high insulation properties and non-inductive properties, which are inserted into the cavity 13a of the non-linear resistance element 13, and one end of which is inserted into the cavity 13a of the non-linear resistance element 13. In element 17,
The other end is connected to an optical connector 21 that is fitted and fixed to the ground side electrode 5. 22 is a resin, compound, or insulating oil that surrounds the optical fibers 20a, 20b and fills the cavity 13a;
It is an insulating material such as SF6 gas.

次に、前記のように構成した電圧センサ内蔵型
耐雷碍子の作用について説明する。
Next, the operation of the voltage sensor built-in lightning insulator constructed as described above will be explained.

今、第1図に示す導体6に電圧が印加される
と、同時に座金7、課電側電極4及びスプリング
25を介して、課電側電極4と接地側電極5との
間に介装されたポツケルス素子17、絶縁スペー
サ18、課電側、接地側放電電極14,15、及
び素子13に電圧が印加される。ところで、ポツ
ケルス素子17及び絶縁スペーサ18と、静電容
量の大きな素子13とはそれぞれ直列に接続され
ているので、前者の分担電圧は後者の分担電圧よ
りも相対的に高い。
Now, when a voltage is applied to the conductor 6 shown in FIG. A voltage is applied to the Pockels element 17 , the insulating spacer 18 , the charging side and grounding side discharge electrodes 14 and 15 , and the element 13 . Incidentally, since the Pockels element 17, the insulating spacer 18, and the element 13 having a large capacitance are each connected in series, the shared voltage of the former is relatively higher than that of the latter.

このとき、課電側、接地側放電電極14,15
の放電間隙Gには電界が生じ、この電界がポツケ
ルス素子17に作用する。又、前記ポツケルス素
子17は放電電極14,15の中央に位置してい
るので、ポツケルス素子17内及びの周囲の電界
は外部電界の乱れに対する影響をほとんど受け
ず、碍子本体1の外表面が汚損し、同外表面に漏
れ電流が生じて、外表面の電位分布が変動して
も、ポツケルス素子17に作用する電界の変動は
極めて小さい。この結果、前記ポツケルス素子1
7には、常に均等で安定した電界が加わる。
At this time, the charging side and the grounding side discharge electrodes 14 and 15
An electric field is generated in the discharge gap G, and this electric field acts on the Pockels element 17. Furthermore, since the Pockels element 17 is located at the center of the discharge electrodes 14 and 15, the electric field within and around the Pockels element 17 is hardly affected by disturbances in the external electric field, and the outer surface of the insulator body 1 is not contaminated. However, even if a leakage current occurs on the outer surface and the potential distribution on the outer surface changes, the change in the electric field acting on the Pockels element 17 is extremely small. As a result, the Pockels element 1
7 is always applied with an even and stable electric field.

これに次いで、碍子本体1外部の図示しない光
源(例えば、発光ダイオード)より光コネクタ2
1を介して入射光用光フアイバ20aに光パワが
伝送され、更に、ポツケルス素子17中を光が通
過する間に、同光はポツケルス効果により電界強
度、すなわち、導体6の電圧に応じて位相変調を
受けて、ポツケルス素子17に付加された偏光要
素により強度変調される。次いで、この変調信号
は、出射光用光フアイバ20bによつて、外部か
らの電磁誘導を受けることなく伝送され、光コネ
クタ21を介して、碍子外部の図示しない受光器
に導かれ、その後電気信号となつて電圧が測定さ
れる。
Next, an optical connector 2 is connected from a light source (for example, a light emitting diode) (not shown) outside the insulator body 1.
The optical power is transmitted to the incident light optical fiber 20a through the Pockels element 17, and while the light passes through the Pockels element 17, the phase of the light changes depending on the electric field intensity, that is, the voltage of the conductor 6, due to the Pockels effect. Upon receiving the modulation, the polarization element added to the Pockels element 17 modulates the intensity. Next, this modulated signal is transmitted through the emitted light optical fiber 20b without receiving electromagnetic induction from the outside, and guided to a light receiver (not shown) outside the insulator via the optical connector 21, and is then converted into an electrical signal. The voltage is then measured.

ところで、この第1発明は耐雷碍子本来の作用
として、導体6に過電圧雷サージが侵入すると、
座金7、過電側電極4及びスプリング25を介し
て放電電極14,15間及び非直線性抵抗素子1
3に過電圧が印加さる。このとき、放電間隙Gを
介して両放電電極14,15との間でフラツシオ
ーバが生じる。そして、このときの電流は、電極
板16、非直線性抵抗素子13、接地側電極5の
順に流れて図示しない接地物などにより大地に流
れるが、これに伴う続流に対しては非直線性抵抗
素子13が抵抗値を瞬時に回復してこれを遮断
し、アークが消弧される。
By the way, in this first invention, as an inherent function of the lightning insulator, when an overvoltage lightning surge enters the conductor 6,
between the discharge electrodes 14 and 15 and the nonlinear resistance element 1 via the washer 7, the overcurrent side electrode 4, and the spring 25.
Overvoltage is applied to 3. At this time, a flashover occurs between the discharge electrodes 14 and 15 via the discharge gap G. At this time, the current flows in the order of the electrode plate 16, the nonlinear resistance element 13, and the grounding side electrode 5, and then flows to the ground due to a grounding object (not shown), but the following current is nonlinear. The resistance element 13 instantaneously recovers its resistance value and interrupts this, and the arc is extinguished.

なお、避雷器の動作を示す電圧変化は、放電電
極間のフラツシオーバ時にポツケルス素子17に
加わる電界が瞬間的に零になるので、その変化は
ポツケルス素子17及び光フアイバ20a,20
bの作用によつて碍子外部の測定器に伝送されて
検知可能である。
Note that the voltage change indicating the operation of the lightning arrester is caused by the electric field applied to the Pockels element 17 instantaneously becoming zero during flashover between the discharge electrodes.
By the action of b, it is transmitted to a measuring device outside the insulator and can be detected.

ところで、この実施例の課電側及び接地側の放
電電極14,15の放雷端部14a,15aは、
それぞれ第3図に示すように丸曲成形してもよ
い。
By the way, the lightning discharge ends 14a, 15a of the discharge electrodes 14, 15 on the charging side and the grounding side in this embodiment are as follows.
Each may be formed into a round shape as shown in FIG.

次に、第2発明の構成を第2図に従つて説明す
る。なお、第1図に示す実施例と同一の機能を備
えた部材については、同一の番号を符して説明を
省略し、異なる点についてのみ説明する。
Next, the configuration of the second invention will be explained with reference to FIG. It should be noted that members having the same functions as those in the embodiment shown in FIG. 1 are designated by the same numbers and their explanations are omitted, and only the differences will be explained.

図面中23は磁器よりなる中空状のクランプト
ツプラインポスト型の碍子本体であつて、上部碍
子23aと下部碍子23bとに分割形成され、上
部碍子23aの下端外周に固定した雌ねじ筒24
aに対し、下部碍子23bの上端外周に固定した
雄ねじ筒24bを螺合することによつて分離可能
に固定されている。25は中空状部23c内部の
課電側電極4と課電側放電電極14との間に係止
筒26a,26bを介して介装され、両極間に電
気的に接続したスプリング、27は接地側放電電
極15と電極板16との間に介在させたスプリン
グである。28は接地側放電電極15と電極板1
6との間に位置して、ポツケスル素子17と光フ
アイバ20a,20bを引き離し可能に接続した
光コネクタである。
In the drawing, reference numeral 23 denotes a hollow clamp-to-spline post type insulator body made of porcelain, which is divided into an upper insulator 23a and a lower insulator 23b, and a female threaded cylinder 24 fixed to the outer periphery of the lower end of the upper insulator 23a.
The lower insulator 23b is separably fixed to the lower insulator 23b by screwing a male threaded tube 24b fixed to the outer periphery of the upper end of the lower insulator 23b. Reference numeral 25 denotes a spring interposed between the energizing side electrode 4 and the energizing side discharge electrode 14 inside the hollow portion 23c via locking tubes 26a and 26b, and electrically connected between the two electrodes, and 27 a grounding element. This is a spring interposed between the side discharge electrode 15 and the electrode plate 16. 28 is the ground side discharge electrode 15 and the electrode plate 1
This optical connector is located between the optical fibers 6 and 6, and connects the pocket element 17 and the optical fibers 20a, 20b in a detachable manner.

次に、前記のように構成された電圧センサ内蔵
型耐雷碍子の作用について説明する。
Next, the operation of the voltage sensor built-in lightning insulator constructed as described above will be explained.

この耐雷碍子は、導体6の電圧及び過電圧雷サ
ージによる続流アークの遮断及びそのときの電圧
変化の検知については、第1発明の実施例の耐雷
碍子と同様に作用する。
This lightning insulator functions in the same manner as the lightning insulator of the embodiment of the first invention with respect to the voltage of the conductor 6 and the interruption of follow-on arcs caused by overvoltage lightning surges and the detection of voltage changes at that time.

ところで、この耐雷碍子では、雌ねじ筒24a
及び雄ねじ筒24bの螺合を解除すれば、碍子本
体23は上部碍子23aと下部碍子23bとに分
離される。その後、碍子本体23の内部に収容さ
れたポツケルス素子17と光フアイバ20a,2
0bの接続を光コネクタ28により解除すれば、
劣化した非直線性抵抗素子13は新しいものと交
換可能である。次いで、新しい非直線性抵抗素子
13を接続させるとともに、上部碍子23a及び
下部碍子23bとを雌ねじ筒24a、雄ねじ筒2
4bにより螺合固定すれば、電気光学素子を内蔵
する上部碍子23aは再使用可能となる。
By the way, in this lightning insulator, the female threaded cylinder 24a
When the male threaded tube 24b is unscrewed, the insulator body 23 is separated into an upper insulator 23a and a lower insulator 23b. Thereafter, the Pockels element 17 housed inside the insulator body 23 and the optical fibers 20a, 2
If the connection of 0b is released by the optical connector 28,
The deteriorated nonlinear resistance element 13 can be replaced with a new one. Next, a new non-linear resistance element 13 is connected, and the upper insulator 23a and the lower insulator 23b are connected to the female threaded cylinder 24a and the male threaded cylinder 2.
4b, the upper insulator 23a containing the electro-optical element can be reused.

この耐雷碍子では、非直線性抵抗素子13が劣
化して、耐雷碍子本来の機能が低下しても、碍子
全部を新たに交換する必要がなく、高価なポツケ
ルス素子17を再利用できて経済的である。
In this lightning insulator, even if the nonlinear resistance element 13 deteriorates and the original function of the lightning insulator deteriorates, there is no need to replace the entire insulator, and the expensive Pockels element 17 can be reused, making it economical. It is.

なお、前記第1発明及び第2発明の実施例で用
いられている光フアイバ20a,20bは光フア
イバの単体の他に、光フアイバの単体をPVCシ
ースなどで被覆保護した光フアイバケーブルも含
めたものである。
Note that the optical fibers 20a and 20b used in the embodiments of the first and second inventions include not only single optical fibers but also optical fiber cables in which a single optical fiber is covered and protected with a PVC sheath or the like. It is something.

又、この第1発明及び第2発明の電圧センサ内
蔵型耐雷碍子は、それぞれ導体6の支持として、
従来のように変電所などの所要箇所に設置される
だけでなく、電線路における各電柱などに設置し
て電圧を測定し、その信号を伝送するようにして
おけば、各フイーダごとの地絡、短絡などの事
故、あるいは避雷器としての動作状態を集中監視
することができる。又、電線路においては、携帯
式電圧測定器を用いることによつて、光コネクタ
21を介して適宜測定することもできる。
Further, the voltage sensor built-in lightning insulators of the first invention and the second invention each support the conductor 6 by:
In addition to being installed at required locations such as substations as in the past, if it is installed on each utility pole along the power line to measure the voltage and transmit the signal, it is possible to prevent ground faults at each feeder. , accidents such as short circuits, and the operating status of the lightning arrester can be centrally monitored. Further, in the electric line, it is also possible to appropriately measure the voltage via the optical connector 21 by using a portable voltage measuring device.

発明の効果 以上詳述したように、第1発明は耐雷碍子の内
部に、一対の放電電極を対向させてなる放電間隙
と非直線性抵抗素子を直列に接続して収容すると
ともに、前記放電電極の間には電気光学素子を介
在させ光フアイバが接続されているので、耐雷碍
子本来の機能を損なうことなく、線路電圧の検出
が行え、この発明の説明で省略した碍子外部の発
光素子及び受光素子などを含む測定部と、碍子内
部の電圧検出部とを効果的に絶縁強化できるとと
もに、碍子本体もセンサ内蔵のための大きなスペ
ースを必要とせず、構造が簡単かつコンパクトな
ばかりでなく、無誘導で精度が高く、しかも避雷
器としての動作状態も検知できるという幾多の効
果を奏する。
Effects of the Invention As detailed above, the first invention accommodates a discharge gap formed by a pair of discharge electrodes facing each other and a nonlinear resistance element connected in series inside a lightning insulator, and Since an optical fiber is connected between them with an electro-optical element interposed between them, line voltage can be detected without impairing the original function of the lightning insulator. In addition to effectively reinforcing the insulation between the measurement section including elements and the voltage detection section inside the insulator, the insulator itself does not require a large space for the built-in sensor, and the structure is not only simple and compact, but also completely free of charge. It has many advantages, including high precision guidance and the ability to detect the operating status of a lightning arrester.

又、第2発明は前記第1発明の効果に加えて、
碍子本体を分離することにより、碍子内部に収容
された非直線性抵抗素子などが交換可能であるの
で、前記素子などが不良状態のときは自由に交換
できて碍子全部を取り替える必要もなく、大変経
済的かつ、利用価値の大きい耐雷碍子を提供する
ことができる。
Moreover, the second invention has, in addition to the effects of the first invention,
By separating the insulator body, the nonlinear resistance elements housed inside the insulator can be replaced, so if the elements are in a defective state, they can be replaced freely and there is no need to replace the entire insulator, which is very convenient. It is possible to provide an economical and highly useful lightning insulator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1発明の実施例を示す断面図、第2
図は第2発明の実施例を示す断面図、第3図は放
電間隙の別例を示す断面図、第4図は従来例を示
す断面図である。 1,23……碍子本体、4……課電側電極、5
……接地側電極、6……導体、13……非直線性
抵抗素子、14……課電側放電電極、15……接
地側放電電極、17……ポツケルス素子、20
a,20b……光フアイバ、21,28……光コ
ネクタ、24a……雌ねじ筒、24b……雄ねじ
筒。
FIG. 1 is a sectional view showing an embodiment of the first invention;
3 is a sectional view showing another example of the discharge gap, and FIG. 4 is a sectional view showing a conventional example. 1, 23...Insulator body, 4...Electrifying side electrode, 5
...Grounding side electrode, 6...Conductor, 13...Nonlinear resistance element, 14...Charging side discharge electrode, 15...Grounding side discharge electrode, 17...Pockels element, 20
a, 20b...optical fiber, 21, 28...optical connector, 24a...female thread tube, 24b...male thread tube.

Claims (1)

【特許請求の範囲】 1 中空状の碍子本体1の上下両端に課電側電極
4と接地側電極5を備え、前記中空状部1aには
所定の放電間隙Gをもつて対向配置した課電側放
電電極14及び接地側放電電極15と、非直線性
抵抗素子13を直列に接続した碍子において、前
記両放電電極14,15の間には電気光学素子を
介在させ、同電気光学素子には外部から同素子へ
光パワを供給し、同素子により変調された光を外
部へ導出するための光フアイバ20a,20bを
接続したことを特徴とする電圧センサ内蔵型耐雷
碍子。 2 前記課電側及び接地側の放電電極14,15
の間には絶縁スペーサ18と電気光学素子が直列
に接続して介在さている特許請求の範囲第1項に
記載の電圧センサ内蔵型耐雷碍子。 3 電気光学素子はポツケルス素子17である特
許請求の範囲第1項に記載の電圧センサ内蔵型耐
雷碍子。 4 非直線性抵抗素子13は光フアイバ20a,
20bを挿通し得るように中空状に形成された酸
化亜鉛(ZnO)を主成分としたものである特許請
求の範囲第1項に記載の電圧センサ内蔵型耐雷碍
子。 5 接地側電極5は光フアイバ20a,20bを
接続する光コネクタ21を備えている特許請求の
範囲第1項に記載の電圧センサ内蔵型耐雷碍子。 6 中空状の碍子本体23の上下両端に課電側電
極4と接地側電極5を備え、前記中空状部23c
には所定の放電間隙Gをもつて対向配置した課電
側放電電極14及び接地側放電電極15と、非直
線性抵抗素子13を直列に接続した碍子におい
て、前記両放電電極14,15の間には電気光学
素子を介在させ、同電気光学素子には外部から同
素子へ光パワを供給し、同素子内で変調された光
を外部へ導出するための光フアイバ20a,20
bを接続するとともに、前記非直線性抵抗素子1
3の収容部と、両放電電極14,15及び非直線
性抵抗素子13の収容部との境界部で分離すべ
く、前記碍子本体23を上部と下部碍子23a,
23bとに別体で形成して互に連結したことを特
徴とする電圧センサ内蔵型耐雷碍子。 7 前記上部碍子23aと下部碍子23bは、雌
ねじ筒24a及び雄ねじ筒24bにより離脱可能
に嵌合固定された特許請求の範囲第6項に記載の
電圧センサ内蔵型耐雷碍子。
[Scope of Claims] 1. A hollow insulator body 1 is provided with a charging side electrode 4 and a grounding side electrode 5 at both upper and lower ends, and the hollow part 1a is provided with a charging side electrode 4 and a grounding side electrode 5, which are arranged facing each other with a predetermined discharge gap G. In an insulator in which a side discharge electrode 14, a ground side discharge electrode 15, and a nonlinear resistance element 13 are connected in series, an electro-optical element is interposed between both the discharge electrodes 14 and 15, and the electro-optical element has a A lightning insulator with a built-in voltage sensor, characterized in that optical fibers 20a and 20b are connected for supplying optical power to the element from the outside and guiding light modulated by the element to the outside. 2 Discharge electrodes 14, 15 on the energizing side and the grounding side
The voltage sensor built-in lightning insulator according to claim 1, wherein an insulating spacer 18 and an electro-optical element are interposed in series connection. 3. The voltage sensor built-in lightning insulator according to claim 1, wherein the electro-optical element is a Pockels element 17. 4 The nonlinear resistance element 13 is an optical fiber 20a,
The lightning insulator with a built-in voltage sensor according to claim 1, which is formed into a hollow shape so that the voltage sensor 20b can be inserted therethrough, and is mainly made of zinc oxide (ZnO). 5. The voltage sensor built-in lightning insulator according to claim 1, wherein the ground side electrode 5 is provided with an optical connector 21 for connecting optical fibers 20a and 20b. 6 The hollow insulator main body 23 is provided with a charging side electrode 4 and a grounding side electrode 5 at both upper and lower ends, and the hollow part 23c
In an insulator in which a non-linear resistance element 13 is connected in series with a energized discharge electrode 14 and a grounded discharge electrode 15 which are arranged facing each other with a predetermined discharge gap G, a An electro-optical element is interposed between the electro-optical element and optical fibers 20a and 20 for supplying optical power to the element from the outside and guiding light modulated within the element to the outside.
b, and the nonlinear resistance element 1
In order to separate the insulator main body 23 from the upper and lower insulators 23a,
A lightning insulator with a built-in voltage sensor, characterized in that it is formed separately from 23b and connected to each other. 7. The voltage sensor built-in lightning insulator according to claim 6, wherein the upper insulator 23a and the lower insulator 23b are removably fitted and fixed by a female thread tube 24a and a male thread tube 24b.
JP60056424A 1985-03-20 1985-03-20 Voltage sensor built-in type lightningproof insulator Granted JPS61214309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60056424A JPS61214309A (en) 1985-03-20 1985-03-20 Voltage sensor built-in type lightningproof insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60056424A JPS61214309A (en) 1985-03-20 1985-03-20 Voltage sensor built-in type lightningproof insulator

Publications (2)

Publication Number Publication Date
JPS61214309A JPS61214309A (en) 1986-09-24
JPH0348606B2 true JPH0348606B2 (en) 1991-07-25

Family

ID=13026713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60056424A Granted JPS61214309A (en) 1985-03-20 1985-03-20 Voltage sensor built-in type lightningproof insulator

Country Status (1)

Country Link
JP (1) JPS61214309A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2368569C (en) 1999-04-02 2006-08-01 Keith E. Lindsey Insulator support current sensor
JP4584081B2 (en) * 2005-09-02 2010-11-17 中部電力株式会社 Recycling method and dismantling device for power distribution arrester

Also Published As

Publication number Publication date
JPS61214309A (en) 1986-09-24

Similar Documents

Publication Publication Date Title
EP0338542B1 (en) A current and/or voltage detector for a distribution system
US3991367A (en) Detection of potential on high-voltage transmission lines
KR0160970B1 (en) Lighting arrester on tower for power transmission
WO2019194754A1 (en) Link box with built-in insulator type voltage divider and inductive partial discharge sensor
JP2002214254A (en) Arrester type power transmission/distribution line current/voltage measuring apparatus and power transmission/distribution line current/voltage measuring system using the same
JP6235830B2 (en) Voltage detector and switchgear provided with the same
JPH0348606B2 (en)
JPH05281286A (en) Device for detecting failure of insulator
JP2007024707A (en) Leakage current measuring monitoring device by clamp meter
RU2640315C1 (en) Adjustable capacitive sensor of high voltage
JP2537898B2 (en) Voltage divider
JPH0450685B2 (en)
JP2932771B2 (en) Distribution line monitoring device
JPS6053522B2 (en) Fault position detection device for opening/closing equipment
JPH0312168Y2 (en)
JPH0216555Y2 (en)
JP2000286108A (en) Porcelain type arrester
JPH07161248A (en) Bus line voltage detecting device
JPH0336195Y2 (en)
JP2615861B2 (en) High voltage equipment with power indicator
JPS5923163B2 (en) Voltage detection device for gas insulated switchgear
JPS644202Y2 (en)
KR20200107643A (en) Supporting device for bus bar having voltage detecting function
JPH0572246A (en) Distributing apparatus having deterioration of insulation detecting function
SU842630A1 (en) Device for measuring switch contact insulation resistance